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ABSTRACT:

To efficiently collect training data for an off-the-shelf object detector, we consider the problem of segmenting and tracking non-rigid
objects from RGBD sequences by introducing the spatio-temporal matrix with very few assumptions - no prior object model and no
stationary sensor. Spatial temporal matrix is able to encode not only spatial associations between multiple objects, but also component-
level spatio temporal associations that allow the correction of falsely segmented objects in the presence of various types of interaction
among multiple objects. Extensive experiments over complex human/animal body motions with occlusions and body part motions
demonstrate that our approach substantially improves tracking robustness and segmentation accuracy.

1. INTRODUCTION

The emergence of modern, affordable and accurate RGBD sen-
sors as one of several standard visual sensor systems for intelli-
gent robots has promoted the development of point cloud pro-
cessing technology and related applications such as 3d recon-
struction (Zollhöfer et al., 2018), object pose (Choi and Christen-
sen, 2016) and tracking of human/animals behavior (Xue et al.,
2016, Matthews et al., 2017). The present paper introduces the
possibility of propagating non-rigid object segmentation through
time. We do not assume the presence of a prior class model (i.e.
as the Kinect models human joint angles), as that would preclude
the system from segmenting and tracking arbitrary objects of in-
terest. Similarly, we do not assume the sensor is stationary or
that a pre-built static environment map is available. A complete
solution to this task would be useful in robotics, computer vision,
and graphics. Much work has been put into object detection met-
hods using RGBD sensors. While off-the-shelf object detection
algorithms (Kart, 2018) are often fast and effective at runtime,
training data collection remains a challenge. Using our algorithm
for the collection of training data avoids this problem.

2. RELATED WORKS

While there is much previous work on tracking in general, our
problem is the estimation of detailed segmentation masks rather
than bounding boxes, while the lack of simplifying assumptions
restrict the directly-related previous work substantially. Here we
only review previous work based on RGBD input data. As com-
pared to generic, short-term tracking on RGB, RGBD tracking
is a relatively unexplored area. This can be partly attributed to
the lack of datasets with ground truth until recently. (Song and
Xiao, 2013) captured and annotated a dataset consisting of 100
videos with an online evaluation system and their benchmark is
still the largest available. They also provided multiple baseline
algorithms under two main categories: depth as an additional cue
and point cloud tracking. Among the ten proposed variations the
∗Corresponding author

one with RGBD histogram of oriented gradients (HOG) featu-
res and boosted by optical and occlusion detector achieved the
best performance. (Meshgi et al., 2016) proposed an occlusion-
aware particle filter based tracker that can handle persistent occlu-
sions in a probabilistic manner. Starting with the seminal work
of (Bolme et al., 2010), Discriminative Correlation Filter (DCF)
based trackers have gained momentum due to their performance,
fast model update (training) and mathematical elegance. Success
of the DCF approach naturally caught the attention in the RGBD
community as well. (Camplani et al., 2015) proposed Discrimi-
native Correlation Filter based RGBD tracker. All these works
addresses the online, model-free tracking task, where the goal is
to track arbitrary objects in a bounding box rather than provide
a segmentation mask (Kart, 2018). Rigid object tracking using
depth information, such as the open source method in PCL (Rusu
and Cousins, 2011), addresses a similar but simpler problem, as
it is not designed to work with deformable objects.

The most similar, recent work to ours is that of (Teichman et al.,
2013), which uses online learning to segment consecutive RGBD
frames. However, this work assumes a single initial segmenta-
tion is provided by human labeling. Older previous similar work
on this problem include HoughTrack (Godec et al., 2011), which
uses Hough Forests and GrabCut to segment various challenging
2D image sequences. The goal of our algorithm is to collect
training examples of objects in unstructured environments from
RGBD sequences. Our method is different from (Teichman et
al., 2013) in multiple, fundamental aspects. First of all, the aut-
hors introduce the use of a large number of features instead of
only geometric cues computed to avoid redundant computational
complexity. Secondly, their online learning scheme consists of a
simple initial segmentation which requires a human in the loop
whereas we propose to integrate camera pose estimation with
background subtraction to determine initial segmentation auto-
matically.
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3. APPROACH

In this section, the algorithm for segmenting and tracking non-
rigid objects is described. In our approach, since no prior ob-
ject model and no stationary sensor are assumed, we do fore-
ground seed detection by integration of global motion estimation
with occlusion detection first, and then use the seeds and scene
flow information to construct a novel matrix that is able to guide
the segmentation and tracking procedure for further analysis. We
describe these steps in the following sections.

