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ABSTRACT:

This paper proposes a change detection approach that uses a low-resolution octree enhanced with Gaussian kernels to describe free
and occupied space. This so-called Gaussian Occupancy Octree is derived from range measurements and used to represent spatial
information for a single epoch. Changes between epochs are encoded using a Delta Octree. A qualitative and quantitative evaluation of
the proposed approach shows that its advantages are a fast runtime and the ability to make a statement about the re-exploration of space.
An evaluation of the classification accuracy shows that our approach tents towards correct classifications with an overall accuracy of
51.5 %, but is also systematically biased towards the appearance of occupied space.

1. INTRODUCTION

Mobile mapping is a fast and efficient way to capture high reso-
lution data of extensive areas. It is an important source of street-
level information for the ever-growing field of geoinformation
services. Already today, companies use data collected by mobile
mapping systems to enrich their services with additional infor-
mation, be it speed limits extracted from street signs for naviga-
tion systems or 3D building models to provide additional con-
text to mapping services. Modern LiDAR sensors, which are of-
ten applied in mobile laser scanning (MLS), usually sample the
environment with a very high frequency and resolution, there-
fore accumulating large amounts of dense sensor data even over
small periods of time. Completely recording an urban environ-
ment such as a small or medium-sized city often takes multiple
hours and - due to the naturally grown structure of a city - re-
quires to follow the same streets multiple times in order to gain
a complete scan of the area. The collected point clouds therefore
often contain redundant information, have a resolution too high
for the task at hand or simply need to be downsized before pro-
cessing is possible at all. A good starting point to deal with these
large amounts of point clouds are occupancy grids.

Occupancy grids represent the spatial occupancy information de-
rived from range measurements, thereby compressing the under-
lying data due to discretization. The loss in accuracy can be quan-
tified and adjusted to the task at hand. Given a maximum reso-
lution, occupancy grids have an upper memory boundary which
allows the estimation of memory requirements. These memory-
related properties make them very valuable for long-term data
storage. State-of-the-art approaches even incorporate uncertainty,
thereby allowing better handling of real-world sensor data. Since
the representation of free and unexplored space is possible, oc-
cupancy grids support tasks such as change detection. The goal
of automatic change detection is to autonomously analyze two
or more epochs of spatial data, thereby identifying and quantify-
ing changes, summarizing these in a way that benefits the task at
∗Corresponding author

hand. This may be a heatmap that highlights areas with a high
amount of changes or more high-level information such as the
approximate living space gained or lost due to the erection or
tear-down of a building.

In the context of mobile mapping, change detection can be used to
evaluate the recordings of a measurement vehicle during a mea-
surement run. The process of recording an environment usually
includes a driver following the directions given by a navigator. It
is the task of the latter to plan a course that leads to a comprehen-
sive coverage of the area. For the navigator, it is not easy to deter-
mine whether or not the area has been sufficiently recorded. Since
change detection based on occupancy grids is also able to identify
areas which have been visited before, but not again, this informa-
tion can be used to guide the vehicle back into areas where more
information gathering is required. Information about changes in
an area as well as missing areas can be presented vividly in form
of heatmaps. These allow a navigator to quickly assess the situa-
tion and determine the best course of action.

The main contribution of this paper is a change detection ap-
proach based on a hierarchical occupancy grid with dynamic res-
olution. The approach uses local deformation analysis based on
Gaussian kernels in order to enhance the resolution the octree and
to address drawbacks of classical occupancy grids.

