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ABSTRACT: 
 
Pavement markings serve as important traffic control devices, delineating traffic lanes and conveying regulations, guidance or warnings 
to roadway users. To ensure that pavement markings are clearly visible, especially at night, transportation agencies periodically assess 
the retroreflectivity of various categories of markings through manual approaches at discrete location.  Because the radiometric 
information such as intensity in the lidar data cannot inherently be considered as a retroreflectivity measurement without additional 
processing, this study rigorously assesses the ability to determine pavement marking retroreflectivity from the Leica ScanStation P40 
through radiometric calibration.  For the evaluation, data were collected at a study site in Philomath, Oregon using the Leica P40, Leica 
Pegasus: Two mobile lidar system, and a handheld retroreflectometer as a reference.  The results show that, with appropriate calibration, 
the lidar data can adequately assess the retroreflectivity of pavement markings.  Additionally, while corrections have been proposed 
for range and angle of incidence, these corrections are not straightforward to apply for retroreflective materials, as will be discussed 
herein.  While mobile lidar technology is ideal for a system-wide asset management framework, terrestrial laser scanning can be utilized 
for detailed investigations at sites such as intersections with highly variable wear where both can enable significant cost savings and 
applied for a variety of purposes simultaneously including asset management and project development. 
 
 

1. INTRODUCTION 

1.1 Overview 

Pavement markings serve as important traffic control devices, 
delineating traffic lanes and conveying regulations, guidance or 
warnings to roadway users. To ensure that pavement markings 
are clearly visible, especially at night, transportation agencies 
periodically assess the retroreflectivity of various categories of 
markings in accordance with the Federal Highway 
Administration’s Manual on Uniform Traffic Control Devices 
(MUTCD), Section 3A.03. A typical method of assessing 
retroreflectivity is through the use of a handheld 
retroreflectometer, designed to simulate the reflection of light 
from the headlights of a car. Alternately, visual nighttime 
inspection can be performed for a qualitative measure of marking 
quality. However, the former method is expensive, labour 
intensive, and carries safety implications, due to requiring 
roadside work, while the latter provides less quantifiable data. A 
promising alternative is to derive accurate retroreflectivity 
measurements from lidar data. As many state transportation 
agencies are already collecting mobile lidar data for a variety of 
other purposes (Olsen et al. 2013), including asset management 
and project development, significant cost savings could be 
enabled by using the lidar data to simultaneously assess 
pavement marking retroreflectivity.  
 
However, lidar “intensity” data, a measure of the returned signal 
strength for each detected echo, cannot inherently be taken as a 
retroreflectivity measurement without additional calibration and 
processing because the intensity value is affected by a variety of 
factors, including scanning geometry (e.g., angle of incidence, 
range), environmental conditions, scanner settings (e.g., internal 
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manufacturer corrections), and material properties. Various 
correction methods have been proposed, primarily focused on 
range and angle of incidence.  Kashani et al. (2015) provide an 
overview of approaches for intensity normalization (making 
intensity values consistent between adjacent flight lines or scans), 
intensity correction (applying a correction based on parameters 
such as range), and radiometric calibration (performing a 
rigorous calibration to objects of known reflectance). Most work 
in this realm focuses on airborne laser scanning; however, studies 
are increasingly focusing on mobile and terrestrial laser scanning 
(MLS and TLS).  While the scanning geometry (e.g., angle of 
incidence, range) tends to be more consistent in ALS, scanning 
geometry can vary greatly in MLS and TLS for many objects.   
 
Jaakkola et al. (2008) normalized the intensity within a cross 
section of the road by fitting a curve such that it can correct the 
intensity of the points close to the road boundary. Similarly, Guan 
et al. (2014) assumed a Gaussian normal distribution of the 
intensity across the road surface to support the following road 
marking extraction. Zhang et al. (2016) developed an intensity 
correction based on a linear regression of the cosine of the scan 
angle rank versus intensity to improve its consistency as a relative 
measure for comparing road markings. Their primary focus in 
developing this correlation is to utilize this information for 
improving the road marking extraction algorithm results. Carlson 
et al. (2017) evaluated the use of Velodyne HDL-32 system for 
retroreflectivity measurements on sheeting material mounted in 
different orientations but unfortunately was unable to find a 
satisfactory correlation with that system. Olsen et al. (2018) 
evaluated the Leica Pegasus: Two and found good agreement 
with a handheld retroreflectometer, particularly when the system 
was operated in a dual profiler configuration.  
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In addition to the pavement markings, Ai and Tsai (2016) 
performed a radiometric calibration for mobile lidar system to 
evaluate the condition of the traffic signs, which are also a critical 
type of traffic control device that is retroreflectivitive for 
nighttime visibility. Olsen et al. (2018b), however, tested a 
different mobile lidar system that could not provide adequate 
retroreflectivity measures on signs. 
 
