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ABSTRACT: 

Airborne Laser scanners using the Light Detection And Ranging (LiDAR) technology is a powerful tool for 3D data acquisition that 

records the backscattered energy as well. LiDAR has been successfully used in various applications including 3D modelling, feature 

extraction, and land cover information extraction. Airborne LiDAR data are usually acquired from different flight trajectories 

producing data in different strips with significant overlapped areas. Combining these data is required to get benefit of the multiple 

strips’ data that acquired from different trajectories.  This paper introduces an approach called CMCD “Combined Multiple 

Classified Datasets” to maximize the benefits of the multiple LiDAR strips’ data in land cover information extraction. This approach 

relies on classifying each strip data then combining the results based on the a posteriori probability of each class of the classified 

data and the position of the classified points.  

Two datasets from different overlapped areas are selected to test the proposed CMCD approach; both are captured from different 

flight trajectories. A comparison has been conducted between the CMCD results and the results of the common merging data 

approaches. The results indicated that the classification accuracy of the proposed CMCD approach has improved the classification 

accuracy of the merged data-layers by 6% and 10% for the two datasets. 

1. INTRODUCTION 

Airborne laser scanning systems, with Light Detection and 

Ranging (LiDAR) technology, have been successfully 

developed and rapidly used in various practical applications 

since the 1990s.  LiDAR data have been intensively used in 3D 

city modelling, building extraction and recognition, and digital 

terrain/surface models (DTM/DSM) (Ackermann, 1996, 

Baltsavias, 1999, Haala & Brenner, 1999, Song et al., 2002; 

Yan et al., 2015). 

LiDAR systems can record the intensity of backscattered energy 

from the illuminated targets along with the range data. Most of 

the commercial LiDAR sensors, that acquire the ground surface, 

utilize laser signals that operate with near infrared (NIR) 

signals. At this region of the electromagnetic spectrum, high 

separability of spectral reflectance of various land cover 

materials can be observed. As a result, distinguishing different 

ground materials based on the values of LiDAR intensity data 

can be achieved (Charaniya et al., 2004, Hu et al., 2004, Bartels 

& Wei, 2006, Brennan & Webster, 2006, Antonarakis et al., 

2008, Hui et al., 2008, Blaschke, 2010, El-Ashmawy et al., 

2011, Yan et al., 2012; Yan et al., 2015).  

Airborne LiDAR data are usually acquired from different flight 

trajectories in several strips. Sometimes same area is acquired 

several time within the same mission in different directions or 

even in different missions. Dataset of any area that is scanned 

several times with different acquisition characteristics (from 

different flight trajectories, different scanned angles, different 

heights, or different sensors) usually contains denser data, than 

single acquisition dataset. Combining data of different strips is 

required to get benefit of these multiple sources of data. Yet, 

these data have various characteristics and discrepancies in their 

intensity values due to changes in flying altitude, attitude, and 

sensor scanning angles (El-Ashmawy & Shaker, 2014 (a)). 

Radiometric correction of the intensity data helps to 

homogenize the recorded intensity data of the different datasets 

(Yan et al., 2012). In this research we call each group of data 

that has same acquisition characteristics (acquired from same 

flight line by same sensor) a data-layer. In LiDAR acquisition 

missions, the flight trajectories are planned with side lapped 

areas between the adjacent strips. The areas that are acquired 

several times are usually have denser data than those acquired 

once. To get benefit of these dense data in land cover mapping, 

including all available data-layers in the classification process is 

required. 

The main goal of this research is to maximize the benefit of 

using LiDAR data, which are collected by different acquisition 

characteristics, in land cover information extraction. This goal is 

achieved by proposing the “Combined Multiple Classified 

Datasets” (CMCD) approach to combine data of several 

classified data-layers based on specific factors. These factors 

are the a posteriori probability of each classified point in each 

class and the proximity of the grid points to the original ones. 

The introduced approach, is a modified version of a previously 

proposed approach, which depends on the combined multiple 

classifiers that is introduced in the pattern recognition field (El-

Ashmawy & Shaker, 2014 (b)). The main idea of the combined 

multiple classifiers is to rely on several decision-making 

schemas to improve the confidence of the decision made, by 

weighing various opinions and combining them through some 

thought process (Polikar, 2006; Yan & Shaker, 2011). 

