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ABSTRACT:

The paper describes a workflow for generating LoD3 CityGML models (i.e. semantic building models with structured facades)
based on textured LoD2 CityGML models by adding window and door objects. For each wall texture, bounding boxes of windows
and doors are detected using “Faster R-CNN”, a deep neural network. We evaluate results for textures with different resolutions
on the ICG Graz50 facade dataset. In general, detected bounding boxes match very well with the rectangular shape of most wall
openings. Thus, no further classification of shapes is required. Windows are typically aligned to rows and columns, and only a
few different types of windows exist for each facade. However, the neural network proposes rectangles of varying sizes, which are
not always aligned perfectly. Thus, we use post-processing to obtain a more realistic appearance of facades. Window and door
rectangles get aligned by solving a mixed integer linear optimization problem, which automatically leads to a clustering of these
openings into few different classes of window and door types. Furthermore, an a-priori knowledge about the number of clusters is
not required.

1. INTRODUCTION

CityGML is the standard description language for semantic city
models (Gröger et al., 2012) and is used for cadastral purposes
but also for many different simulation tasks, see (Biljecki et al.,
2015). Building models can be given in different levels of detail
(LoD). In LoD2, a building model simply is composed of wall
polygons, roof polygons and a ground plane. Walls and roofs
can be textured. Based on such textures, we detect and add
window and door objects to CityGML models. Since windows
and doors can only be modeled in LoD3 or higher, we transform
textured LoD2 models into their corresponding LoD3 versions,
i.e., we map textures to geometries.

Facades can be analyzed in 2D based on images or in 3D based
on point clouds. If high quality laser scanning point clouds
are available, rectangular windows can be found quite easily:
An oriented facade’s plane can be taken from a city model and
then one can search for points with a significant distance to this
plane, cf. (Tuttas , Stilla, 2013). Since the laser beam passes
glass, points behind the plane indicate openings (voyeur effect).
The precision is even sufficient to distinguish curtains from fa-
cades. The left part of Figure 1 shows a laser scanning point
cloud on which rectangular openings were detected, see Figure
2. Unfortunately, facades are only sparsely covered in airborne
laser scanning data, and terrestrial laser scanning data might
not be available on a large scale. This is different for oblique
aerial images. Many LoD2 CityGML models were textured
with such images and can be used as input for our proposed
workflow. But one could also consider detecting facades based
on sparse photogrammetric point clouds derived from oblique
aerial images. However, in contrast to high resolution point
clouds as discussed in (Malihi et al., 2018), such clouds can be-
come noisy with wave-like artifacts (see Figure 1) and do not
∗Corresponding author

Figure 1. Facades in a terrestrial laser scanning point
cloud (left) vs. facades in a photogrammetric point cloud

(right)

Figure 2. Detected windows and doors based on a
terrestrial laser scanning point cloud in connection with a

3D city model

contain differentiated depth information. Also, windows might
not appear as holes in photogrammetric clouds. Thus, we focus
on window and door detection based on texture images in this
paper. There might be shadows on facades but detection and
removal of shadows in complex images still is challenging, see
(Finlayson et al., 2002), (Guo et al., 2011). Also, parts of im-
ages might be occluded by other buildings or vegetation. In this
paper, we exclusively work with images that do not show such
artifacts. By working with textures, we can exclude perspective
distortions and can assume that occlusions by other buildings
have been resolved based on the CityGML model.
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By evaluating horizontal and vertical projection profiles of the
facade’s grayscale image, regular arranged windows can be eas-
ily detected, see for example (Lee , Nevatia, 2004), (Kulkarni et
al., 2011), (Miljanovic et al., 2012). However, such an approach
is not suitable for irregular or historic facade layouts. Therefore,
we apply a more general approach. Section 2 gives an overview
of techniques that come into question. We decided to apply the
faster region-based convolution neural network (Faster R-CNN)
from (Ren et al., 2015), see Section 3. This network has been
applied to many object detection and segmentation tasks and
provides the position of a bounding box for each detected object
in an image and matches the object to a class. Not every pixel
within the bounding box has to belong to the classified object,
but this can be neglected for rectangular windows and doors.
Such objects do match with their bounding boxes quite well.
Faster R-CNN’s region proposal network (RPN) was already
successfully applied to window detection in “DeepFacade”, see
(Liu et al., 2017). The authors customized a deep convolutional
neural network for pixel classification by choosing a problem
specific loss function. They set up the function to favor the de-
tection of rectangular symmetric structures. Then pixel based
classifications are refined with bounding boxes, which are gen-
erated by the RPN of Faster R-CNN (based on a VGG16 net-
work (Simonyan , Zisserman, 2014)). Since Faster R-CNN is
used to refine an existing classification, the classification part of
Faster R-CNN is not used in their workflow. In contrast to this,
we directly apply Faster R-CNN to window and door segmen-
tation as well as to classification. Thus, the initial classification
step used in (Liu et al., 2017) can be omitted. To get an op-
timal layout, we formulate a mixed integer linear optimization
problem that can be solved with standard tools, see Section 4.
An advantage of this post-processing step is that in contrast to
adjusting a loss function, one can easily add further constraints
without any implications on detection results. For example, an
important additional constraint is that only a small number of
different window sizes should occur.