3.1 Foreground Seed Detection

The input to this stage is in the form of 3D point cloud sequences
captured by a comsumer depth camera and the desired output is a
set of seeds in the first frame. A seed is a connected component,
above a minimum size, whose position has changed over time.
We do not assume the sensor to be fixed and the objects to be
stationary. In other words sensor and objects can move indepen-
dently. The first step in moving object detection is a comparison
of two frames. We begin by downsampling the input point clouds
using an octree with leaf size dr. At most one point per leaf is re-
tained and all subsequent steps are applied on the downsampled
point clouds denoted by D = {Dt} where Dt = {pt

i}. Where t is
the frame index and i is the point index. Typically, 2r is used as
the leaf size, where r is the resolution of the point cloud defined
as the average distance between neighboring points. However, di-
rectly comparing frames will fail when the sensor moves during
data acquisition. Moreover, noise from the sensor and occlusion
lead to false seeds. Throughout the paper we do not distinguish
between data captured by a stationary or mobile sensor. In other
words, we always estimate sensor motion. Figure 1 shows a vi-
sualization of input point clouds that are passed to the following
stages of processing.

3.1.1 Global Motion Estimation To directly compare two
frames, the point cloud of each frame must be represented in a
common coordinate system for the sequences from moving sen-
sor. The transformation T (t+1)t between two successive frames
Dt and Dt+1 has to be estimated.

After downsampling, un-oriented normals are estimated for the
point clouds using the technique of (Mitra et al., 2004). Then,
Fast Point Feature Histogram (FPFH) descriptors are computed
according to (Rusu and Cousins, 2011). The local descriptors are
used to establish correspondences, which may contain several er-
rors initially. Errors are reduced by requiring that the correspon-
dences be reciprocal, i.e. if the most similar point to pt

i is pt+1
j ,

we require that the most similar point to pt+1
j is pt

i . Otherwise, the
correspondence is rejected. We, then, use RANSAC to estimate
a rigid transformation that is supported by the largest number of
points. For more details on both rigid transformation estimation
and FPFH see our previous research (Guo et al., 2016). Figure
2 shows a visualization of camera pose estimation of two frames
that is used to eliminate the false seeds caused by global motion
in Section 3.1.2.

3.1.2 Seed Detection and Refinement In this section, we
find the potential seeds of objects that have moved between the
reference frame Dt and a subsequent frame. In order to identify
all points in the moved object, we first transform Dt+δ named
target frame onto the coordinate system of the reference frame Dt
using T(t+δ )t . Thus, we obtain DT

t+δ
.

DT
t+δ

= (
i=t+δ−1

∏
i=t

T(i+1)i) ·Dt+δ

Where δ = {1,2,3, · · ·} is the number of frames we have to skip
to ensure existence of seed when objects are not moving. For
the first reference frame, we simply increase δ from one until we
find the seed or finish the point cloud sequence. For the rest of
the reference frames, we begin with the target frame of the last
reference frame. In the registration result of two frames with a
moving sensor, parts of the point cloud Dt could be outside of
field of view of frame DT

t+δ
. Thus, this outer region is recognized

as changed space during frame comparison, leading to false seed.
In order to filter out this outlier region, we use the view frustum of
the sensor. In our paper, the Xtion Pro Live sensor has a vertical
field of view of 45◦, and a horizontal field of view of 58◦. Let
Cinside denote the points from frame Dt inside of field of view
of frame Dt+δ . Frustum culling method was employed to filter
points outside the field of view of frame DT

t+δ
to obtain Cinside.

Figure 3 shows a visualization of Cinside of frame Dt . To compute
efficiently, the comparison is performed using a kd-tree from PCL
(Rusu and Cousins, 2011). We begin by building a kd-tree over
the points of frame Dt+δ . For each point that belongs to Cinside,
a point pk is added to the set Cchanged under the condition that
it is sufficiently far from a point p j in DT

t+δ
. The condition is

implemented by testing whether de(pi− p j)≥ 2 · r.