A comparison between the results of the new introduced 

approach and the results of the common combining approaches 

is another aim of this study. The common combining 

approaches used in this research are; one is merging the 

multiple data-layers before conducting the classification, and 

the other after classifying the separate data-layers.  
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2. PROPOSED CLASSIFICATION APPROACH 

The workflow of the introduced classification approach is 

illustrated in Figure 1. It consists of three stages: data 

preparation, classification, and evaluation. The classification 

stage has two sub-stages; classification of grid points stage and 

CMCD stage. Data preparation, classification of grid points, and 

evaluation are applicable for both, single and multiple data-

layers, while the CMCD stage is applicable only for the 

multiple data-layers. 

 

Figure 1: Workflow of the introduced approach for classification 

2.1 Stage 1: Data Preparation  

The data preparation stage includes; defining the distinguished 

classes within the area of interest, defining the grid space, and 

collecting the ground truth data to be used for validating the 

classification results. 

1. Defining Classes: According to land cover types of the 

study area, 𝑀 distinguished classes are defined as 

{𝑣_1, 𝑣_2, … , 𝑣_𝑀 }. 

2. Defining Grid Points: Since LiDAR footprints usually 

have irregular spatial distribution (i.e., not gridded) and 

gaps appear within the LiDAR points, to achieve land 

cover information for the entire study area, a grid space 𝑆 

filled with regular distributed grid points 𝑠𝑖  with ℎ distance 

apart is defined. 𝑠𝑖 represents the 𝑖𝑡ℎ point on the grid 

space 𝑆, where 𝑖 =  1, 2, … , 𝑁  and 𝑁 is the total number 

of points in the grid space 𝑆. 

3. Collecting Ground Validation Data: For accuracy 

assessment, ground validation data are required. Therefore, 

well distributed reference points are randomly selected. 

The outputs of this stage are ASCII files; a file for each data-

layer, containing the data of grid points (point 𝐼𝐷, 𝑥, 𝑦, and 𝑣𝑟) 

where, 𝑣𝑟 is the classes of the reference points, and 𝑟 =
 1, 2, … , 𝑀. 

2.2 Stage 2: Classification  

The classification stage consists of classification of grid points 

stage (Stage 2A) and the CMCD stage (Stage 2B). 

2.2.1 Stage 2A: Classification of Grid Points  

(1) Classifying the Original Points  

In this step a classification algorithm is applied on the original 

LiDAR points of each data-layer 𝐷𝑑 without resampling the 

points into a grid space to avoid any losses of details associated 

with resampling points into 2D grids as described in Bao et al., 

2007; El-Ashmawy & Shaker, 2014 (b). Consequently, the 

original points of each data-layer are classified into the 

distinguished classes. For that a MATLAB code is developed to 

apply the selected classification algorithm on LiDAR point 

cloud data, based on specific attribute values of the LiDAR 

                                                                 

 The classification in this work depends only on the LiDAR data without camera 

images to investigate the applicability of using this approach without any 

external data (RGB images). That is because sometimes it is required to 

reduce the wait of the payloads, especially if drones are in demands. Since 

increasing the payloads either requires using larger drones, or reducing the 

acquisition time per mission. 
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data. In this research the considered attribute values for 

classification are the elevation values z and the intensity values 

𝐼. The input of this code is an ASCII file containing 

(𝐼𝐷, 𝑥, 𝑦, 𝑧, 𝐼). The outputs are an ASCII file for each data-layer 

that contains for each point, (𝐼𝐷, 𝑥, 𝑦, 𝑧, 𝐼, 𝑣), where 𝑣 is the 

assigned classes.  

(2)  Assigning Classes to the Grid Points 

Depending on the classification results of the original LiDAR 

point cloud data, the grid points are assigned to the appropriate 

land cover classes. Figure 2 illustrates an example of assigning 

a grid point to the appropriate. First, the original classified point 

data are resampled to the generated grid space. The most 

frequent class of the classified point data within a square area of 

ℎ × ℎ is assigned to the resampled point that represented this 

area, where ℎ is the spacing distance between grid points. Then, 

the grid points are assigned to the same classes as the resampled 

points they are coincide with. The rest of the grid points remain 

unclassified, as they are located within the gaps (between the 

footprints), Figure 2 (b). 