2. RELATED WORK

2.1 Occupancy Grids

Occupancy grids are a potent way of representing spatial infor-
mation, since they not only represent free and occupied space, but
also allow to deduce the location of unobserved areas. Moravec
and Elfes (1985) proposed an approach for indoor mapping us-
ing ultrasonic sensors. A 2D occupancy grid is used to describe
the state of the environment along a plane on the sensor level. A
probability describes the occupancy of each grid cell, which can
either be free, occupied or unseen. Although the aperture angle of
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each ultrasonic sensor is quite wide, the resulting representation
is considerably accurate. An approach to represent arbitrary ge-
ometries using an octree has been presented by Meagher (1982).
Initially it has been designed for binary occupancy only, but later
has been extended to use probabilistic information (Payeur et al.,
1997). Hornung et al. (2013) introduced propability clamping to
ensure fast adaption of the representation to a changing environ-
ment. This also allows for a nearly lossless compression strat-
egy. The framework implemented by the authors has gained huge
popularity within the robotics community and is known by the
name OctoMap. Based on the theoretical foundation of this work,
we proposed a concept for occupancy representation on a global
scale (Gehrung et al., 2016). Later on, an algorithm for iterative
refinement has been proposed that also prevents artifacts caused
by discretization inherent to occupancy grids (Gehrung et al.,
2018). It was also shown that the probabilistic occupancy grids
can be used to extract moving objects (Gehrung et al., 2017).

2.2 Change Detection

Change detection is a generic description for a topic that can be
found within many different research fields. Considered in the
context of urban surveying, change detection can be seen as be-
ing part of Geospatial Sciences and Remote Sensing (Du et al.,
2016). However, variations of it can also be found within some
areas of 3D computer vision, such as the Detection and Track-
ing of moving Objects (DATMO) (Litomisky and Bhanu, 2013) or
the distinction of dynamic objects and static background (Azim
and Aycard, 2012). Since the focus of this work is on 3D data
collected via MLS, this overview will only consider respective
approaches which can essentially be divided into the following
categories.

Surface points. Approaches based on surface point coordinates
can be considered as one of the most straightforward ways to do
change detection, since point clouds are one of the most common
representations for range measurements. Girardeau-Montaut et
al. (2005) proposed several simple cloud-to-cloud comparison al-
gorithms that utilize an octree for spatial organisation of the point
cloud. Zeibak and Filin (2008) compare multiple epochs of data
of a stationary terrestrial laser scanner using depth images in or-
der to identify changes in its field of vision.

Rays. Since point clouds result from range measurements, each
point can be interpreted as a ray between the sensor’s position
and the measured surface point. This has the advantage that, in
addition to the measured point, also the traversed free space is
considered. The approach proposed by Underwood et al. (2013)
utilizes a ray comparison strategy based on spherical coordinates
for rays originating from two point clouds from different epochs
or view points. Hebel et al. (2013) apply the Dempster–Shafer
theory of evidence to determine changes based on rays from an
airborne laser scan, thereby using a voxel-based data structure for
efficient ray management. Xiao et al. (2015) proposed a similar
approach and applied it to MLS data. Such approaches require the
storage and evaluation of every ray within the region of interest.

Semantic units. Approaches of this category require a segmenta-
tion of surface points into clusters. Since these usually have some
degree of semantic meaning, e.g. because of prior knowledge in-
cluded in the process, they may be considered to be semantic
units such as objects. The actual change detection is then exe-
cuted based on these units. Schachtschneider et al. (2017) assess
the temporal behavior of clusters extracted from point clouds of
urban environments using an occupancy grid. Aijazi et al. (2013)

classify clusters into known permanent and temporary classes. A
similarity map derived from an evidence grid is used, inter alia,
for change detection. All approaches of this kind require a reli-
able segmentation approach and - in case of classification - a well
working classifier with predefined object classes.

Occupancy grids. Due to the nature of grid based occupancy
representation, this category of approaches has the most informa-
tion available, since in addition to occupied and free space, also
unobserved space can be considered. Pagac et al. (1996) com-
bine a 2D occupancy grid with the Dempster–Shafer theory of
evidence to create an environment representation for autonomous
driving. Wolf and Sukhatme (2004) use a similar approach for a
mobile robot, utilizing two grids to determine static and dynamic
parts of a scene. Azim and Aycard (2012) also subdivide the
environment into static and dynamic elements, utilizing conflict
search on an occupancy grid based on the Octomap framework.