While few studies have focused on using lidar data for pavement 
marking retroreflectivity evaluation, several studies have utilized 
intensity information for road marking extraction (e.g., Guan et 
al. 2016, Zhang et al. 2016, Jung et al. 2019) or to serve as a 
reference for improved geo-referencing (e.g., Toth et al. 2008).   
 
1.2 Challenges and Objectives 

This study expands on prior efforts (Olsen et al. 2018) by 
rigorously assessing the ability to determine pavement marking 
retroreflectivity using the Leica ScanStation P40. Data at a study 
site in Philomath, Oregon, United States, were collected using a 
Leica Pegasus: Two mobile lidar system and a handheld 
retroreflectometer in addition to the P40. While MLS is a better 
solution for asset management applications due to its efficiency, 
TLS can be used for a detailed analysis at a specific site of interest 
(e.g., intersection or local project site). 
 
Several challenges arise when utilizing TLS for this application.  
Firstly, in locations where assessments would be conducted, wear 
is this means that portion of the stripe will be more intact than 
others leading to different mechanisms of reflectance (e.g., 
diffused reflection on the pavement surface compared with retro-
reflection on the pavement marking).  Hence, one needs to know 
the appropriate material type first in order to apply the correct 
model on a per point basis rather than being able to use this 
information to classify the point.  Additionally, not all stripes are 
made of retroreflective materials (e.g., glass beads, 
retroreflective tape). Some markings are consisting solely of 
reflective paint. Secondly, sample spacing (point density) is 
highly variable with TLS and degrades with distance along the 
pavement surface.  This leads to substantial sampling close to the 
scanner on the markings and sparse sampling at further distances.     
 
To this end, the specific objectives of this paper are to: 
• Evaluate potential intensity corrections and applicability to 

this problem domain 
• Develop correlation for retroreflectivity for the Leica 

ScanStation P40. 
• Develop a new weighting strategy for mitigating the impact 

of variant sample spacing based on point sampling to model 
the retroreflectometer footprint.  

 
 

2. DATA COLLLECTION 

The field test was performed on a two-lane road in the Philomath 
project site. A specific stretch (~75 m) of the longitudinal stripe 
was chosen to ensure that a wide range of reflective stripe 
conditions could be evaluated (Figure 1).  
 
 

 
Figure 1. Photograph of the Philomath site with stripe of 

variable wear showing chalk markings at 0.5 m increments  
 

First, we marked the stripe every 0.5 m along the center of the 
longitudinal stripe, to consistently locate a total of 155 
retroreflectivity measurements using the Delta LTL-X handheld 
retroreflectometer (Figure 2(a)). Then, the position of each 
measurement point was captured with a Leica TS15 total station. 
A Leica Scan Station P40 terrestrial laser scanner was used to 
acquire a total of 9 scans spaced every 10 m along the stripe in 
the shoulder (~2 m laterally from the stripe) with an angular 
resolution of 0.02° both horizontally and vertically (Figure 2(b)). 
In addition, we collected MLS data using a Leica Pegasus:Two 
mobile laser scanner throughout the area of interest with 4 passes 
from each lane at a speed of 40kph (Figure 2(c)). Although the 
retroreflectometer is equipped with an internal GPS (few meter 
accuracy) and a GPS receiver can be mounted on the other 
instruments (e.g., total station, TLS, and MLS), to achieve a 
higher relative accuracy for developing the radiometric 
calibration model, all the data were registered and georeferenced 
via 5 ground control points set up and measured through static 
GNSS observations with Leica GS14 GNSS receivers.   
 