To assign the unclassified grid points to the appropriate land 

cover, a method called Iterative Majority Moving Window 

(IMMW) is introduced. In this method, each unclassified point 

is assigned to the major class of the surrounding neighbour grid 

points in an iterative process starting from points that are 

adjacent to the classified ones. Where, at any iteration, the 

unclassified grid point that is adjacent to classified ones is 

assigned to the most frequent class of the eight neighbouring 

points (3x3 pixels window with the centre that coincides with 

the grid point to be classified). The iterative process continued 

until all grid points are assigned to one of the predefined 

classes, Figure 2(c).  

 
(a) 

 
(b) 

 
(c) 

 
Figure 2: Example of assigning classes to the unclassified grid 

points using the Iterative Majority Moving Window (IMMW) 

method a) the classified original points and the defined grid 

space, b) the resampled points to the grid space, c) the classified 

grid points after applying the IMMW 

2.2.2 Stage 2B: Combined Multiple Classified Datasets 

(1) Determination of the “a posteriori” Probabilities 

The confusion matrix (𝐶𝑀) assessing method indicates the 

degree of support given, by the applied classifier, to each class 

(Xu et al., 1992). These values of the confusion matrix can be 

accepted as an estimation of the a posteriori probability for that 

class after scaling these values to the [0, 1] interval, where the 

summation of any row/column elements has to be 1 (Kuncheva 

et al., 2001; Poliker, 2006). The predefined reference points are 

used to form the confusion matrices. There is a confusion 

matrix corresponding to each data-layer. The output of scaling 

the elements of the confusion matrix (𝐶𝑀) to the [0,1] interval 

is called a normalized confusion matrix (𝑁𝐶𝑀). 

(2) Determination of the Inverse Distance Weights 

The Inverse Distance Weighting (IDW) method is used, as 

another factor affecting the results of the CMCD approach. 

IDW method defines the weight factors of each data-layer at 

each grid point as illustrated in Equation (1). This factor are 

used to weigh the effect of each data-layer on the class of the 

grid points. 

𝑤1 =  
𝑑𝑖𝑠2

𝑑𝑖𝑠1+𝑑𝑖𝑠2
  &  𝑤2 =  

𝑑𝑖𝑠1

𝑑𝑖𝑠1+𝑑𝑖𝑠2
 (1) 

Where 𝑤1𝑎𝑛𝑑 𝑤2are the weighting factors for the first and 

second data-layers, respectively, and 𝑑𝑖𝑠1 𝑎𝑛𝑑 𝑑𝑖𝑠2 are the 

distances between the grid point into consideration and the 

nearest point of the first and second data-layers, respectively. 

(3) Combining the Classified Data 

With the knowledge of the normalized confusion 

matrix 𝑁𝐶𝑀𝑑  for a classified data-layer 𝑑, the uncertainty in the 

class 𝑣𝑖  assigned to the point 𝑝 into consideration can be 

described by the conditional probabilities that 𝑝 ∈ 𝑣𝑖 , 𝑖 =
1, 2, … , 𝑀 are true under the occurrence of the assigning event 

𝑙𝑘(𝑝) =  𝑣𝑗  (Xu et al., 1992), as shown in Equation (2).  

𝑃(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝) = 𝑣𝑗) =   
𝑛𝑖𝑗

(𝑑)

∑ 𝑛𝑖𝑗
(𝑑)𝑀

𝑖=1

 , (2) 

 𝑖 = 1, … , 𝑀& 𝑗 = 1, … , 𝑀 

Where 𝑛𝑖𝑗
(𝑑)

 is the number of reference points of class 𝑗 that are 

assigned to class 𝑖 in the classified data-layer 𝑑, and ∑ 𝑛𝑖𝑗
(𝑑)𝑀

𝑖=1 is 

the total number of reference points of class 𝑗 (summation of 

each column of the 𝑁𝐶𝑀). 