3. CHANGE DETECTION USING OCCUPANCY GRIDS
WITH DYNAMIC RESOLUTION

3.1 Octrees with fixed and dynamic resolution

Occupancy grids like the one used by Octomap are usually gener-
ated with a fixed octree depth (Hornung et al., 2013). The major
disadvantage here is that this process is computationally expen-
sive. Most of the time the resolution is finer then required, es-
pecially with regard to free space. In an octree with dynamic
resolution such as the one used in our previous work (Gehrung et
al., 2018), a voxel is only refined if a conflict between free and
occupied space is detected. The decision regarding refinement is
based on the ratio between the rays traversing and ending in a
voxel. This process is computationally cheaper, since ray casting
is only applied whenever a voxel is divided.

Since ray casting is still a computationally expensive task, shal-
low octrees are to be preferred. One way to achieve these is to
stop refining at a given depth and then enhance each voxel with
an additional representation of free and occupied space. This is
not only faster, it also helps preventing artifacts such as the one
described in Figure 1. These appear if an area is only little ob-
served. An additional local occupancy representation provides
the means necessary to prevent these artifacts.

(a) (b) (c)

Figure 1. (a) A quadtree with free (green) and occupied (red)
cells. (b) The same area, after parts of the surface have been

removed. Only a few rays traverse the cell, therefore it is falsely
classified as occupied. (c) A quadtree representing changed
(blue) and unchanged (grey) areas, showing that all cells are

classified incorrectly.

3.2 Local Spatial Analysis using 3D Gaussians

By adding a complementary local occupancy representation, ad-
ditional conclusions about the encompassed space can be drawn.
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Therefore we call this enhancement to classical octree compar-
ison Local Spatial Analysis. A suitable data representation has
to fulfill a few requirements. It should be cheap to compute and
must be able to describe both free and occupied space in an ad-
equate manner. It doesn’t have to precisely describe the form of
the underlying data, a rough representation is considered to be
enough. Furthermore, the representation should be able to pro-
vide information about when to refine a voxel. Refinement is
required whenever the encompassed space is either too large or
to crudely approximated. Last but not least, an instance of the
representation must provide the capability to quantify the degree
of intersection with other instances in order to detect conflicts
between free and occupied space.

Data representation. A representation that fits all these require-
ments is the Gaussian distribution. It is computationally cheap,
since only the mean vector and covariance matrix need to be cal-
culated. Determining a Gaussian kernel that covers a given set
of surface points is straightforward. The approximation of free
space is achieved by truncating each ray at the voxel boundary
and generating both mean and covariance matrix utilizing both
the start- and endpoints of the truncated rays (cf. Figure 2).

(a) (b)

Figure 2. Calculating mean and covariance for (a) occupied
space over surface points and (b) traversed space over the start-

and endpoints of the rays truncated at the voxel boundaries.

A mixture of Gaussians would achieve a better approximation
of both free and occupied space, but the computational costs re-
quired to estimate the appropriate number of kernels via trial-and-
error outweigh the possible benefits. A single Gaussian kernel is
considered to be exact enough since free space usually encom-
passes an area without distinct borders. In case of occupied space,
which is usually a surface, a very long but flat kernel is sufficient
to approximate it. A Gaussian kernel is allowed to leak probabil-
ity mass into space occupied by neighboring voxels, since only
the part of a kernel that is within the voxel under consideration is
considered for Local Spatial Analysis.

Refinement. A Gaussian kernel that describes free space is ex-
pected to have a large size, whereas a kernel approximating occu-
pied space is usually small and flat. Refinement is only required
if the state of the Gaussian deviates from these cases. To deter-
mine the expanse of a Gaussian distribution, principal component
analysis (PCA) can be applied. However, this is computationally
expensive to calculate. Another way is the so called generalized
variance (GV). The generalized variance of a three-dimensional
vector of a random variable X is defined as the determinant of
its covariance matrix |Σ| (Sengupta, 2004). Therefore, it is also
the product of the eigenvalues. It can be used instead of the PCA,

since it provides the product of the eigenvalues of the covariance
matrix without explicitly calculating the latter. The higher the
GV, the further the measurements are scattered. The multiplica-
tion of eigenvalues leads to ambiguities, as illustrated in Figure 3.
However, this is a benefit for the task at hand, since both examples
match the expected forms of free and occupied space mentioned
above.

(a) (b)

Figure 3. Both kernels have the same generalized variance, since
the product of their eigenvalues equals 1.