Cchanged = {pk|de(pi− p j)≥ 2 · r, pi ∈Cinside, p j ∈ DT
t+δ
}

Where de(pi, p j) = ‖pi− p j‖ denotes the Euclidean distance bet-
ween point pi and p j , Cchanged represents the potential candidate
moving object. However, as shown in the left part of Figure 4,
there are point sets belonging to the static scene in the moving
object candidates Cchanged , even though the registration is accu-
rate. This is due to occlusion, that is, these points are visible from
view point of frame Dt , but are occluded by objects in frame Dt+δ

after objects have moved. In addition, sensor noise and some re-
gistration errors generate outliers leading to false seeds. In order
to remove the false seed from Cchanged , for each point in Cchanged ,
we first attempt to model the ray from the viewpoint of frame
Dt+δ to this point. If occlusion is detected by finding the nea-
rest point on frame Dt+δ along each ray, then this point is added
to point set Coccluded . Otherwise, this point is added to point set
C f ree. We then cluster points of C f ree that are moving candidates
without occlusion effect using region growing to obtain a set of
clusters.

Γt = (γ1, · · · ,γΦ)

Each of these clusters is grown from a point pt
i , an unclustered

point, in C f ree. A new point pt
j is added to the cluster if it is

the single nearest neighbor of a point pt
m which is already in the

cluster. To avoid false seeds owing to sensor noise and some
registration errors, we drop clusters with less than a minimum
number of points. The right part of Figure 4 shows a visualization
of the seeds that are passed to the next stages of processing.

3.2 Clustering and Initial Correspondences

There are a large number of possible cues that could inform a
segmentation and tracking algorithm. 3D structure, scene flow,
depth discontinuities, etc., all provide potentially useful informa-
tion. Therefore, for the reference frame Dt and target frame DT

t+δ

from the previous stage, we first remove the ground and perform a
3D clustering of remaining points to estimate the 3D scene struc-
ture of the frame. Then dense correspondences between Dt and
DT

t+δ
are computed as the solution of scene flow. Finally, in-

formation of 3D scene structure of the frame and scene flow is
encoded with a novel matrix form that is able to guide the seg-
mentation and tracking procedure. We now describe each stage
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Figure 1. Left to right: frame Dt from moving sensor; frame Dt+δ from moving sensor; frame Dt from stationary sensor; frame Dt+δ

from stationary sensor. Note that all point clouds are raw data which have not been downsampled yet.

Figure 2. Rigid transformation estimation for the data from
moving sensor of Fig. 1

of this section in more detail.

3.2.1 Segmentation Both indoor and outdoor scenes are usu-
ally arranged with respect to the gravity direction which is ty-
pically orthogonal to the ground. Without loss of generality,
we make the assumption that objects move on a ground plane,
and our algorithm estimates and removes the ground plane from
the Dt . We compute ground plane coefficients using RANSAC
and remove all the inliers denoted by Ct

p within a threshold dis-
tance. Inliers here are points with distance from the ground plane
less than 2r. Typical values for the parameters of RANSAC are:
10,000 iterations and ε = 3r, where r is the resolution (average
distance between neighboring points) of the original point cloud
before downsampling. The same process is repeated in frame
DT

t+δ
to detect the ground plane cluster Ct+δ

p . Once this opera-
tion has been performed, the different structures are no longer
connected through the ground, so they could be clustered by la-
beling neighboring 3D points on the basis of their Euclidean dis-

Figure 3. Frustum culling for the data of Fig. 2. Note that
Cinside is darkgray color. The cyan colored points are filtered by

frustum culling with the pose estimated in Section 3.1.1.

Figure 4. Left: Potential candidate of moving object Cchanged
obtained from comparing two frames from the stationary sensor

of Fig. 1. Right: Seeds after removing occlusion and sensor
noise effects.

tance. Objects that are in contact can be handled as long as they
appear separated in some of the frames. See Section 3.3. We then
cluster points of Dt −Ct

p using region growing to obtain a set of
clusters.

Ct = {Ct
1, · · · ,C

t
M1
}

Each of these clusters is grown from a point pt
i , an unclustered

point, in Dt −Ct
p . A new point pt

j is added to the cluster if it
is the single nearest neighbor of a point pt

m which is already in
the cluster. In order to avoid the clusters formed due to clutter,
clusters with less than a minimum number of points (500) are
discarded. The same procedure is applied on the point clouds
DT

t+δ
−Ct+δ

p to obtain clusters Ct+δ = {Ct+δ

1 , · · · ,Ct+δ

M2
}. Figure

5 shows a visualization of clusters Ct and Ct+δ that are passed to
the next stages of processing.

