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ABSTRACT:

Point clouds derived from airborne laser scanning (ALS) and from LiDAR sensors mounted on unmanned aerial vehicles (ULS) reveal
differences caused by the different sensor systems and acquisition geometries. These differences in the system characteristics are
reflected in forest structure metrics that are derived from the respective point clouds. In our study, we investigate the completeness of
scene coverage between the two systems and address differences between structure metrics derived from ULS and ALS, namely in point
height quantiles, fractional cover (fc), the vertical complexity index (VCI) and the number of canopy layers (nLayers). The metrics are
evaluated for raster cell sizes of 1–10 m in order to investigate the spatial scale on which the sensor systems provide comparable metrics.
We found highest correspondences between ALS and ULS in the VCI- and the nLayers-metrics, while fc revealed large differences.
For the height quantiles, the absolute differences were larger for the 10%- (h10) and the 50%- (h50) than for the 90%- (h90) height
quantile. Furthermore, we found differences between ALS- and ULS-metrics to decrease for larger cell sizes, except for fc, for which
the differences increased, and h50 and h90, respectively, for which the differences were relatively stable for all cell sizes.

1. INTRODUCTION

Unnmanned aerial vehicles (UAV) mounted laser scanning sys-
tems, hereafter referred to as ULS, facilitate the derivation of for-
est structure information for forest inventories (FI) (Guo et al.,
2017; Wallace et al., 2014, 2016). FI-parameters traditionally
have been retrieved from ALS on an operational level (Næsset,
2014; Vauhkonen et al., 2014; White et al., 2016). In comparison
to ALS, ULS acquisitions provide much higher point densities
that are comparable to the ones from terrestrial laser scanning
(Morsdorf et al., 2017; Wieser et al., 2017), what allows for the
retrieval of FI-parameters on single tree level (Lin et al., 2011;
Wallace et al., 2014; Wieser et al., 2017).
ULS and ALS acquisition campaigns differ broadly regarding the
areas, which are typically covered, the overall costs of the mis-
sions, and the costs per square kilometer. While the costs per
square kilometer are higher for ULS than for ALS data (factor
30–40 in the data sets in this study), the overall costs of typical
ULS campaigns are lower compared to ALS acquisitions as their
spatial extent typically is limited to local scales (e.g. Morsdorf
et al., 2017; Wallace et al., 2014; Wieser et al., 2017). Yet, a
comparison of the costs is also difficult because ULS can partly
substitute in-situ measurements and then the relation of the costs
is completely different. Furthermore, one can expect that prices
for ULS acquisitions will decrease with the developing markets.
For these reasons, ULS is a promising tool for the collection of
LiDAR time series (Goodbody et al., 2017; Wallace et al., 2014;
Wieser et al., 2017), providing the potential of vegetation moni-
toring and the update of FIs with a fine temporal resolution. ULS
data in this context could complement data sets from ALS acqui-
sitions, which are typically performed through the local authori-
ties at temporal intervals of several years (Hollaus, 2015).