Intersection. In order to calculate the degree of intersection be-
tween two Gaussian kernels, the Hellinger distance has been cho-
sen (Le Cam and Lo Yang, 2000). This metric is the probability
analog of the Euclidean distance. It is considered to be more
reliable than the Mahalanobis distance, since this tends to have
a value of zero whenever the mean vectors of both Gaussians
are similar, even if the standard deviations are different. The
Hellinger distance is defined as

H2(P,Q) = 1− |Σ1|
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where u = µ1 − µ2. The range of the metric is within the in-
terval [0, 1]. The higher the value, the larger is the difference
between both Gaussians. In order to measure the similarity be-
tween Gaussians, we use the logarithm of the Hellinger Dis-
tance:

S = − log
(
H2(P,Q)

)
(2)

This allows the easier determination of threshold values as the
relevant part of the interval is scaled up.

3.3 Creating a Gaussian Occupancy Octree

The dynamic resolution octree enhanced with the data representa-
tion described in the previous section is referred to as a Gaussian
Occupancy Octree. In order to be able to represent even large ar-
eas without the need to rebase the octree, the world is structured
into 3D tiles of equal size. Ray casting is used to distribute the
range measurements (which are also referred to as rays) to their
respective tiles. If a tile contains at least a single ray, iterative
refinement of the tile’s octree is executed (cf. Algorithm 1).

For each octree voxel, the Gaussian kernels representing free and
occupied space are calculated. The covariance matrix requires
at least 3 independent data points, but more are recommended
in order to increase the likelihood for their independence. The
threshold tr denotes the minimum number of rays required. For
each kernel, the generalized variance is calculated. If it is larger
than a predefined threshold, then the voxel is subdivided. There
are two different thresholds tf and to for free and occupied space.
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Algorithm 1: Generation of the Gaussian Occupancy Octree.
Data: List of rays R = {r1, . . . , rn}

Current depth d.
Result: Current voxel with subtree V .

Function generate(R, d):
V ←− ∅
if d > dmax then

return V
else if |R| >= tr then

gf ←− gaussianFree(R)
go ←− gaussianOccupied(R)

if genV ar(gf ) >= tf ∨ genV ar(go) >= to then
for i ∈ {1, . . . , 8} do

S ←− raySubsetForV oxel(R)
Vi ←− generate(S, d+ 1)

return V

This is to ensure that free space is represented by large Gaussians
whereas surfaces are approximated by small Gaussians.

To divide a voxel, all rays are distributed to its child voxels. This
is done by executing a ray-box intersection test between each ray
and the bounding boxes of each possible child. If there is an in-
tersection, then the ray is added to the corresponding child voxel.
Non-existing child voxels are generated and the process is re-
peated recursively. The procedure is terminated once both gener-
alized variances are smaller than their thresholds or a maximum
octree depth dmax is exceeded.

3.4 Encoding Changes using Delta Octrees

Change detection is executed by comparing the Gaussian Occu-
pancy Octrees of two epochs m and n. The changes are encoded
using another data structure we call a Delta Octree. This is also
an octree, similar in structure to a concatenation of both Gaussian
Occupancy Octrees, but with a label for each voxel that describes
the state change between both epochs (cf. Figure 4). Valid state
changes are appeared, disappeared, unchanged, known location
not measured and new location measured.

Figure 4. An example for a Delta Octree (bottom), derived from
two Gaussian Occupancy Octrees (top left and right).

The generation of a Delta Octree from Gaussian Occupancy Oc-
trees with different spatial resolutions can be seen in Algorithm 2.
Both octrees need to occupy the same space and therefore have

the same bounding box. Traversal is done recursively and in a
depth-first manner in order to derive the Delta Octree’s structure
that reflects both octrees. In case both octrees have an identical
structure, then the Delta Octree’s structure is also identical. As
soon as one octree represents an area with a higher resolution
than the other one, the structures of both octrees are different. In
this case, the node with the highest possible resolution is chosen.
This leads to the following rule for selecting child nodes. If the
depth of the current node in epoch m is less than the depth of the
current node in epoch n, then use the current node of epoch m.
Otherwise continue with the respective child node, if it exists. If
is don’t exist, continue with the current node of epoch m. The
same is done to select the respective child node from the octree
representing the other epoch.