The normalized confusion matrix can be considered as prior 

knowledge of an expert. This expert has a belief value with 

uncertainty that the point 𝑝, in consideration, belongs to the 

class 𝑣𝑖  (for all classes), which can be expressed in the form of 

the conditional probability as (Xu et al., 1992): 

𝑏𝑒𝑙(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝), 𝐸𝑁) =  𝑃(𝑝 ∈ 𝑣𝑖| 𝑙𝑘(𝑝) =  𝑣𝑗𝑘
),  (3) 

 𝑖 = 1, … , 𝑀 

Where, 𝐸𝑁 is the environment of the common classification 

environments that consist of independent events. Based on the 

Bayesian formula, when the data-layers are independent of each 

other, then the events 𝑙1(𝑝) =  𝑣𝑗1
, … 𝑙𝑘(𝑝) =  𝑣𝑗𝑘

 will be 

independent of each other under either the condition of 𝑝 ∈
𝑣𝑖or the environment 𝐸𝑁, which leads to (as adjusted from Xu 

et al., 1992): 

𝑏𝑒𝑙(𝑣𝑖) =  𝜂 ∏ (𝑝 ∈ 𝑣𝑖  |𝑙𝑘(𝑝) =  𝑣𝑗𝑘

𝐾
𝑘=1  ) (4) 

Where 𝜂 is a constant that ensures that ∑ 𝑏𝑒𝑙 (𝑣𝑖) = 1𝑀
𝑖=1  

With the data of two overlapped strips, each grid point 𝑠𝑖 is 

assigned to two classes with assigning class events 𝑙𝑑(𝑠𝑖), 

where 𝑙1(𝑠𝑖) = 𝑣𝑘1
𝑎𝑛𝑑 𝑙2(𝑠𝑖) = 𝑣𝑘2

. To decide which class is 

finally assigned to the grid point after combining the 

classification results, the belief of each class has to be 

calculated. The grid point, then, is assigned to the class with 

maximum belief. The belief of each class can be calculated 
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using the formula in Equation (4). This belief is based on the a 

posteriori probability of each class.  

Based on the a posteriori probabilities of any class 𝑣𝑗  , the 

belief in that class can be defined by the conditional joint 

probability that a point 𝑠𝑖   belongs to that class and is true 

under the occurrence of the two assigning class events,  𝑙1 
and  𝑙2  in the environment 𝐸𝑁. This relation can be described 

by the Equation (5) (as adjusted from Xu et al., 1992): 

𝑏𝑒𝑙 𝑝𝑝(𝑠𝑖  ∈  𝑣𝑗  
| 𝑙1(𝑠𝑖),  𝑙2(𝑠𝑖), 𝐸𝑁)  =  𝑃(𝑠𝑖  ∈  𝑣𝑗  

| 𝑙1(𝑠𝑖)  =

 𝑣𝑘1,  𝑙2(𝑠𝑖)  =  𝑣𝑘2 ) , 𝑗 =  1, … , 𝑀 (5) 

Where, 

𝑏𝑒𝑙 𝑝𝑝  (𝑠𝑖 ∈ 𝑣𝑗|𝑙1(𝑠𝑖), 𝑙2(𝑠𝑖)) 

 is the belief, based on the a posteriori 

probability, in class 𝑣𝑗  assigned to point 𝑠𝑖 is true 

with the occurrence of, 𝑙1 𝑎𝑛𝑑 𝑙2. 

𝑙1(𝑠𝑖), 𝑙2(𝑠𝑖) 

 are the assigning class events, for data-layer 1 

and data-layer 2. 

For simplicity the 𝑏𝑒𝑙𝑝𝑝 (𝑠𝑖 ∈  𝑣𝑗|𝑙1(𝑠𝑖), 𝑙2(𝑠𝑖)) will be denoted 

as 𝑏𝑒𝑙𝑝𝑝  (𝑣𝑗|𝑙1, 𝑙2), and 𝑃(𝑠𝑖 ∈ 𝑣𝑗|𝑙1(𝑠𝑖) =  𝑣𝑘1
, 𝑙2(𝑠𝑖) =  𝑣𝑘2

) 

as 𝑃(𝑣𝑗|𝑙1, 𝑙2). Therefore, Equation (3) can be expressed as: 

𝑏𝑒𝑙𝑝𝑝 (𝑣𝑗|𝑙1, 𝑙2, 𝐸𝑁) =  𝑃(𝑣𝑗|𝑙1, 𝑙2) (6) 

Based on the Bayesian formula, the right-hand side term of 

Equation (6) can be described as follows (Xu et al., 1992): 

𝑃(𝑣𝑗|𝑙1, 𝑙2) =  
𝑃(𝑙1,𝑙2| 𝑣𝑗) 𝑃(𝑣𝑗)

𝑃(𝑙1,𝑙2)
, 𝑗 = 1, … , 𝑀 (7) 

Where, 

𝑃(𝑣𝑗)  is the a priori probability of the classifier 

for each data-layer, however, the a priori 

probabilities are considered constant for all classes. 