∗Corresponding author

However, if metrics derived from point clouds from different laser
scanning sources are to be combined, their comparability is a pre-
requisite. For ALS data, the effect of different acquisition char-
acteristics on derived FI-metrics has been investigated (Goodwin
et al., 2006; Morsdorf et al., 2008; Næsset, 2009). On the other
hand, ULS and ALS systems differ significantly with regard to
the measurement process (Morsdorf et al., 2018), i.e. regarding
beam divergence, laser wavelength, pulse energy, pulse repeti-
tion frequency, scan angle, and flight altitude, depending on the
deployed laser scanner, flight planing and platform. These pa-
rameters, however, were found to affect the point densities (Hop-
kinson, 2007; Morsdorf et al., 2008; Yu et al., 2004) and the point
distributions across height (Hopkinson, 2007; Wieser et al., 2016)
and, thus, have to be taken into account when FI-metrics derived
from point clouds from different sensor systems are compared
(Morsdorf et al., 2018).
In our study, we therefore address the comparability of four met-
rics that were computed from ULS and from ALS data and that
describe the forest structure: height quantiles h10, h50, h90, the
fractional cover fc, the vegetation complexity index VCI, and the
number of canopy layers nLayers. The metrics were chosen such
that each metrics exploits the point cloud information in a dif-
ferent manner. They also differ in the concepts their computa-
tion bases on. The computation of the height quantiles is per-
formed directly on the point cloud. fc rests upon the the Beer-
Lambert-law on canopy transmittance where the path length of
the laser beam through the canopy layer is evaluated (Hopkin-
son and Chasmer, 2009; Weiss et al., 2004). The computation
of fc, however, can be approximated through a classification of
the point cloud into canopy points and non-canopy points and by
subsequently forming their ratio (Morsdorf et al., 2006). For the
calculation of the VCI, the point cloud is transformed into a voxel
structure and the point cloud information is reduced by summa-
rizing the point counts per voxel (Morsdorf et al., 2018; Pearse
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et al., 2018). The computation of nLayers, finally, marks a fur-
ther generalization as the voxels are classified as ”filled” if they
are populated by points and as ”empty” otherwise (Leiterer et al.,
2015b).
The first aim of our study is to compare the scene coverage be-
tween ULS and ALS. The second aim is to investigate whether
the differences in the point clouds and the different use of the
point cloud information in the metrics computation affect the de-
rived forest structure metrics. Our goals are to detect differences
in the four metrics between ULS and ALS, analyse how the dif-
ferences relate to the scale on which the metrics are computed
and discuss which metrics are comparable between the two ac-
quisition systems. The focus of our study therefore is to inves-
tigate how the differences in the point cloud information, and,
along with this, the stated acquisition properties, which lead to
these differences, can be reduced by selecting appropriate struc-
ture metrics in order to ensure the comparability between the two
systems. Another aspect concerns how the differences in the de-
ployed acquisition geometries and sensors, as well as corrections
of the point cloud in the pre-processing of the point clouds, affect
the calculated metrics. Such investigations, however, go beyond
the scope of this study as no data sets with variances in the re-
spective parameters were available.

2. MATERIALS

In this study, we selected two test sites near Düns, Vorarl-
berg, Austria. Test site 1 covers a 360 × 360 m area cen-
tered at 5230390 N, 554860 E (UTM 32N), test site 2 covers
a 240 × 360 m area centered at 5230480 N, 554470 E (UTM
32N). The elevation ranges from 850 to 1070 m.a.s.l. The test
sites cover predominantly forested areas that are dominated by
coniferous trees. The mean canopy heights are 19.0 m for site 1
and 16.5 m for site 2. In both test sites, a single layered for-
est (nLayers=1, read from the ALS data set and using a cell size
of 8 m) is dominating, with significantly less cells with two and
more layers. Mean fc is 0.64 for site 1 and 0.63 for site 2, both
read from ALS data at cell sizes of 2 m.
For the study area, we had an ALS and an ULS data set available,
along with a forest map.

2.1 ALS data

The ALS data was acquired and provided by the federal state
of Vorarlberg. The sites are covered by 6 (site 1) and 5 (site 2)
flight strips, acquired between March and May 2011 under snow
free conditions. The acquisition was performed using an Optech
ALTM Gemini sensor. The used flight strips are derived from
three different acquisition campaigns with respective average
flight altitudes of 560, 700 and 760 m above ground. The sensor
operates with a laser wavelength of 1064 nm and a beam diver-
gence of 0.25 nm (Joerg et al., 2015), what results in footprint
sizes between 14–19 cm for the given flight strips. The scan
angles range in ± 30 ◦. The average point densities within the
evaluated forest areas are 33 and 23 pts/m2 for site 1 and 2, re-
spectively.

2.2 ULS data

ULS data was acquired in May 2014 using a Scout B1-100 ULS
Helicopter system with a mounted Riegl VUX-1 sensor. Sites 1
and 2 were covered by 8 and 6 ULS-flight strips, respectively.
The average flight altitude was 120 m above ground, ranging be-
tween 80 and 200 m. The sensor operates with a wavelength of

1550 nm and a beam divergence of 0.5 mrad (Mandlburger et al.,
2015). This results in footprint sizes of 4–10 cm on the ground
for the chosen flight geometry. The scan angle was limited to
± 90 ◦. The average point densities within the evaluated forest
areas are 906 and 689 pts/m2 for site 1 and 2, respectively.