Changes between two voxels (of equal or different size) are de-
termined using the following case differentiation:

• A voxel has occupied space in the first epoch m, but not in
the second epoch n. If there is no free space in the second
epoch (e.g. due to occlusion), then the state known location
not measured is assigned to the Delta Octree’s correspond-
ing voxel. If there is free space and the intersection between
occupied space in m and free space in n is less than a simi-
larity threshold ts, then the state disappeared is assigned.

• A voxel has occupied space in the second epoch n, but not
in the first epoch m. If there is no free space in epoch m,
the state new location measured is assigned. Otherwise, the
intersection between occupied space in n and free space in
m is determined and checked against the similarity thresh-
old ts. If the check is successful, than the state appeared
is assigned, otherwise it is considered to be another case of
new location measured.

• If none of the above cases occurs, no change is assumed and
the state unchanged is assigned.

The intersection between Gaussians is determined as shown in
Equation 2. In addition, there are two minor special cases. If a 3D
tile exists in epoch m, but not in epoch n, then it is considered to
be previously known space which has not been measured again.
In the opposite case, if a tile does not exist in epoch m but in
epoch n, it is considered to be a newly observed location. In both
cases, the Delta Octree consists of a single voxel the size of a tile,
with either the state known location not measured or the state new
location measured.

3.5 Visualization using Heatmaps

In order to allow a human observer to easily interpret the re-
sults, we have chosen heatmaps. These can considered to be a
kind of two-dimensional histogram, since they accumulate the
intensity of information along the height-axis. To derive a two-
dimensional heatmap from a Delta Octree, it is of advantage to
interpret the latter as a function f : R3 → {l1, . . . , ln} that maps
a point in space onto a label li. For each label li, another function
gi can be derived that returns 1 for each point in space that has
label li and 0 otherwise. For each of these functions, a heatmap
may be generated. The heatmap of a function is derived by sam-
pling it in a k × k grid. At a sample’s position, all voxels in
the Delta Octree along the z-axis are determined and a sum of
their values is assigned to the corresponding cell in the heatmap.
Afterwards, the heatmap is normalized to be in the interval [0, 1].
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Algorithm 2: Recursive generation of the Delta Octree
nodedelta from two occupancy octrees nodem and noden.
Data: Gaussian Occupancy Octrees nodem and noden.
Result: Delta octree nodedelta.

Function construct(nodem, noden):
for i← 0 to 7 do

/* Select child of nodem. */

if getDepth(nodem) < getDepth(noden) then
nextm ← nodem

else
if hasChild(nodem, i) then

nextm ← getChild(nodem, i)
else

nextm ← nodem

/* Select child of noden. */

...
/* Recurse. */

addChild(nodedelta, i)← construct(nextm, nextn)
/* Determine label of nodedelta. */

...

4. EVALUATION

4.1 Experimental Setup

The evaluation is based on a dataset showing the demolition of
multiple buildings in Ettlingen, Germany. It consists of 15 epochs
recorded from mid-april to mid-june 2018 that show the build-
ings in different stages of demolition (cf. Figure 5). The dataset
has been recorded by the measurement vehicle MODISSA of
the Fraunhofer Institute of Optronics, System Technologies and
Image Exploitation (IOSB) (Borgmann et al., 2018). The point
clouds were recorded using two Velodyne HDL-64E LiDAR sen-
sors mounted at an angle of 25 ° on the vehicles front roof. Navi-
gational data was recorded using an Applanix POS LV navigation
system, an inertial measuring unit and a distance rotary encoder.
The navigation data has been postprocessed in order to increase
accuracy. A LiDAR-SLAM based fine-registration approach has
been used to further improve the registration within epochs and
between all epochs and the first one.

The epochs 1 and 5 have been labeled in order to have ground
truth for change detection. Labeling was done at point level us-
ing a hand-labeling tool implemented by the authors. The labels
include surface points removed from epoch 1 and surface points
added to epoch 5. Figure 5(a) and 5(b) show that between both
epochs, the front of the northern building, some of its balconies
as well as a shed in its south have been deconstructed. Part of the
roof is missing. Also, a large part of the western building, a crane
on its east side and some debris have been removed. Another
crane appeared, an excavator and two heaps of debris.