Recently, in (Rahmani , Mayer, 2018) a workflow combining a
pre-trained RPN with a structured random forest approach (cf.
Section 2) was introduced. However, we obtain better detec-
tion results. The reason is that we trained Faster R-CNN with
the problem-specific large CMP database, see Section 3. Also,
the combined method does not consider architectural rules like
window and door alignment.

2. RELATED WORK

In the literature, a wide variety of methods for facade parsing
and processing exists. The basic architectural rules that apply
to a large number of facades, allow the use of model based ap-
proaches like grammars. Grammatical rules can be predefined
using human knowledge of facades or learned from real data.
For example, in (Wan , Sharf, 2012) the authors use a grammar
based algorithm on pre-segmented objects from LiDAR scan
layers to reconstruct buildings in 3D. Often, a facade’s layout
follows a standard pattern. In this case, it is likely that a match-
ing set of grammar rules exists. Then a facade’s pattern can be
continued in noisy or occluded areas. But, if the facade archi-
tecture does not follow a regular pattern, the results possibly
will not match reality. Our data are almost free of occlusions.
Instead of applying general grammar rules, we therefore focus
on aligning windows and doors.

Machine learning techniques are powerful tools for object de-
tection or segmentation in facade images. They do not require

model knowledge but a large amount of training data to achieve
good results. Conditional Random Field (CRF), a probabilistic
graphical model, is one of these techniques. A fully-connected
CRF for semantic segmentation of city view images is used in
(Li , Yang, 2016). A disadvantage of this approach is high com-
putational complexity, which makes it difficult to re-train the
model with new data. In comparison, a random forest method
classifies each pixel or point independently, which results in
a noisy labeling of the input image. Rahmani, Huang, and
Mayer enhance the training of a random forest with architec-
tural constraints and an object hierarchy in (Rahmani et al.,
2017). The authors call their enhancement ”structured random
forest”. Similarly, in (Martinović et al., 2015) a random forest
classifier in combination with stochastic context-free grammars
is used. The aim is to generate 3D-Models of facades using
point clouds as input. However, this method fails at making
predictions with rare outcomes, as the algorithm is based on
bootstrap sampling. Bootstrap sampling is a stochastic model,
which can be used for image segmentation. Gadde et al. found
a way to improve segmentation results of classifiers on facades
using auto-context features, see (Gadde et al., 2018). Auto-
context features are gained from the results of a trained clas-
sifier and are used to train the classifier of the next iteration.
This process is repeated until the results have a sufficient qual-
ity. This method can deliver good segmentation results, but in-
volves a great deal of effort due to the number of independent
classifiers that have to be trained. A good overview of some
common machine learning methods gives the work (Mathias et
al., 2016), in which the methods are compared with respect to
the paper’s own three-layered approach.