To perform a radiometric calibration to enable the TLS to 
evaluate worn road markings, we purposely selected a stripe with 
a wide range of wear (Figure 2(b)). The fieldwork process 
ensured sufficient georeferencing accuracy to perform a reliable 
radiometric calibration, while the dense point cloud adequately 
represented the variation of reflectance in intensity (Figure 3). 

 
 

 
(a) 
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(b) 

 

 
(c) 

 
Figure 2. Examples of field data acquisition including (a) 

handheld retroreflectomer, (b) Leica ScanStation P40 Terrestrial 
Laser Scanner and Leica TS15 Total Station, and (c) Leica 

Pegasus Mobile laser scanner 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Figure 3. Examples of (a) photograph of a section of worn road 
marking, (b) RGB of the TLS point cloud and retroreflectometer 

samples, (c) Intensity of the TLS point cloud, (d) Intensity of 
the MLS point cloud. 
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3. ANALYSES 

3.1 Radiometric calibration regression 

Olsen et al. (2018) performed radiometric calibration to convert 
the intensity values of the MLS point clouds to retroreflectivity 
measurements based on an empirical regression with the 
handheld retroreflectometer. However, the radiometric 
calibration model including both the sampling technique and 
regression function cannot be directly used for TLS data since it 
is specific to the Leica Pegasus: Two. One primary reason is that 
compared against a relatively consistent point density obtained 
with a MLS scan in the driving direction due to a consistent 
driving speed, the point density of a TLS scan varies significantly 
in a relatively short range (Figure 4) based on proximity to the 
scanner.  
 

 
Figure 4. Correlation between range and point density at the 

sampling points on the stripe. 
 
Although a clear trend is shown that can potentially be used to 
correct for the impacts of point density, unfortunately, such a 
correction is not straightforward to apply in practice, due to the 
missing information between scanlines (or rows) where the 
marking quality may vary substantially. Although the spacing 
varies considerably up to 10 m from the scanner, after 10 m, the 
curve in Figure 4 flattens and the spacing becomes very sparse 
(Figure 5). Additionally, the spacing within a scanline becomes 
substantially different than the spacing within a scan row where 
points are closer together. The point cloud still shows significant 
differences in terms of point distribution.  
 

 
 

Figure 5. Examples of varying point densities within a point 
cloud from a single scan at (a) 5 m, (b) 10 m, (c) 15 m, (d) 20 m 
from the scanner (Note that four different parts of the stripe are 

shown in this figure at the same scale). 
 

To counter such uneven distribution of TLS data, we propose a 
weighting strategy for the radiometric calibration. Based on the 
principle of how a retroreflectometer operates of aggregating a 
reading of retroreflectivity over a window, we utilize a footprint 
of the same dimensions as the handheld retroreflectometer to 
aggregate the intensity from a set of points, and correlate that 
with the retroreflectivity readings rather than applying an 
intensity correction to each individual point. The 
retroreflectomter has both an active footprint (illumination field) 
to be illuminated by the light source in the instrument, as well as 
a passive window (observation field) for capturing the light that 
is returned (DELTA Light & Optics, 2016). To further account 
for the point distribution, we rasterize the point cloud within the 
footprint (active/passive window) and compute the coverage 
ratio (ratio between the number of covered grid cells and the total 
number of grid cells within that footprint) as the weight in the 
following model regression (Figure 6). A grid cell size of 0.001 
m was used.   
 

 
Figure 6. Schemetic illustration of the footprint of the 

retroreflectometer and the weighting scheme taking the passive 
window as an example. 

 
Che et al. (in press) used the upper 10th percentile of the intensity 
values in an active window for with a power function for model 
regression for MLS data. In this proposed work for TLS data, a 
linear model was chosen since the power function was similar 
over the range of retroreflectivity values tested. We also 
compared regression results using an average intensity in the 
active window, 10th percentile of intensity values in the active 
window, and average intensity in the passive window. The 
average intensity value within the passive window outperformed 
the other two sampling strategies.  These results are presented in 
Figure 7, where a linear regression was applied with the 
aforementioned weighting strategy both using points extracted 
from the windows for each scan separately (Figure 7(a)) and 
points extracted from the windows for with all of the scans 
combined (Figure 7(b)) for comparison.  
 