4.2 Qualitative Evaluation

In order to evaluate the properties of the proposed approach, a
Delta Octree between both epochs is examined by a human ob-
server. This case study consists of two parts. The first one is
considered with the detection of changes and therefore investi-
gates voxels labeled as appeared or disappeared. The second
part draws conclusions regarding the exploration of space by ex-
amining voxels labeled as known location not measured and new

location measured. In addition to the case study, heatmaps rep-
resenting changes as well as the state of spatial exploration are
discussed.

4.3 Quantitative Evaluation

To supplement the case study, a quantitative evaluation based on
the ground truth mentioned above has been carried out. Several
methods for comparison were examined before finding an appro-
priate one. The reason for this is that in order to evaluate the
results of this work, it is required to compare a volumetric repre-
sentation with surface-based labels. This is aggravated by the fact
that the volumes are not uniform and therefore may summarize
multiple change-related events. In addition, the surface represen-
tation does not contain any information regarding the exploratory
state of the area.

After careful considerations, the following approach has been
chosen. The actual state of every voxel is determined based on
the subset of labeled points that are located within the voxel. Per
voxel, two counters represent appeared and disappeared surfaces.
Each labeled point located within a voxel increments the corre-
sponding counter. The actual state of a voxel is then determined
based on these counters. If both are zero, the voxel is assumed to
be unchanged. If the first counter is higher than the second one,
an actual state of appeared is assumed, otherwise an actual state
of disappeared. Both counters may be of equal value, but this is
considered unlikely due to the large amount of labeled points per
square meter.

The predicted state is provided by the Delta Octree. Both the
actual and predicted state are then used to generate a confusion
matrix. Two confusion matrices created from Delta Octrees with
a maximum resolution of 1 m and 2 m are discussed.

4.4 Runtime

The evaluation is concluded by a short discussion of the run-
time. Therefore, the approaches for generating the Gaussian Oc-
cupancy Octree and the Delta Octree are investigated.

5. RESULTS AND DISCUSSION

5.1 Results of the Qualitative Evaluation

Figure 6(a) shows a heatmap encoding all changes that occurred
between both epochs. It does not distinguish between appear-
ances and disappearances. High degrees of change are marked in
red, medium ones in green and a low ones in blue. The circles are
annotations made by a human observer marking areas of major
changes. Red circles imply disappearances and blue circles ap-
pearances. A binarized version of the heatmap in which only the
areas with the most changes remain can be seen in Figure 6(b).

Despite the noise present in the heatmap, all major changes were
detected. The deconstructed part of the northern building has
been recognized correctly. Also parts of its roof, the balcony
and the shed on its southern side. The area around both the ap-
peared excavator and crane have a higher intensity than the little
background noise present. Most parts of the removed western
building part have been recognized as changed, except the south-
eastern section. As can be clearly seen in Figure 6(d) at location
marker N1, this part of the building was previously obscured and
therefore has only be observed after the demolition.
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(a) (b)

Figure 5. Overview over the point clouds of (a) epoch 1 and (b) epoch 5. Red circles imply disappearances, blue circles appearances.

The heatmap in 6(c) shows the locations observed in epoch 1, but
not again in epoch 5. The area at location marker M1 has re-
mained unobserved because the path of the measurement vehicle
in epoch 5 deviates strongly from its previous path in epoch 1.
Therefore, the removed crane has not been detected as a change.
The same applies to the area at marker M3, which is obscured in
epoch 5 by a mound. Location marker M2 refers to free space
above the building. All this can be deduced from a 3D visualiza-
tion of the Gaussian Occupancy Octrees of both epochs.

Figure 6(d) shows the heatmap of space not observed in epoch 1,
but in epoch 5. Our algorithm detected the appearance of occu-
pied space at the location markers N2, N4 and N5, but the inter-
section between the free space of epoch 1 and the occupied space
of epoch 5 exceeded the similarity threshold ts. The algorithm
had deduced that the area has not been observed completely be-
fore and marked it as newly observed, which can be considered
a valid assessment of the situation. The areas marked as N2 and
N6 have previously been unobserved and are now visible as both
the western building part and the shed have been removed.