𝑃(𝑙1, 𝑙2)  is the unconditional joint 

probability density. 

Since the classifier is trained by independent training sets for 

each data-layer, the two-classified data-layers are considered 

independent; thus, the product rule can be applied for the joint 

probability case.  

𝑃(𝑙1, 𝑙2|𝑣𝑗) =  𝑃(𝑙1|𝑣𝑗) . 𝑃(𝑙2|𝑣𝑗) (8) 

𝑃(𝑙1, 𝑙2|𝑣𝑗) =  𝑃(𝑙1|𝑣𝑗) . 𝑃(𝑙2|𝑣𝑗) =  ∏ 𝑃(𝑙𝑑|𝑣𝑗)𝐷
𝑑=1  (9) 

Where 𝑃(𝑙1| 𝑣𝑗) and 𝑃(𝑙2|𝑣𝑗) are the conditional probabilities 

of class 𝑣𝑗for the two data-layers, which can be estimated by the 

a posteriori probability. The  a posteriori probability can be 

calculated by evaluating the classification result of the base 

classifier using the confusion matrix (Yan & Shaker, 2011). 

The unconditional probability can be expressed in terms of the 

conditional probability as (Kittler et al., 1998): 

𝑃(𝑙1, 𝑙2) =  ∑ 𝑃(𝑙1, 𝑙2| 𝑣𝑚) 𝑀
𝑚=1  𝑃(𝑣𝑚) (10) 

From Equations 5–to-10, the belief of class 𝑣𝑗  based on the a 

posteriori probabilities of the classification results of the two 

data-layers can be expressed as: 

𝑏𝑒𝑙 𝑝𝑝 (𝑣𝑗) =  𝑃(𝑣𝑗|𝑙1, 𝑙2) =  𝑃(𝑣𝑗)
 (𝑃(𝑙1|𝑣𝑗) .𝑃(𝑙2|𝑣𝑗))

∑  𝑀
𝑚=1  𝑃(𝑣𝑚).𝑃(𝑙1|𝑣𝑚).𝑃(𝑙2| 𝑣𝑚)

 (11) 

𝑏𝑒𝑙 𝑝𝑝(𝑣𝑗) =  𝑃(𝑣𝑗)
 ∏ 𝑃(𝑙𝑑|𝑣𝑗)𝐷

𝑑=1

∑  𝑀
𝑚=1  𝑃(𝑣𝑚).∏ 𝑃(𝑙𝑑|𝑣𝑚)𝐷

𝑑=1

 (12) 

To include the effect of the distance on the final classification 

decision, the weighting factors 𝑤1 and 𝑤2 can be multiplied by 

the a posteriori probabilities of the classification results in the 

calculation of the belief of each class.  

𝑏𝑒𝑙 (𝑣𝑗) =  𝑃(𝑣𝑗)
 𝑤1𝑃(𝑙1|𝑣𝑗) .𝑤2𝑃(𝑙2|𝑣𝑗)

∑  𝑀
𝑚=1  𝑃(𝑣𝑚).(𝑃(𝑙1|𝑣𝑚).𝑃(𝑙2| 𝑣𝑚))

 (13) 

For each of the grid points, the believes of the available classes 

are compared to the point of interest, and the class with the 

maximum belief is assigned to that point. Since the a priori 

probabilities are considered constant for all classes, comparing 

the belief for each class is not affected by the a priori 

probabilities. Hence, the a priori probabilities can be omitted 

from Equation (13). Furthermore, the denominator in this 

formula is constant for all classes; so it will not affect the final 

combining decision. Therefore, only the numerator can be 

considered in the belief comparison as illustrated in Equation 

(14). 

𝑎𝑠𝑠𝑖𝑔𝑛 𝑠𝑖  →  𝑣𝑗       𝑖𝑓 

𝑤1𝑃(𝑙1|𝑣𝑗) . 𝑤2𝑃(𝑙2|𝑣𝑗) =

 max𝑀
𝑚=1 𝑤1𝑃(𝑙1|𝑣𝑚) . 𝑤2𝑃(𝑙2|𝑣𝑚) (14) 

The belief value of each class based on the a posteriori 

probability of that class and the proximity of the original points 

is calculated for each grid point. The grid points may have 

different values for each layer based on the classification results 

of that layer and its accuracy assessment. Finally, for each grid 

point, the class that has the maximum belief value is assigned to 

that point. 