Although the R-squared value for the linear regression using the 
points from each single scan individually is slightly lower than 
using points from all the scans combined when sampling, it is 
noticeable that the sample size of the former scenario is 
significantly smaller than the latter one. Nevertheless, the 
resulting equations are very similar and only differ by less than 
0.3 mcd/lx/m2 over the ranges of intensity tested.   
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(a) 

 

 
(b) 

 
Figure 7. Linear regression results using (a) points from each 
single scan within the passive window treated separately; (b) 

average of points from all the scans combined within the 
passive window. 

 

3.2 Investigation of Intensity Corrections 

We investigated a further intensity correction in terms of range 
and incidence angle, which tend to be two of the most common 
and substantial corrections applied in radiometric calibration. 
The road surface is typically close to a planar surface; hence, 
once the instrument height is known, the incidence angle would 
be highly correlated to the range (Figure 8).  The incidence angle 
can be estimated through the theoretical relationship derived 
based on geometry in Figure 8 (red line) with the assumption of 
a planar surface for the road. A more refined estimate of the 
incidence angle can be determined by computing a normal vector 
within a local neighbourhood rather than estimating a planar 
surface (blue dots in Figure 8). Notice that when the range is large 
(~10 m), the estimated incidence angle computed based on a 
normal determined within a local neighbourhood rather than an 
estimated planar surface deviates from this theoretical correlation 
as a result of additional uncertainty in the normal estimation 
occurring from the lower point density (Figure 4). Thus, 
integration of multiple scans are usually recommended to cover 
the area of interest and to ensure the point density and the 
reliability of the information extracted from the point clouds. 
 

 
Figure 8. Example of correlation between range and incidence 
angle for the points on the stripe where the instrument height 

was 1.79 m. 
 
Such a strong correlation between range and incidence angle 
created by the TLS scanning geometry could enable one to 
develop an empirical model with a single variable to correct the 
intensity. In this case, we consider range as the variable to 
explore the potential correction. In particular, retroreflective 
materials are designed to reflect light back in the direction of the 
source; hence, the actual angle of incidence would be closer to 0° 
compared with the estimated angle of incidence based solely on 
geometry without considering material type.   
 
To evaluate the variance of intensity with range, we first sample 
a number of points at different ranges lying on the pavement 
surface (asphalt). A very strong correlation can be seen between 
range and the intensity (Figure 9(a)) for the pavement surface; 
hence a simple correction (e.g., logarithmic function) can be 
applied to normalize the intensity values within this range. For 
the retroreflective road marking, we tested the points within a 
small bin of retroreflectivity readings between 140 and 
150 mcd/lx/m2 Figure 9(b)). However, there is no distinguishable 
correlation between intensity and retroreflectivity for the points 
lying on the road markings at the ranges evaluated and the trends 
can fluctuate when evaluated across a smaller window of ranges. 
Also it should be noted that the intensity can sometimes increase 
at further ranges from the scanner (also at a larger nominal 
incidence angle), which does not follow most of the theoretical 
models utilized for correcting intensity. The reason this occurs is 
that glass beads are usually mixed in with the paint to ensure the 
reflectivity of the markings.  These beads reflect light directly 
and do not follow the Lambertian reflection model, which serves 
as a basic assumption for many radiometric calibration models. 
As a further complication, it is essentially unpredictable whether 
a laser beam will actually hit a glass bead in the markings, 
especially for the worn ones where beads are highly variable. As 
a result, it is difficult to apply one single correction for all the 
points lying on the markings to further estimate the 
retroreflectivity of the markings.  Such reasons also explain the 
noise shown in the correlation between the intensity and 
retroreflectivity (Figure 7). Therefore, in this work, we will use 
the uncorrected intensity to estimate the retroreflectivity given 
that 1) when combining scans together, the average will be 
controlled by the closest scan based on the point density (Figure 
4) and 2) the fact that a very strong correlation is obtained without 
the correction.   
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(a) 

 

 
(b) 

 
Figure 9. Correlation between range and intensity for points 
lying on: (a) pavement (asphalt); (b) road markings with a 
retroreflectivity reading between 140 and 150 mcd/lx/m2.  

Orange markers represent individual points and blue points 
represent the average for each 1 m range bin. 