3.2.2 Correspondence and Spatial Temporal Matrix The
output to this stage is one matrix named Spatial Temporal Matrix
which integrates information of spatial connection relationship
of geometric structure of the scene with temporal information of
correspondences. This matrix will be used to guide the tracking
part in Section 3.3.

Based on the FPFH descriptor from Section 3.1.1, we begin by
finding the nearest and most similar point in frame DT

t+δ
for

every point on frame Dt using the Euclidean distance in the 33-D
descriptor space d f (pt

i , pt+δ

j ) = || f (pt
i)− f (pt+δ

j )||. Here f (pi)
denotes the FPFH descriptor of point pi. The resulting set of
correspondences is denoted by K = {(pt

k, pt+δ

k )} with pt
k ∈ Dt

and pt+δ

k ∈ DT
t+δ

. For query point pt
i , a new correspondence

(pt
i , pt+δ

i ) is added to the set of correspondences K under two
conditions: if point pt+δ

i is the single nearest neighbor of query
point; and if the feature distance d f (pt

i , pt+δ

j ) is less than a thres-
hold (400). Correspondences are sought between frame Dt and
frame DT

t+δ
in both directions, frame Dt to frame DT

t+δ
and frame

DT
t+δ

to frame Dt . Reciprocal correspondences that have been se-
lected in both directions are retained, while all other correspon-
dences are discarded. Figure 6 shows correspondences found in
this stage.

We define the Spatial Temporal Matrix A based on intuition that
a correspondence implies that the label of the query point at time

Figure 5. Clustering results of two frames from the stationary
sensor of Fig. 1.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-341-2019 | © Authors 2019. CC BY 4.0 License.

 
343



Figure 6. Correspondences found for the data from the
stationary sensor of Fig. 1

t is likely to propagate to that of the matching point at time
t + δ . The matrix A consists of M1 + 1 rows and M2 + 1 co-
lumns. Here M1 is the number of clusters of frame Dt excluding
the ground plane cluster extracted in Section 3.2.1. So is the case
with M2. Given set of correspondences (pt

k, pt+δ

k ) with pt
k ∈ Ct

i
and pt+δ

k ∈ Ct+δ

j . Each correspondence between points of two
clusters provides evidence that the clusters themselves may be in
correspondence. We can statistically infer that cluster Ct+δ

j is li-
kely be the same physical object of cluster Ct

i . Thus, we can treat
each correspondence as a vote for this kind of corresponding re-
lationship. Therefore, elements ai j of matrix A are set equal to
the number of votes linking cluster Ct

i and Ct+δ

j . Then we can

conclude that cluster Ct+δ

j matches cluster Ct
i only if ai j almost

equals to the number of correspondences between those two clus-
ters. Figure 7 shows the A matrix for the data from the stationary
sensor of Figure 1. More discussions will be provided in Section
3.3.

Figure 7. Matrix A for the data from stationary sensor of Fig. 1

3.3 Multi-body Tracking

In this section we describe the novel part of our approach, which
jointly performs segmentation as well as tracking of multiple non-
rigid objects. Towards this goal, we propose criteria based on
matrix A from last section that is able to guide the tracking and
segmentation process. In the remainder of this section, we start
by deducing the criteria from the distribution of correspondences
in every cluster and showing how to track the object using it. We
then introduce our segmentation procedures which operate only
when objects are touching each other after moving.

3.3.1 Criteria and Tracking From Section 3.2.2, we learn
that the track of cluster Ct

i in frame Dt+δ can be found by using
the i−th row of matrix A. Base on the observation that each iso-
lated moving object is very likely corresponding to one cluster.
Thus we can track the objects by using the tracking relationships
discovered with matrix A. The situations that multiple objects are
in contact with each other after moving will be solved in Section
3.3.2. An oversimplification of the problem would be to consider
all moving objects in 3d scene. Specifically, we only care about
the rows of matrix corresponding to moving objects. Therefore
we recognize the clusters which contain moving objects in frame
Dt using seeds Γt obtained in Section 3.1.2. Let Ccandidate de-
note the set of clusters which contain moving objects. The set

representation of Ccandidate is shown as follows.