2.3 Evaluation Stage 

The third, and last, stage of the proposed classification approach 

workflow is the evaluation of the final classification results 

using the confusion matrix method. The ground validation 

points are used to form a confusion matrix. Two accuracy 

assessment values are calculated; the overall accuracy and the 

overall Kappa statistics. 

3. STUDY AREA AND DATASETS 

The study area covers part of British Columbia institute of 

technology, Canada. This area is scanned by a Leica ALS50 

sensor, operating at 1.064 μm wavelength, 0.33 mrad beam 

divergence and 83 kHz pulse repetition frequency. The acquired 

area covers a variety of land cover types including buildings, 

parking areas, trees, roads, and open spaces with and without 

grassy coverage, Figure 3. The LiDAR data were captured from 

different flight lines forming different strips with flying altitude 

of about 540 m (Habib et al., 2011) 

The point density of the data is 4-5 points/square meter. Aerial 

images were captured during the same flight mission of the 

LiDAR data acquisition. The aerial images were geometrically 

                                                                 

 This point density is calculated based on the total number of points divided by 

the total area. Yet, because of the characteristics of the acquired surfaces 

(roads and roof materials), no reflectance occurred producing gaps between 

the point clouds data. In the areas without gaps the average point density is 

around 15 point/m2. 
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corrected and ortho-rectified. Two different datasets from the 

same study area are selected to conduct the proposed 

classification approach. The clipped datasets are selected from 

overlapped areas between pairs of adjacent strips and cover 

around 270 m x 80 m, where the overlapped distance between 

the adjacent strips is around 80 m (width of the selected 

datasets) and the length of the datasets are selected to be with 

reasonable number of points. The first dataset contains around 

125,000 and 85,000 points of the two data-layers, and the 

second one contains 100,000 and 80,000 points in the two data-

layers. Both datasets have complex land cover types relative to 

their sizes, where different types of roof surfaces and different 

ground elevations are found within the small areas. 

  

  

 

Figure 3: Study areas (clipped from google map and google Earth) 

4. RESULTS AND DISCUSSION 

All the obtained LiDAR data are geometrically calibrated as 

described in Habib et al. (2011), and radiometrically corrected 

by eliminating the effects of the system characteristics, the 

objects geometry, and the atmospheric attenuation as described 

in Shaker et al. (2011). For improving the homogeneity of the 

intensity data, a histogram matching approach is applied to the 

overlapped areas between each adjacent pair of strips (Yan & 

Shaker, 2016).  

According to land cover types of the study areas, four 

distinguished land cover classes are defined as; Buildings, Open 

areas (with and without grass), Roads, and Trees. A MATLAB 

code for point cloud classification using the Maximum 

Likelihood algorithm is developed to classify the point cloud 

LiDAR data based on the elevation and intensity values. Two 

grid spaces with 0.2 m spacing distance covering the selected 

areas are defined to overcome the irregularity of the spatial 

distribution (not gridded) of the LiDAR data footprints, and to 

fill the gaps within the LiDAR points. Two sets of well 

distributed reference points are randomly selected from the 

                                                                 

 The Maximum Likelihood classifier is selected in this research work. However, 

any other classification algorithm can be used. 

regular grid points, where around 2000 reference points are 

selected in each dataset. The validation data of the reference 

points is collected from the ortho-rectified aerial images. 

For each dataset, the developed MATLAB code is applied on 

the merged data-layers after applying the histogram matching 

process, and on each data-layer separately to merge the data-

layers after classification. After that, the classified points are 

resampled into the defined grid space and the remaining 

unclassified grid points are assigned to the appropriate classes 

by following the iterative majority moving window (IMMW) 

method.  

To test the CMCD approach for combining the multiple data-

layers, a MATLAB code is developed to perform the CMCD 

approach on the classified data-layers. To determine the a 

posteriori probability the classification results of each data-

layer is assessed based on the defined reference points using 

confusion matrices. Then, the normalized confusion matrices 

are calculated for each data-layer using a developed MATLAB 

code. An example of the confusion matrix and the normalized 

confusion matrix is illustrated in Figure 4. To calculate the IDW 

factors, the distances between each grid point and the nearest 

original points, of the two data-layers, are determined. The IDW 

for each point is calculated using the formula in Equation (1). 