2.3 Selection of the test site

In order to facilitate a stable forest metrics computation, two
measures were necessary. Firstly, we restricted the evaluation
to forested areas according to the forest map. Due to the con-
siderable time span between the ALS and the ULS acquisitions,
however, major changes in the forest structure, i.e. logging activ-
ities, are discernible in some parts of the test sites. Secondly, in
order to minimize a bias introduced by such changes in the forest
structure, we limited the evaluation to raster cells with differences
≤ 1.0 m in the canopy height models (CHM) as computed from
the ALS and ULS data.
The ALS data set is combined from two acquisition dates. While
the second ALS acquisition was performed during the same phe-
nological period as the ULS acquisition, i.e. under leaf-on condi-
tions, the earlier ALS campaign was flown under leaf-off con-
ditions. However, the vegetation predominantly comprises of
conifer trees. The coniferous forest type, apart from the spatial
selection, further warrants the comparability of the forest struc-
ture between the two data sets and acquisition dates.

3. METHODS

3.1 Acquisition characteristics

ALS and ULS data sets were investigated regarding differences in
the point height distributions in the canopy layers and regarding
the amount of occlusions occurring within the canopy. The latter
investigation was performed through ray-tracing using the voxel
traversal algorithm implemented in Kükenbrink et al. (2017).

3.2 Structure metrics

We computed height quantiles measuring the height of the 10%-
(h10), the 50%- (h50) and the 90%-quantile (h90) of the verti-
cal distribution of the points. In order to reduce a bias through
ground points, we excluded points deriving from < 0.5 m above
ground from the analysis.
The fc is a dimensionless parameter in range [0,1]. It describes
the fraction of ground covered by vegetation within a certain
ground area and, according to Morsdorf et al. (2006), can be com-
puted from LiDAR data as:

fractional cover =
Ncanopy

Ntotal
(1)

Ncanopy thereby corresponds to the number of canopy points and
Ntotal to the total number of points within the area, where we
selected a canopy threshold of 3 m above terrain for the discrim-
ination of canopy from non-canopy points.
VCI describes the evenness of the vertical distribution of the
points across the canopy layers (Pearse et al., 2018; van Ewijk
et al., 2011). Following these studies, it is calculated as:

V CI =
−
∑H

i=1
pi · ln(pi)

ln(H)
(2)
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The canopy is divided into H layers of a certain bin height, which
we set to 1 m as was proposed by van Ewijk et al. (2011) and
Pearse et al. (2018). H is a constant value for each test site and
was chosen such that the top point in the canopy height model
lies in the uppermost layer. pi corresponds to the relative abun-
dance of points in height layer i with regard to the total number
of points in the respective height column. VCI is in range [0,1]
where VCI=1 signifies an even distribution of the points across
the canopy height and decreasing values state an increasingly un-
even distribution (van Ewijk et al., 2011).
We computed nLayers as described in Leiterer et al. (2015b). For
the computation, the vertical point distributions are transformed
to relative-frequency histograms, for which we again chose a bin
height of 1 m. The height bins then are classified as ”filled” if
their relative abundance is ≥ 1% or ”empty” otherwise. As pro-
posed by Leiterer et al. (2015b), isolated empty bins were reclas-
sified to filled and vice versa. The number of layers corresponds
to the number of changes from empty to filled bins in the classi-
fied height profiles.

3.3 Evaluation of scale differences

The described structure metrics were computed for raster cell
sizes of 0.5, 1, 2, 3, 4, 5, 6, 8 and 10 m, respectively. The layer
width for the computation of VCI and nLayers, however, was left
unchanged at 1 m.