Deep learning is motivated by the functionality and capacity
of the human brain. Especially the field of facade parsing be-
comes increasingly popular for benchmarking new network ar-
chitectures. Similar to our approach, in (Liu et al., 2017) Faster
R-CNN and in (Rahmani , Mayer, 2018) an RPN is used for the
segmentation of facades, see Section 1. Another improvement
of Faster R-CNN was proposed in (He et al., 2017): ”Masked R-
CNN” is a combination of two already existing state-of-the-art
models, an RPN and a binary mask classifier. Within bound-
ing boxes, a classified object is labeled as it is the case with
semantic segmentation.

After submission of our work, the paper (Xingzi Zhang et al.,
2019) was published. The authors apply an RPN in connection
with Mask R-CNN to detect rectangular windows in textures of
LoD2 models, align them and then interactively generate LoD3
CityGML models. However, in contrast to our work, different
model data are used, doors are not detected automatically and
alignment is done by a heuristics and rule based clustering.

Our work focuses on detection using 2D images, but deep learn-
ing architectures exist which benefit from 3D information in
point clouds. The big problem is that, unlike images which
have their structure predetermined by the pixel grid, raw 3D
point clouds do not have structure. The input has to be properly
structured so that the neural network is able to process it. Many
ways exist to overcome this problem, one is to apply structure
to 3D data using a voxel grid. This idea was used in (Wu et al.,
2015) to introduce 3D Shapenets. The authors translate multi-
view 2.5D depth maps into voxel representations, which serve
as input for a CNN that classifies and autocompletes the 3D ob-
ject. Networks like PointNet++ (Qi et al., 2017) are capable of
using 3D point clouds directly as an input. PointNet++ is the
successor of PointNet, which had issues if applied on data with
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a non-consistent point density. PointNet++ addresses this prob-
lem by extracting spherical point neighborhoods and applying
PointNet on each hierarchical level. Another network for pro-
cessing point cloud data is SPLATNet (Su et al., 2018). It uses
sparse bilateral convolutional layers as building blocks.

3. WINDOW AND DOOR DETECTION USING
FASTER R-CNN

The basis of Faster R-CNN consists of a feature map gener-
ated by a fully convolutional neural network (FCN). A FCN,
originally introduced in (Long et al., 2015) to solve image seg-
mentation problems, consists of convolutional, pooling and up-
sampling layers. Due to the convolutional layers, which imple-
ment only local connections and shared weights, its input is not
restricted to a specific size. These filters and even the decision-
making layers at the end, are learned during training. Typically,
a fully-connected (FC) layer can be combined with a FCN. This
would enhance its learning capabilities from using only local in-
formation to using global information. In image segmentation,
the output has to be upsampled to fit the size of the original in-
put to get the final result. This can be done by using layers that
serve as bilinear filters or transposed convolutions.

R-CNNs do not use the whole image as an input for classifi-
cation, instead region-proposals are used, which tell the net-
work where to look. The original R-CNN was introduced in
(Girshick et al., 2014) and uses a selective search algorithm to
generate its region proposals. Selective search is able to gen-
erate region proposals by computing hierarchical grouping of
similar regions based on color, texture, size and shape similar-
ity. At the end, a CNN is applied to these region proposals
for the final classification. In (Girshick, 2015) the R-CNN was
improved to Fast R-CNN where a technique called Region of
Interest (ROI) pooling was introduced. This technique allows
for sharing computations during training by reusing the same
feature map for multiple ROIs. Generation of region proposals
through selective search, as applied in R-CNN and Fast R-CNN,
is time-consuming due to the calculation of similarity features
between all input image regions. Faster R-CNN resolves this
problem by using an RPN, which shares computation with the
classification part through reusing the same feature map pro-
duced by a FCN. The architecture of the FCN is replaceable,
popular architectures include VGG16 (Simonyan , Zisserman,
2014) and ResNet (He et al., 2016).