1st Strip 

2nd Strip 

3rd Strip 

Area 1 

Area 2 
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Based on the calculated factors, the a posteriori probability and 

the IDW, the belief of each grid point belonging to each class is 

calculated Then, the grid points are assigned to the classes that 

have maximum believes, Equation (14). 

Figures 5 and 6 for the first and second datasets respectively 

illustrate the classification results of the grid points for the 

described three cases (merging approaches). Where, Figures 5a 

and 6a show the results of the merged data before classification. 

Figures 5b and 6b show the classification results of the merged 

classified data, where each data-layer is classified then the 

classified results are merged. Finally, Figures 5c and 6c show 

the classification results of the CMCD introduced approach. 

Then the reference points are used to assess the classification 

results. Table 1 lists the overall accuracy and the overall Kappa 

statistics values for each case, for the two datasets. 

 
Figure 4: Example of confusion matrix and normalized 

confusion matrix for one of the data-layers 

 
Figure 5: Classification results of the first dataset 

a) classification results of the merged data before classification, 

b) classification results of the merged classified data,                

c) classification results of the CMCD approach 

 
Figure 6: Classification results of the second dataset 

a) classification results of the merged data before classification, 

b) classification results of the merged classified data,                

c) classification results of the CMCD approach 

Table 1: Accuracy assessment of the classification results 

Case 
Dataset 1 Dataset2 

Accuracy Kappa Accuracy Kappa 

Merged Original data 49% 0.37 62% 0.49 

Merged Classified 

data 
49% 0.37 68% 0.56 

CMCD Approach 55% 0.43 73% 0.62 

 

By observing the classification results of the multiple data-

layers of the overlapped areas, it can be noticed that merging the 

multiple data-layers after classifying each data-layer slightly 

improves the classification results. Moreover, combining the 

classified data by following the CMCD approach further 

improves the classification results of the overlapped areas. That 

is because the CMCD approach considers the a posteriori 

probabilities of each class and the distance between the original 

LiDAR points and the classified grid points. The 

misclassification points in the selected areas occur because of 

the large gaps between the original footprints and the similarity 

between the roof materials and the road covers. 

5. SUMMARY AND CONCLUSIONS 

This research aims at maximizing the benefits of the LiDAR 

data acquired by different characteristics for extracting land 

cover information. A new approach, called CMCD “Combined 

Multiple Classified Datasets”, is introduced to combine the 

multiple LiDAR data-layers after classification. The CMCD 

combines the classified data-layers based on the a posteriori 

probability of each class of the classified data and the proximity 

of the grid points to the original acquired points. CMCD is 

three-stage classification approach; data preparation, 

classification, and evaluation. Where in the classification stage, 

original point cloud data are classified, then the regular the 

generated grid points are assigned to the appropriate class using 

a method called Iterative Majority Moving Window (IMMW), 

where the appropriate class is assigned to the unclassified grid 
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point based on the majority classification of the surrounding 

points. After that the "a posteriori probability" is calculated for 

each class based on the assessment of the classification results, 

and the inverse distance weighting factor is calculated for each 

grid point based on the distance between the point and the 

surrounding original points. After that, the grid points are 

assigned to the classes that have maximum factors.  

Two datasets in an urban study area are investigated; both are in 

the overlapped areas of pairs of adjacent strips, and contain four 

distinguished classes; buildings, open areas, roads, and trees. 

The proposed approach is compared to two other common 

combining data methods; merging the points into one layer and 

then classifying the merged data, and the other is merging the 

data of the classified data-layers. 

For the first dataset, the accuracy achieved of the merged data-

layers, is 49% for both common combining methods, and the 

achieved classification accuracy is 55% by applying the 

proposed CMCD approach. 

For the second dataset, the merged classified data of the two 

data-layers is 62%, improved to 68% when the data-layers are 

merged after classification. By applying the CMCD approach 

the classification accuracy improved to 73%. 

As a conclusion, following the proposed CMCD approach 

improves the classification results of the multiple data-layers by 

more than 5% without more significant expenses in time, nor 

money. 
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