4. RESULTS

4.1 Acquisition characteristics

Figure 1 shows two 14 x 10 m subsets from the ALS and the
ULS data set, respectively, taken at the original resolutions of the
respective point clouds. From visual inspection, one can recog-
nize the high level of detail in the ULS point cloud, where tree
stems and even the main branches are discernible. Figure 2 re-
ports the point distributions across height, measured as point fre-
quencies per height bin above the terrain, for the ALS and the
ULS point cloud. The ULS acquisition shows a higher fraction
of points from the canopy than ALS, particularly within medium
and lower canopy layers. In the sub-canopy layer (i.e. below the
canopy threshold of 3 m as used in our study), on the other hand,
the relative fractions of total points in the ALS data are equal to
or larger than in the ULS data. Furthermore, ALS shows a better
relative coverage of the ground than ULS with 33.8-36.2% of the
ALS points deriving from below 1 m above ground while the re-
spective fractions of ULS points are 14.7-21.3%.
Table 1 reports the fraction of observed voxels (fObserved), i.e.
voxels within the canopy that have been traversed by the laser
and that either contain points or not, and the fraction of occluded
voxels (fOccluded), i.e. voxels that theoretically lie in the laser
beam path but that are not reached by the beam due to occlusions
through canopy material. For voxels with side lengths of 0.5 m,
the fraction of occluded voxels amounts to 15.8–31.4% for ALS
and to 2.7–5.4% for ULS. The occlusions decrease with increas-
ing voxel sizes.
Figure 3 depicts the fraction of occluded voxels in dependence
of the voxel location above ground for a voxel size of 1 m. The
fractions are in regard to the total number of occluded voxels in
the respective data sets. The occlusion profiles reveal occlusions
in the ULS system to occur predominantly within lower canopy
layers while for the ALS system, already medium canopy layers
are prone to the occlusion effect.

Figure 1. Oblique view onto a 14 x 10 m (northing x easting)
subset of site 1, taken from the ALS (left) and the ULS (right)

point cloud. The subsets are centered at 5230328.5 N, 555000 E
and were taken at the original resolutions of the respective point

clouds.
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Figure 2. Comparison of point frequencies depending on height
from ALS and ULS data for site 1 (left) and site 2 (right). The
frequencies are measured in 1 m height intervals and state the
fraction of points with regard to the total number of points per

point cloud. As the bottom most layer contains the largest
fraction of points, it has been excluded for a clearer

representation.

4.2 Structure metrics differences

Figure 4 shows the mean differences between the structure met-
rics derived from the ALS and the ULS data sets in dependence
of the cell sizes on basis of which the metrics have been calcu-
lated. The means were calculated from the absolute differences,
i.e. without taking into account the direction of the differences.
Height quantile differences are measured as absolute values in
[m] (mean difference) and as relative difference with regard to
the maximum canopy height within the cell (mean relative dif-
ference). fc and VCI are measured in the value range of these
two metrics, which corresponds to [0,1]. The mean difference
for nLayers is stated in number of layers, where the maximum
number of layers was 5 in site 1 and 6 in site 2, respectively. His-
tograms of the absolute differences for h90, fc and nLayers are
depicted in Figures 5, 6 and 7, respectively.
Of the height quantile metrics, h10 shows the largest differ-
ences between ALS and ULS, however, the differences get to
the range of differences in h50 in terms of absolute mean dis-
tances (5.9−2.9 m for h10; 3.6−3.1 m for h50) and decrease be-
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Figure 3. Fraction of occluded voxels in dependence of height
above ground for the ALS and the ULS acquisitions. The plots
show the occlusions for raster cell sizes of 1 m for site 1 (left)

and site 2 (right). The reported fractions are relative to the total
number of occluded voxels within the respective data set, which

are reported in Table 1

Table 1. Observation statistics for site 1 (top) and site 2
(bottom), stating the fraction of observed voxels ([%],
fObserved) and the fraction of occluded voxels ([%],

fOccluded). The voxels have a squared ground area with side
length stated by Cell size and a constant voxel height of 1 m.

Cell fObserved fOccluded

size ALS ULS ALS ULS

0.5m 84.2 97.3 15.8 2.7
1m 94.4 98.2 5.6 1.8
2m 97.6 99.8 2.4 0.2
3m 99.4 >99.9 0.6 < 0.01
4m 99.9 100.0 0.1 0.0
5m 100.0 100.0 0.0 0.0

0.5m 68.6 94.6 31.4 5.4
1m 86.8 96.6 13.2 3.4
2m 95.1 99.4 4.9 0.6
3m 98.7 99.9 1.3 0.1
4m 99.7 >99.9 0.3 < 0.01
5m 99.9 >99.9 0.1 < 0.01
6m >99.9 >99.9 < 0.01 < 0.01
8m 100.0 100.0 0.0 0.0