Ccandidate = {Ct
i |Ct

i ∈Ct ,γi ∈ Γt ,Ct
i ∩ γi 6=∅}

For each seed γi in Γt , we choose any point pt
k in γi. A new cluster

Ct
i from Ct is added to the set under the conditions that it contains

point pt
k and that it does not belong to the set. Note that because

the seeds and clusters are compact, we can obtain unique cluster
by using any point in one seed. Here we use first by index in
every seed.

The normalized value regardless of the number of corresponden-
ces in one cluster is useful to determine a common threshold
value to cut off the wrong corresponding relationship between
two clusters which is caused by a few of wrong correspondences
obtained in Section 3.2.2. For that reason, each entry of matrix
A is divided by the maximum entry in its column, the resulting
matrix denoted by Ac. However, small moving objects are li-
kely to be ignored when they move close to very large objects.
Therefore the same procedure is applied on the matrix rows, the
resulting matrix denoted by Ar. Figure 8 shows Ac for matrix A
from Figure 7. The larger the entry of matrix Ac or Ar is, the
more it indicates that two clusters are corresponding. For every
cluster Ct

i in Ccandidate, given its corresponding i−th row of ma-
trix Ar denoted by row vector Ar

i∗, we add j to set Ri = {ri
k} if

Ar
i j is greater than a threshold ω (0.15). Thus we record the cor-

responding clusters in target frame Dt+δ by using indexes of the
columns of the matrix for cluster Ct

i . The same applies to clusters
in reference frame Dt by using indexes of the rows of the matrix.
We can conclude following criteria:

Figure 8. Matrix Ac for matrix A from Figure 7

1. We infer that cluster Ct+δ

ri
k

is the track of cluster Ct
i from

the conditions: if the cardinality of set |Ri| = 1; given the
ri
k−th column of matrix Ac denoted by column vector Ac

∗ri
k
,

we add h to set Ori
k
= {ori

k
d } if Ac

hri
k

is greater than a threshold

ω (0.15) with d = {1,2, · · ·}, and if the cardinality of set
|Ori

k
|= 1. Obviously here we have max(k) = 1,max(d) = 1.

Note that this is the isolated object tracking case in physical
world. It can be multiple objects tracking as long as they
are not contacted with each other when multiple seeds are
detected, that is to say multiple rows with different i get in-
volved.

2. The same conditions from criterion 1 except the cardinality
of set max(d) = |Ori

k
| > 1, we infer that cluster Ct+δ

ri
k

is the

track of max(d) clusters Ct

o
ri
k

d

. Thus cluster Ct+δ

ri
k

can be split

into max(d) small regions. The implementation of segmen-
tation will be presented in Section 3.3.2. This case might be
the result of one of the following situations: multiple objects
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moving close to each other, objects moving close to back-
ground such as a wall or table, one moving object occluded
by object in the middle at time t. Clusters Ct

o
ri
k

d

need to be

merged into one cluster if the situation belongs to the third
case.

3. The same conditions from criterion 1 except the cardina-
lity of set max(k) = |Ri| > 1, we infer that max(k) clusters
Ct+δ

ri
k

are the track of cluster Ct
i . This case might be the re-

sult of one of the following situations: multiple objects mo-
ving away from each other, object moving away from back-
ground, one moving object exposed completely after occlu-
sion in the middle. Clusters Ct+δ

ri
k

need to be merged into
one cluster if situation belongs to the third case. This crite-
rion is similar to criterion 2 if the reference frame and target
frame switch position at the beginning of Section 3.1.2.

4. We can determine whether object is leaving the view of ca-
mera. More specifically, we infer that one object is just mo-
ving out of view of camera if the cardinality of set max(k) =
|Ri|= 0. Similarly, we can detect an entrance of one object
if the reference frame and target frame switch positions at
the beginning of Section 3.1.2.