5.2 Results of the Quantitative Evaluation

Table 1 shows the confusion matrix for the Delta Octree with a
2 m resolution. A pronounced diagonal shows that the classifier
tends to correctly classify changes. A closer look at the precision
and recall of the individual classes imply that our approach is bi-
ased towards the class appeared, since this class has a high recall,
but a low precision. This effect is also the main reason why the
overall accuracy of all classes is only 51.5 %.

We assume that the reason for this is the way we generate Gaus-
sian kernels. By definition, at least 10 surface points must be
available per voxel in order to generate a kernel. Especially in
case of smaller voxels it can happen that not enough measure-
ments are available. Epoch 5 contains less surfaces and therefore
larger voxels, since these are mostly representing free space. Be-
cause the voxels are bigger, they are also more likely to contain
the required amount of surface points. For this reason, a Gaus-
sian kernel may exist in epoch 5 but not in epoch 1, causing the
algorithm to conclude the appearance of occupied space.

Comparing Table 1 and 2 suggests that the overall accuracy de-
creases once the maximum resolution increases. A closer analysis

Actual
App. Dis. Un. Total

Predicted
App. 68 5 632 9.7%
Dis. 2 294 147 66.4%
Un. 22 40 540 89.7%
Total 73.9% 86.7% 40.9% 51.5%

Table 1. The confusion matrix determined by evaluating the
Delta Octree with a 2 m resolution.

Actual
App. Dis. Un. Total

Predicted
App. 206 11 2292 8.2%
Dis. 6 886 739 54.3%
Un. 98 148 1023 80.6%
Total 66.5% 84.8% 25.2% 39.1%

Table 2. The confusion matrix determined by evaluating the
Delta Octree with a 1 m resolution.

leads to the conclusion that the Hellinger distance applied to de-
termine the overlap of Gaussians rapidly degrades towards zero
whenever two Gaussian kernels with very different variances are
compared. An example for this can be seen in Figure 7. This sit-
uation occurs whenever a low-resolution voxel is compared to a
high-resolution one. The effect occurs more often when the reso-
lution is increased, since this also means more high-resolution
voxels. This effect limits the maximum resolution of our ap-
proach.

5.3 Discussion of the Runtime

All reported results were generated on a machine with 32 Giga-
byte of RAM and an Intel Core i7 processor with 3.5 GHz and 12
cores. The Gaussian Occupancy Octrees for 2 m and 1 m resolu-
tion are created within 12 s respectively 35 s per tile and epoch.
The generation of the Delta Octree requires less than a second.

6. CONCLUSION AND FUTURE WORK

In this paper, a fast approach to determine both changes and ex-
ploratory information using low-resolution octrees has been pro-
posed. Gaussian kernels are used to represent free and occupied
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(a) (b)

(c) (d)

Figure 6. The heatmap in (a) encodes changes regarding both appearance and disappearence, whereas the first ones are annotated with
blue circles, the latter one with red ones. A version binarized with a threshold of 0.2 can be seen in (b). The heatmaps in (c) and (d)

show missed locations and newly measured locations. All heatmaps are created with a 2 m resolution.

(a) (b)

Figure 7. Example for the degradation of the Hellinger distance.
The Hellinger distance is 0.99 for both shown Gaussian kernels
(a). It degrades to 0.64 once the variance of the second kernels is

greatly increased (b).

space in order to further enhance the octree resolution. The ad-
vantages of our approach are the short runtime and the ability to
make a statement about the re-exploration of space. Both a qual-
itative and quantitative evaluation show that the approach tends
towards correct classification. However, since there is a bias to-
wards the appearance of occupied space, the overall accuracy for

an octree with 2 m resolution is only 51.5 %. Also, the maximum
spatial resolution is limited by the distance metric used to detect
changes. One possible solution that may be explored in future
work is it to use measurement rays instead of Gaussians, since
these do not require any model assumptions.
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