low the values of the latter in terms of the relative mean differ-
ence (0.29−0.11 for h10; 0.19−0.14 for h50) for increasing cell
sizes. Differences between the systems in h90 are smaller in gen-
eral (mean differences of 3.4−2.2 m; mean relative differences
of 0.15−0.07). On average, the ALS heights are lower than the
ULS heights for all three quantiles (exemplary shown in Figure 5
for the case of differences in h90). With increasing cell sizes, h10
shows a clear decrease in both, the mean difference and the mean
relative difference. For h50 and h90, the respective changes in
the mean differences are small with increasing cell sizes. On the
other hand, if the cell sizes are increased, the mean relative differ-
ences between the systems slightly decrease for h50, but increase
for h90. However, for h50 and h90, changes of the mean rela-
tive differences are less pronounced than the respective changes
in h10.
fc shows large differences between ALS and ULS for all cell sizes
with mean differences between 0.19−0.24, depending on the cell
size. fc on average is higher from ULS than from ALS, leading
to a right-skewed distribution of differences in the histogram in
Figure 6. Furthermore, the mean differences between ALS and

ULS increase with increasing cell sizes.
VCI, on the other hand, shows differences between the systems in
the range of 0.03−0.11 with a distinct decrease of the differences
with increasing cell sizes.
The mean difference in nLayers is below one layer, signifying
that on average, metrics from both data sets are comparable. The
difference histograms of nLayers (Figure 7) further illustrate the
relative number of pixels with no differences in nLayers to in-
crease from 54.5% and 55.5% to 76.9% and 88.7% for sites 1
and 2, respectively, when increasing the raster sizes from 1 m to
10 m.

5. DISCUSSION

5.1 Acquisition characteristics

Studies by Hopkinson (2007), Gaveau and Hill (2003) and Wieser
et al. (2016) discussed the laser beam penetration into the canopy
to depend on sensor characteristics (e.g. laser pulse power, beam
divergence, wavelength), on acquisition parameters (flight alti-
tude and pulse repetition frequency), and on canopy characteris-
tics. We found the largest discrepancies in the point height dis-
tributions between ALS and ULS to occur within medium and
lower canopy layers (Figure 2), what we ascribe to the larger
beam width of ALS and variations in the laser pulse power be-
tween the system, considering the findings by Hopkinson (2007).
However, due to a missing broader data basis, we could not fur-
ther investigate the respective impacts of the acquisition charac-
teristics and sensor properties.
Table 1 reports the completeness of scene coverage in terms of
the fraction of observed voxels to be higher by the factor of 5
to 6 for the ULS compared to the ALS system for 0.5 m voxel
cells (15.8-31.4% occluded voxels for ALS, 2.7-5.4% occluded
voxels for ULS) while the completeness of scene coverage be-
comes similar for voxels with side length ≥ 4 m. Kükenbrink et
al. (2017) found the fraction of occluded voxels to become very
low for voxel sizes exceeding this value. However, we used vox-
els with a constant voxel height of 1 m while Kükenbrink et al.
(2017) used cubic voxels.
Morsdorf et al. (2018) and Schneider et al. (2019) showed oc-
clusion profiles of ULS measurements and discussed the number
of occluded voxels to increase on decreasing canopy height lev-
els. Furthermore, the amount of occluded voxels was found to be
higher for the same acquisition characteristics under leaf-on than
under leaf-off conditions (Kükenbrink et al., 2015; Morsdorf et
al., 2018). On the other hand, Kükenbrink et al. (2017) discussed
the magnitude of occlusion effects to decrease with higher pulse
densities and if the scene is covered under multiple scan angles.
These latter acquisition characteristics differed significantly be-
tween the two sensor systems deployed in this study, what could
explain our results.

5.2 Structure metrics differences

Differences in the height quantiles between ULS and ALS point
clouds diverge with increasing penetration into the canopy. As
depicted exemplary for h90 in Figure 5, ALS generally underes-
timates the respective height quantiles compared to ULS. Simi-
lar findings for differences in the height estimates from the two
systems were reported in Jaakkola et al. (2010), Wallace et al.
(2014) and Wieser et al. (2016). Underestimations of height met-
rics from ALS have been discussed in previous studies, which
attributed them to sensor and acquisition characteristics, with the
result that ALS is likely to miss tree tops (Gaveau and Hill, 2003;
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Figure 4. Top row, left to right: Mean differences (solid lines, left y-label) and mean relative differences (dashed lines, right y-label) in
h10, h50, h90 from ULS and ALS as function of the cell size for which the metrics were computed. Bottom row, left to right: Mean

differences in fc, VCI, nLayers from ULS and ALS.