Based on the above criteria, we can handle most of the issues in
tracking of multiple object. Tracking multiple isolated objects is
straightforward by applying criterion 1. Specifically, criterion 1 is
applied on each cluster Ct

i in Ccandidate to obtain the cluster of its
track in time t+δ . Based on Section 3.2.1, we know that isolated
objects correspond to clusters. Thus, we implement the multiple
T (t+1)t objects tracking. Figure 9 shows the tracking result for
the data from the stationary sensor of Figure 1. We have to ap-
ply criterion 2 and 3 when objects move together or other cases
which lead to changes of spatial connectivity of compact clus-
ter. However, note that our algorithm is only using the reference
frame and target frame and as a result we can not determine when
to split or merge since we do not know whether the cluster is one
object or not. We may solve this problem by using information
more than two frames in the future. Since we know the cluster
corresponding relationship, merging is pretty simple. In contrary
to merging, splitting is more difficult. Therefore, splitting (seg-
mentation) based on criterion 2 will be presented in following
section.

Figure 9. Isolated object tracking result for the data from
stationary sensor of Fig. 1

3.3.2 Splitting From time t to t + δ , more objects could be
merged into the same cluster because they are too close or they
contact with each other after moving or, for the same reason, one
object could be clustered together with the background, such as
a wall or a table. Based on criterion 2 in last section, we know
the clusters Ct

o
ri
k

d

at time t and its corresponding merging cluster

Ct+δ

ri
k

at time t + δ . The aim of this subsection is to split cluster

Ct+δ

ri
k

into max(d) = |Ori
k
| clusters which are the track of clusters

Ct

o
ri
k

d

. In Figure 10 we report an example adhering to criterion 2.

In particular, it appears that one object makes contact with a wall
after moving with max(d) = 2 and max(k) = 1.

Given Ct
i in Ccandidate with max(d)> 1 and max(k) = 1, for every

cluster Ct

o
ri
k

d

we start by aligning it with cluster Ct+δ

ri
k

in order to

obtain the dense correspondences between them. These corre-
spondences are employed to split cluster Ct+δ

ri
k

. More specifi-

cally, we estimate the rigid transformation between cluster Ct

o
ri
k

d

and Ct+δ

ri
k

by using the method mentioned in Section 3.1.1. Me-
anwhile, we align those two clusters. Then we obtain the corre-
spondences by using the same strategy described in Section 3.2.2.
The resulting set of correspondences is denoted by Kkernel

kd =

{(sm, tm)} with sm ∈ Ct

o
ri
k

d

and tm ∈ Ct+δ

ri
k

. This gives us a set of

reliable correspondences that we refer to as kernel corresponden-
ces. These correspondences can be seen at the left part of Figure
11. Note that those correspondences are not dense enough to cre-
ate a segmentation mask for rigid object or background, much
less to make a segmentation mask for non rigid object.

To overcome this problem, kernel correspondences are propaga-
ted to all unmatched points from their neighbors in order to obtain
dense correspondences which can be used for segmentation. In

Figure 10. An example adhering to criterion 2. Left: matrix Ac

for the data in the right. Right top: clusters Ct

o
ri
k

1

and Ct

o
ri
k

2

at time

t, ori
k

1 and ori
k

2 record the indexes of row A,B in matrix Ac. Right:
corresponding merging cluster Ct+δ

ri
1

at time t +δ .

Figure 11. Left: Kernel correspondences for clusters Ct

o
ri
k

1

and

Ct

o
ri
k

2

from Figure 10. Right: 50% dense correspondences for

clusters Ct

o
ri
k

1

and Ct

o
ri
k

2

from Figure 10.
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particular, given a cluster Ct

o
ri
k

d

, its corresponding cluster Ct+δ

ri
k

,

and a sample point s j ∈Ct

o
ri
k

d

that does not have a corresponding

point yet, we seek nearest point sv with a correspondence (sv, tv).
Let r denote geodesic distance between s j and sv. Note that we
seek neighbors in the same point cloud here, we use geodesic
distances in this search, approximated by graph distances in the
20-nearest neighbor graph. We then assign to s j a corresponding
point that is most consistent with the kernel correspondences ac-
cording to minimum geodesic distance.

Kdence
kd = {(s j, t j)|t j = argmin

t∈G2r(tv,Ct+δ

ri
k

)

eKkernel
kd

(s j, t), s j ∈Ct

o
ri
k

d

}

where G2r(tv,Ct+δ

ri
k

) is the geodesic neighborhood of radius 2r in

cluster Ct+δ

ri
k

), the consistency error eKkernel
kd

is defined as:

eKkernel
kd

(s, t) = ∑
(sm,tm)∈Kkd

[
dg(s,sm)−dg(t, tm)

]2

where dg() denotes the geodesic distance between two points.
We thus obtain the final set of correspondences Kkd comprising
the kernel Kkernel

kd and the correspondences from the propagation
Kdense

kd . See the right part of Figure 11 for a visualization of a
sampling of the dense correspondences.