 

3.3 Comparative analysis 

To assess the accuracy of the proposed radiometric calibration 
approach, we compare the results to both the ground truth 
retroreflectometer measurements and the results of radiometric 
calibration for MLS data based on Olsen et al. (2018). For each 
lane, the retroreflectivity is first estimated from each pass and 
then averaged. The errors for different datasets and radiometric 
calibration approaches can be calculated and further summarized 
statistically (Table 1). The results show that for TLS data with all 
of the scans combined, using the passive window and averaging 
the intensity values within this footprint provides the best result. 
However, the results are fairly consistent between the different 
footprint sampling strategies in terms of RMSE compared to the 
variability of measurements from a handheld retroreflectometer.   
 
For context in Table 1, for retroreflective measurements on the 
methyl methacrylate (MMA) thermoplastic stripes, according to 
ASTM1710-11, the reproducibility standard deviation is 22.9 
mcd/lx/m2 while the repeatability standard deviation is 14.4 
mcd/lx/m2. Because reproducibility considers the ability of 
independently achieving the same results with a different system, 
operator, calibration and conditions whereas repeatability 
considers the ability of achieving the same results with repeated 
measurements with the same device in similar conditions. 

 

Table 1. Statistical summary of the errors in estimating 
retroreflectivity using TLS and MLS point clouds compared 

with the handheld retroreflectometer. (unit: mcd/lx/m2) 
 

 Min Max Mean RMSE 

MLS 
left lane -58.6 77.8 -3.3 21.8 

MLS 
right lane -66.0 60.8 -7.5 24.3 

TLS  
active window 10% tile -64.2 90.6 -2.4 23.9 

TLS  
active window average -72.9 65.6 -1.3 20.3 

TLS  
passive window average -58.1 66.4 -1.0 19.4 

 

     
 

By further investigating the impact of the marking condition on 
the performance of different radiometric calibration models 
(Figure 10), it can be concluded that the proposed method using 
TLS data fits the ground truth significantly better than the MLS 
data (both left and right lanes) in estimating the retroreflectivity. 
There are two primary reasons why the proposed approach using 
TLS data is more accurate than our previous approach for MLS 
data. First, the TLS in this case has a higher spatial resolution 
such that it can capture more details in terms of reflectance (e.g., 
intensity) across the worn stripe. Additionally, for TLS data, the 
validation is performed using the same dataset that was used to 
develop the radiometric calibration model, while the model for 
MLS was developed from a completely separate dataset. Thus, 
the TLS model may be over fit to this specific dataset.  
 

 
Figure 10. Comparison between retroreflectometer readings, 

and retroreflectivity estimation from TLS scans and MLS data. 
 
In Section 3.1, selecting points from all of the scans combined or 
with each scan individually can result in a difference in 
evaluating the retroreflectivity. As a result, we investigate 
differences between the scan located at the centre of the area of 
interest (Scan #5), and compare it against the results using 
aggregated points from all the scans combined. The comparison 
shows that these two strategies behave similarly. This occurs 
because even though all of the scans are combined, the points 
considered in the averaging within a given window will be 
predominantly from the closest scan.   
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Figure 11. Comparison of retroreflectivity estimation using the 

points from a single scan and all scans combined. 
 

4. CONCLUSIONS 

In this study, the Leica P40 TLS was found to be effective for 
pavement marking evaluation and to correlate well with handheld 
retroreflectometer measurements as well as those obtained with 
MLS. Corrections for range and angle of incidence (nominal) 
remain elusive but also are less applicable in this particular 
application given the material properties to reflect light back in 
the direction of the source.     
 
With any empirical study such as this, results should be used with 
caution. Outside the range of parameters tested (e.g., 
retroreflectiivty, range, nominal angle of incidence, etc.), the 
results may deviate from the correlations found in this study. 
Additionally, because the same dataset is used for generating the 
radiometric calibration model as well as the verification, the 
result can be overfit to this dataset. We will address this issue by 
using reference targets and testing more data in our future work.  
Moreover, intensity behaviour is different with other scanner 
models by different, or even the same manufacture.  
Manufacturers also sometimes apply internal corrections, so we 
are working with manufacturers to obtain the raw intensity 
signals.  Furthermore, the model was developed for lower ranges 
of retroreflectivity. Should higher levels of retroreflectivity be of 
interest, the model should be developed up to the point of 
saturation for the scanner.    
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