Figure 5. Relative histogram of differences between h90
calculated from ULS data with regard to ALS data for raster cell

sizes (cs) of 1, 4, and 10 m, respectively. Bin widths are set to
1 m, differences are measured in [m]. Orange: site 1, blue:

site 2, gray: overlay of the histograms.

Hopkinson, 2007). The described increase of differences in the
lower quantiles (h10, h50) are probably due to the differences be-
tween the systems in the point height distributions that we have
detected. The difference in h10 between ULS and ALS, how-
ever, decreased with increasing cell sizes and differences in h50
showed a similar trend, although the decrease is less pronounced.
h90, on the other hand, revealed relatively stable differences for
all investigated cell sizes. Typically, point height distribution
metrics are computed on larger areas of, for instance, 200 m2

(Næsset, 2002). Such a larger scale increases the comparability
of the height quantiles from ULS and ALS.
The results revealed the difference in fc between the two systems
to amount to around 20% of the possible maximum value of the
metrics, where fc was overestimated by ULS compared to ALS.
Morsdorf et al. (2006) found the smallest differences of fc com-

Figure 6. Relative histogram of differences between fc
calculated from ULS data with regard to ALS data for raster cell

sizes (cs) of 1, 4, and 10 m, respectively. Bin widths are set to
∆ fc = 0.2, differences are measured in the unit of fc. Orange:

site 1, blue: site 2, gray: overlay of the histograms.

puted from ALS data to reference data for a circular area with a
2 m radius. Our results revealed the smallest differences between
ULS and ALS to coincide with smaller cell sizes while the dif-
ferences increased with larger cells. Overall, however, the large
differences between the systems make the comparability of the
metrics questionable for all cell sizes.
In VCI, we found small differences between the systems and dif-
ferences became smaller when computed for larger cell sizes. The
evaluation of VCI on larger scales, thus, ensures comparability of
the metrics and could likely be increased beyond the level re-
ported by us if it is computed for areas of 400 m2 as in van Ewijk
et al. (2011).
nLayers computed from ULS and ALS shows a high level of com-
parability for large cell sizes. Leiterer et al. (2015a) reported
a saturation in the information content with regard to the point
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Figure 7. Relative histograms of differences between nLayers
calculated from ULS data with regard to ALS data for raster cell
sizes (cs) of 1, 4, and 10 m, respectively. Bin widths are set to 1,

corresponding to one layer. Orange: site 1, blue: site 2, gray:
overlay of the histograms.

density for the way the point cloud information is used for the
computation of nLayers. Leiterer et al. (2015a) and Leiterer et
al. (2015b) therefore stated raster sizes of 8–10 m to be the most
appropriate choice for canopy layer characterizations. As further
shown in Table 1, we can assume a similar completeness of scene
coverage in terms of fraction of observed voxels for such cell
sizes.
Although we could define a scale on which the metrics from ULS
and ALS become comparable, a more fundamental consideration
regards the reasonability of comparing metrics derived form the
two systems. ALS point clouds are relatively sparse (Figure 1,
left), requiring empirical approaches to relate predictor variables
computed from the point cloud, as e.g. height quantiles, to field
inventoried parameters (Næsset, 1997; Næsset, 2002). ULS, on
the other hand, provides very high point densities and, among
with this, a high level of detail, which potentially allows for
the recognition of the tree architecture up to the level of single
branches (Figure 1, right). This difference in the information con-
tent of ULS data has been discussed in Morsdorf et al. (2018) and
the authors put into question the usability of empirical approaches
known from ALS for the application on ULS data. Although their
scepticism, we believe that metrics from ULS data can be used in
a similar way as metrics from ALS data, as long as one can prove
the derived metrics to be comparable from statistical analyses.
However, with simple empirical approaches, we neglect the high
information content that ULS provides. The integration of ULS
data into forest inventories therefore requires further investiga-
tions in order to fully exploit the high information content that
ULS provides.
On the other hand, the level of detail, which is required by the
stakeholders in forestry, is on the scale of several meters (Leit-
erer et al., 2015b). The future task, thus, will be to bring the high
level of detail from ULS to broader extents.