In order to segment all points in Ct+δ

ri
k

that are the track of cluster

Ct

o
ri
k

d

, dilation is applied to all points tm in Kkd on cluster Ct+δ

ri
k

.

Dilation adds geodesic neighborhood of radius η(0.08) of point
tm to points set Cdilation

kd as following shows.

Cdilation
kd = {pi|(sm, tm) ∈ Kkd , pi ∈Ct+δ

ri
k

,dg(pi, tm)≤ η}

We then cluster points Ct+δ

ri
k
−Cdilation

kd using region growing to
obtain a set of clusters. Then, the largest among those clusters,
in terms of number of points, is denoted by Clargest

kd . Then we re-

move all points in Clargest
kd from Ct+δ

ri
k

, the remaining points form

one compact cluster denoted by Ctrack
kd . This cluster is the track

of cluster Ct

o
ri
k

d

that we seek for. Then we assign Clargest
kd to Ct+δ

ri
k

and set d = d +1. This procedure is repeatedly applied until the
max(d)-th cluster is processed. Figure 12 shows the splitting seg-
mentation result for the data from Figure 11.

4. EXPERIMENTAL RESULTS

We present qualitative and quantitative results on three indoor
data sets collected with a Xtion Pro Live RGBD camera. The
first data set, named live pigs, has been collected inside of a
small pig farm with planar ground, multiple arbitrarily moving

Figure 12. An example of splitting segmentation for data from
Figure 11. Left: d = 1. Right: d = 2.

pigs with white hair, fences and other static facilities. The second
data set, multiple people, has been collected in office with planar
ground, two people walking around, other static facilities. The
third data set, single live dog, has been collected in office with
plane ground, one arbitrarily moving dog with black hair, other
static objects. We present qualitative and quantitative results on
those three diverse datasets. All datasets are processed with con-
stant parameter values. Specifically, the number of points in one
frame is 307,200, the octree leaf size for downsampling dr is
set equal to 2r, where r = 0.005m is the resolution of the point
cloud, the radius of the neighborhood for SPFH computation is
10r, k used in computing FPFH is set to 30, the minimum num-
ber of points for a seed in Γt is 200, the Xtion Pro Live sensor
has a vertical field of view of 45◦, an horizontal field of view of
58◦, the minimum number of points for a cluster in Ct is 500, the
threshold on normalized value is ω = 0.15, while the threshold
on FPFH distance is set to 400 and the geodesic neighborhood of
radius is η = 0.08.

Results on live pigs. The first dataset we validate our method on
is live pigs, consisting of 7 sequences with a total of about 350
frames. Each sequence was chosen for testing different scenarios.
Our results demonstrate that our method can be effective even in
sequences which include significant non-rigid object transforma-
tions and a lack of visually distinguishing appearance. As seen
in the illustration in Figure 13, a single pig can be tracked effi-
ciently. In addition to tracking multiple isolated pigs, the method
works for multiple instances making contact for a short time. See
Figure 14 for examples. In particular, the interface between two
contacted pigs in sequence 2 is maintained correctly. Note that
the stick appears in the tracking results between frames 4 and 20
because we ignore all small clusters with less than 500 points
when constructing the matrix A. As Figure 14 shows, it is worth
to notice that yellow part was partitioned off accurately from the
track in the results of frame 35 and 43, was owing to occlusion.
As is typical in tracking tasks, stability versus permissiveness is
a tradeoff. Since we detect the seeds by using only space changes
between two frames. In multiple tracking cases, it is not well de-
fined whether static objects relative to moving objects should be
seeds or not; this is a common cause of errors in the current im-
plementation. An example of this occurs in sequence 3 and can
be seen in Figure 15, when one of the pigs stands still the others
moved around, and the system can not determine that motionless
pigs should be assigned to foreground. The error is then propaga-
ted. Similarly, one pig makes contact with static objects over time
leading to the pig and objects to be tracked together. Fortunately,
it is likely that we can resolve these limitations by knowing which
objects belong to foreground before processing the current frame,
through integrating tracking results of previous frames. The rest
of two sequences from the first dataset was taken by a hand-held
sensor. The tests on those two sequences are similar to the ot-
her sequences. Except that global motion effects appeared. It is
worth to notice that our global motion estimation can be effective
in noisy sequences. We present quantitative results for the first
dataset in Table 1. Individual frames are evaluated with two very
intuitive metrics. In particular, the ratio of misses and false positi-
ves in the sequence denoted as FN and FP respectively, computed
over the total number of objects presented in all frames. Ground
truth was generated by counting manually. Specifically, we count
all moving objects for which no hypothesis was output as mis-
ses such as the motionless pigs in multiple pigs case, and also all
tracker hypothesis for which no real object exists as false positi-
ves such as objects that were in contact with pigs for some time.
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(a) Input of sequence 4 from the live pigs dataset. (b) Output of sequence 4 from the live pigs dataset.