For applying Faster R-CNN on window and door detection,
training and evaluation based on images with a known ground
truth had to be prepared. For training, the CMP facade database
from (Tyleček , Šára, 2013) was used. This database includes
606 facade images with 12 specified classes, where only win-
dow and door elements were selected for our purpose. The
ground truth is available as label images and annotation files.
Since there are overlaps between windows and other structures,
annotation files are better suited as a ground truth. The struc-
ture of the given annotation files is proprietary. To make it
processable, we converted it into the more suitable PASCAL
VOC format. For our evaluation, we used the ICG Graz50
dataset (Riemenschneider et al., 2012) containing 50 facade im-
ages and the corresponding semantic segmentation. We chose
this dataset due to its strict rectangular ground truth labeling.
Thus, we could compare predicted bounding boxes with these
label images. Some other common datasets, like eTrims (Korč
, Förstner, 2009), do not fit due to perspective distortions. For

resolution avg. accuracy avg. precision avg. IoU
1× 1 0.94147 0.89194 0.71244
1/2× 1/2 0.94371 0.89142 0.72967
1/4× 1/4 0.93019 0.82679 0.68058
1/8× 1/8 0.86585 0.66682 0.42009
1/16× 1/16 0.80901 0.44350 0.10312
1/32× 1/32 0.81225 0.31363 0.00475

Table 1. Performance of window detection with Faster
R-CNN on the ICG Graz50 dataset using different image

resolutions.

resolution avg. accuracy avg. precision avg. IoU
1× 1 0.98378 0.83387 0.48817
1/2× 1/2 0.98333 0.87482 0.51574
1/4× 1/4 0.98277 0.77461 0.52242
1/8× 1/8 0.97775 0.73321 0.43813
1/16× 1/16 0.96756 0.47705 0.21227
1/32× 1/32 0.96829 0.29476 0.02556

Table 2. Performance of door detection with Faster
R-CNN on the ICG Graz50 dataset using different image

resolutions.

both training and evaluation, rotation of objects were not con-
sidered. Finally, we applied the trained network to the textures
of a district’s LoD2 CityGML model, cf. Section 5.

For evaluation of image segmentation, it is standard to count
every classified pixel with one of four sums: true positive (tp),
false positive (fp), true negative (tn) and false negative (fn). Us-
ing these numbers, we are able to calculate different evaluation
scores like precision tp /(tp + fp), accuracy (tp + tn)/(tp +
tn + fp + fn), and Intersection over Union IoU = tp /(tp + fp
+ fn) as the most meaningful evaluation score since it does not
take background pixels into account. The average scores in Ta-
bles 1, 2 and 3 are means taken over the scores calculated sep-
arately for each image in the dataset.

We did evaluation on different resolutions of facade images to
check the usability of low resolution data, which is common
in already existing LoD2 CityGML models. We reduced the
width and height of the image five times by a factor of two. The
original resolution of the images in the ICG Graz50 datasets
varies between 200 and 500 pixels in height and width.

We noticed that the coarser the resolution the larger the size of
bounding boxes becomes, see Figure 3. Astonishingly, one can
obtain somewhat better IoU scores with a reduced resolution,
see Tables 1 and 2. To understand IoU numbers, one has to
know that not all windows are segmented in the ICG Graz50
ground truth. Windows that do not belong to the main body
of a facade are labeled as sky. These windows exist in the im-
ages and therefore also get correctly detected. Thus, the false
positive count is too high. Nevertheless, our average window
segmentation accuracy of 0.94 exceeds by far the value of 0.84
of (Rahmani , Mayer, 2018).

4. ALIGNMENT WITH A LINEAR PROGRAM

An elegant approach for aligning window and door rectangles
is to solve a mixed integer linear optimization problem (MILP).
MILPs have been successfully applied to not only problems of
Operations Research but also to several tasks in geometric mod-
eling. For example, optimum binary labelings can be used for
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Figure 3. Example for problems in window detection on
low resolution images. From top to bottom: original
resolution (2590× 1715 pixel), 1/16 of the original

resolution and 1/32 of the original resolution.

surface reconstruction, see (Boulch et al., 2014) and the liter-
ature cited there. MILPs can also be used to establish right
angles and symmetry in roof structures of CityGML models,
see (Goebbels , Pohle-Fröhlich, 2018). But here the approach
is completely different. The idea is not to successively cluster
windows with same properties but to let the optimization algo-
rithm decide about coordinate changes in one step. All align-
ment goals, like a maximum number of identical coordinates,
few different window sizes and minimal coordinate changes,
can be obtained with one MILP. If one adjusts window sizes in
a first step and aligns window edges in a second step, then the
second step has to be performed on modified and not on original
coordinates. This might lead to a suboptimal solution.