5.3 Implications on the metrics selection

Our results highlight a number of findings that are relevant
for the selection of metrics with high comparabilities between
ULS and ALS. i) we found that the capability of the systems
to penetrate into the canopy layer impacts the comparability of
metrics directly computed from the point cloud. In our study, the
canopy penetration varies between ULS and ALS, what leads to
differences in the height quantile metrics. ii) we found that the
theoretical concepts, which underlie the computation of structure
metrics, have to be thoroughly considered in order to evaluate
properties which are measured in the same way. Exemplary for
such a metric, we evaluated fc based on the approximation by
Morsdorf et al. (2006). From a conceptual perspective, however,
fc rests upon the evaluation of the canopy transmittance (Weiss

et al., 2004). As Korhonen and Morsdorf (2014) discussed, the
implemented approximation in the computation step therefore
only applies to nearly nadir-looking acquisition geometries.
For ULS, this assumption is violated due to the large off-nadir
scan angles and the measured transmittance from ULS is not
comparable to the one from ALS. iii) we found that voxel-based
metrics (VCI in our case) increased the comparability of metrics
from different sensor systems. Our finding is consistent to the
results by Pearse et al. (2018) who illustrated the benefit of
voxel-based forest metrics from ALS data. Furthermore, we
found that a higher level of generalization of the point cloud
information within the voxels further reduced metrics differences
between the systems (nLayers).
However, for a more robust generalization of our findings, we
propose to investigate more systematically the impact of the
acquisition and sensor characteristics, which are specific to ULS
and ALS campaigns, respectively, on the resulting point clouds
and the derived structure metrics. This requires to capture the
same scene with different flight schemes, LiDAR sensor systems,
and scanning properties. As we currently only had the used
data sets available, we could not further assess the impacts of
these parameters. We assume that our findings regarding the
metrics differences are valid for ULS acquisitions similar to
ours. The term ULS, however, does not define the acquisition
geometry in a strict way. In our case, the flying altitude above
ground ranged from 80 to 200 m, while other studies reported
altitudes of 15 m (Wieser et al., 2017) to 30 m (Morsdorf et al.,
2017) above the canopy top height. We assume that acquisi-
tion geometries change drastically, depending on whether the
UAV is flown almost on crown top height or tens of meters above.

6. SUMMARY AND CONCLUSIONS

We investigated differences in the point clouds from ULS and
ALS and analyzed the comparability of forest structure metrics
computed from the respective data sets as function of scale, for
which we tested cell sizes with side length of 0.5–10 m for the
metrics computation. We found differences of the completeness
of scene coverage to be levelled out between ULS and ALS for
horizontal voxel side lengths ≥4 m. The point distribution within
the canopy differed between the two systems with ULS having a
higher relative coverage of medium to lower canopy layers com-
pared to ALS, and ALS having a higher fraction of ground points.
From the compared structure metrics, we found VCI and nLayers
to provide comparable estimates from ULS and ALS and pro-
pose cell sizes of 8–10 m for their computation. On the other
hand, h10 and h50 showed larger mean relative differences, what,
in our view, makes the direct comparison of these metrics ques-
tionable. The differences in h90 were smaller, but the metrics
was generally underestimated from ALS data. fc, finally, showed
huge differences between ULS and ALS why we negate the com-
parability of this metrics between ULS and ALS.
From our reported findings, we further conclude that the means
by which the point cloud information is utilized in the structure
metrics computation has an influence on the comparability of
ULS and ALS metrics. A higher level of generalization of the
point cloud information through voxelization resulted in smaller
metrics differences between ULS and ALS (VCI) than when the
untransformed point cloud was used (h10, h50, h90). The level
of comparability was further increased by the generalization of
the point counts per voxel cell into the information on whether a
voxel cell was populated or not (nLayers). In contrast, fc revealed
large differences between ULS and ALS, although its computa-
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tion bases on a coarse partition of the point cloud into canopy
and non-canopy points only. We hypothetize the cause to be in
the large scan angle differences between ULS and ALS systems.
Finally, our results suggest, that the comparability of the metrics
increases with larger cell sizes. From other studies, however, we
learn that this statement does not apply to all metrics. Moreover,
we suspect that beyond a certain cell size, the metrics loose their
meaning. Therefore, further research is required on how ALS and
ULS data can be integrated jointly into forest inventories, particu-
larly making better use of the high level of detail offered by ULS.
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