Figure 13. Single pig tracking for sequences 4 from the first dataset.

(a) Input of sequence 2 from the live pigs dataset. (b) Output of sequence 2 from the live pigs dataset.

Figure 14. Multiple pig tracking and split segmentation for sequence 2 from the first dataset.

Datasets FN FP
live pigs 30.65% 4.36%

Table 1. Miss rate and false positive rate results for the live pigs
dataset

Results on multiple people. Here we present results on the multi-
ple people dataset, consisting of 2 sequences with a total of about
150 frames with different conditions such as two people moving
separately, two people making contact with each other, people
contacted with facilities. Figure 16 shows results for the case of
two people making contact with each other, while Table 2 shows
quantitative results on the multiple people dataset.

Datasets FN FP
multiple people 25.66% 20.24%

Table 2. Miss rate and false positive rate results for the multiple
people dataset.

Results on single live dog. The final dataset collected for this pa-
per is one sequence with one random walking dog above a plane
ground without other facilities around. Table 3 shows quantitative
results on the single live dog dataset.

Datasets FN FP
single live dog 5.74% 13.19%

Table 3. Miss rate and false positive rate results for the single
live dog dataset.

Timing Results. Running times vary depending on the way of
setting up the camera, the size of moving objects and also seg-
mentation time. Each segmentation requires the computation of
geodesic distance for two corresponding clusters to find the dense

correspondences which are used for segmentation. Timing results
are reported on an Intel Core i7-2670QM CPU at 2.20 GHZ. The
Point Cloud Library (PCL) is used for many of the supporting
tasks, like FPFH descriptor computation, but other parts of the
code are not optimized.

Execution times per task for each case are shown in Table 4.
The computation of normals and FPFH descriptors depends on
the local density of the point cloud since they are done in r-
neighborhoods. Correspondence computation and matrix con-
struction primarily depend on the number of input points, while
segmentation depend on the number of parts to be split and the
number of points in each part.

Case Init. Seg. Corr. Track/Split Total
Tracking 13.95 0.91 56.41 0.01 71.28
Split 13.95 0.91 56.41 935.6 1006.87

Table 4. Timing results each step for each frame in seconds.The
four main stages of processing are: FPFH computation and

initial alignment; seed detection and intial segmenation;
correspondences finding and matrix construction; tracking or

segmenation.

5. CONCLUSIONS

We described a novel method of segmenting and tracking defor-
mable objects in RGBD, making minimal assumptions about the
input data. The approach uses the Spatial Temporal Matrix con-
structed with geometric and motion features to assist tracking and
segmentation procedure, and clearly improves the segmentation
results when mutiple non-rigid objects are in contact. We have
demonstrated those techniques on several RGBD sequences and
have shown that good 3D non-rigid segmentation and tracking
can be achieved. However, real-time performance is not feasi-
ble now. One possible solution is introducing GPU computing
and parallel programming model into our method. While there
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(a) Input of sequence 5 from the live pigs dataset. (b) Output of sequence 5 from the live pigs dataset.

Figure 15. Multiple pig tracking for sequences 5 from the first dataset.

(a) Input of sequence 1 from the multiple people dataset. (b) Output of sequence 1 from dataset of the multiple people
dataset.

Figure 16. Multiple people tracking and split segmentation for sequence 2 from the second dataset.

remains more work to be done before a completely robust solu-
tion is available for unassisted segmentation and tracking. Our
algorithm is suitable for collecting training examples of objects
in unstructured environments. A complete solution to this task
would have far-reaching ramifications in robotics, computer vi-
sion and model capture.
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