4.1 Model Parameters

With N we denote the number of window and door rectan-
gles. Let tk and bk be float variables, k ∈ [m] := {1, . . . ,m},
that will contain different height positions (y-coordinates) of
top and bottom edges of rectangles in an optimal alignment,
see Figure 4. A minimum number of these values should be
shared by a maximum number of rectangles. Thus, each value
represents an alignment class. Let lk and rk, k ∈ [n], be
float variables containing different left and right horizontal po-
sitions of rectangles in the final arrangement. Float variables
hk, k ∈ [m′], and wk, k ∈ [n′], are used to store different final
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Figure 4. Names of float variables for rectangle
coordinates (upper image) and for alignment classes

height and width values. Number m denotes an upper bound
for the expected number of different top or bottom window co-
ordinates. Accordingly, number n is an upper bound for win-
dow column positions. Obviously, it does not make sense to
choose m,n > N . But to reduce the number of variables, up-
per bounds smaller than N are welcome. The estimated number
of building floors (height of the facade divided by three) ap-
proximately is a lower bound for choosing m. Half the facade’s
length (in meter) is an estimate of a lower bound for choosing
n because typically most left and right coordinates of windows
are shared between floors. Facades height and length values are
available from the CityGML wall object. However, the algo-
rithm can be applied in connection with facade images inde-
pendently of CityGML models, for example with ICG Graz50
data that we used to validate the neural network. If an image
with r rows and c columns is given, one can assume an isotropic
scaling factor s and apply heuristics

s · r
3
· s · c

2
≈ N ⇐⇒ s ≈

√
6 ·N
r · c (1)

to estimate lower bounds m > s·r
3

and n > s·c
2

. For example,
one can initialize n and m with these lower bounds times two,
cf. Figure 5. This allows many shifted window positions. Of
course, m and n can also be determined more precisely based
on detected window positions.

In general, there are only few different types of windows and
doors. Thus, n′ and m′ can be chosen as small values. If m,
n, m′, or n′ are chosen too small, the arrangement of windows
and doors will only be optimized partially. If they are chosen
too large, some alignment classes are empty, i.e., their variable
values are not linked with rectangle coordinates. The power of
the presented MILP is that it will automatically group coordi-
nates into clusters without a-priori knowledge about the number
of clusters. Too many alignment classes do not have impact on
the result and only moderate impact on processor time1. Figure
5 shows the effect. Parameter settings allow for m′ = n′ = 5
different window height and width values, n = m = 8 different
classes of x- and y-positions. This leads to a computation time

1Processor times were measured on a MacBook Pro with an 2.3 GHz
i5 processor and 16 GB RAM. Running times are much faster because
processor times are sums of execution times of all parallel threads. We
observed running times that equal processor times divided by four.
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of 61 s. In this setting, m = 8 is chosen too small to align all
windows. No class is assigned to one top and one bottom po-
sition of windows in the right column. If we set n = m = 33
and m′ = n′ = 10, the same solution is computed in 132 s
processor time by ignoring most alignment class variables. By
setting n and m to values twice the lower bounds obtained with
heuristics (1), we obtain m = 9 and n = 14 (while keeping
m′ = n′ = 10). With these parameters, processor time is re-
duced to 17 s.

Each rectangle i is given via four coordinates xleft
i , xright

i , ytop
i ,

and ybottom
i , see Figure 4. We measure positions in pixels of

the facade’s texture so that we do not have to convert them into
meter. For each coordinate, we introduce two non-negative float
variables to store changes:

∆xleft +
i , ∆xleft−

i , ∆xright+
i , ∆xright−

i ,

∆ytop+
i , ∆ytop−

i , ∆ybottom+
i , ∆ybottom−

i .

For example, the left coordinate xleft
i will be changed to xleft

i +
∆xleft +

i − ∆xleft−
i . Instead of measuring changes by taking

absolute values or squares in a non-linear fashion, now the lin-
ear term ∆xleft +

i + ∆xleft−
i can be used. We do not allow

arbitrary large coordinate changes, thus variables ∆xleft +
i , . . . ,

∆ybottom−
i have to be upper bounded by a threshold value ε.

We chose ε to be a third of the smallest window height or width
measured in pixels. This prohibits degeneration of windows.
But of course, an absolute tolerance measured in meters can be
used, too. The neural network equips estimated bounding boxes
with probabilities. They measure the confidence of matching
boxes with real windows or doors. If larger coordinate changes
for possibly wrong boxes are allowed then corresponding coor-
dinates will have less impact on coordinate changes of correctly
estimated windows. However, all possibilities were very close
to one in our tests. Therefore, individual, window-dependent
bounds ε(i), i ∈ [N ] do not promise to give better solutions.

Figure 5. Original and optimized layout of 33 detected
windows.

4.2 Integer Linear Program

If binary variable atop
i,k ∈ {0, 1} is set to one then rectangle i

has an upper y-coordinate tk = ytop
i + ∆ytop+

i −∆ytop−
i . In

the same manner, binary variables abottom
i,k , aleft

i,k , aright
i,k , aheight

i,k ,
and awidth

i,k indicate if corresponding values match with bk, lk,
rk, hk, and wk, respectively. To define an objective function,
let

F :=
1

8Nε(max{n + n′,m + m′}+ 1)
.

We align windows and doors by maximizing the following ob-
jective function

N∑
i=1

 m∑
k=1

atop
i,k + abottom

i,k

k
+

m′∑
k=1

aheight
i,k

m + k

+

n∑
k=1

aleft
i,k + aright

i,k

k
+

n′∑
k=1

awidth
i,k

n + k

 (2)

−F
N∑
i=1

[
∆xleft +

i + ∆xleft−
i + ∆xright+

i + ∆xright−
i

+∆ytop+
i + ∆ytop−

i + ∆ybottom+
i + ∆ybottom−

i

]
.

Our aim is to maximize the number of alignments. At the same
time, the sum of all coordinate changes should be minimal as
a secondary goal, see Figure 5. Factor F in (2) ensures that an
additional alignment gains more profit than it might reduce due
to all coordinate changes. Also, a minimum number of different
alignment classes should be used. We enforce this by weighting
a class of index k with weight 1

k
, 1

m+k
, or 1

n+k
. This prohibits

a class from being split into two or more because the value of
the objective function would decrease. We use smaller weights

1
m+k

and 1
n+k

for width and height classes. Thus, aligning to
rows and columns becomes a higher priority than using same
window sizes. If one uses weights 1

k
instead of 1

m+k
and 1

n+k

in (2), alignment to a height (or width) value might be weighted
higher than alignment to a top or bottom class. This results in
the artifact marked in Figure 6.

Figure 6. If height or width alignment takes precedence
over top or bottom alignment, artifacts occur, cf. Figure 5.

A maximum of (2) has to be found subject to following restric-
tions: All window attributes have to be element of at most one
alignment class, i.e., for all i ∈ [N ]

m∑
k=1

atop
i,k ≤ 1,

m∑
k=1

abottom
i,k ≤ 1,

m′∑
k=1

aheight
i,k ≤ 1,

n∑
k=1

aleft
i,k ≤ 1,

n∑
k=1

aright
i,k ≤ 1,

n′∑
k=1

awidth
i,k ≤ 1.

If a binary variable is set to one, the modified coordinate or size
has to fit with the class value, for example (i ∈ [N ], k ∈ [m])

−M [1−atop
i,k ] ≤ ytop

i +∆ytop+
i −∆ytop−

i −tk ≤M [1−atop
i,k ].

The constant M has to be chosen sufficiently large. We set M
to be the maximum number of rows and columns of the facades
image. Thus, the condition is no limitation at all in case of
atop
i,k = 0. But if atop

i,k = 1 then the changed top coordinate
has to equal tk. This is a standard trick in linear programming.
Binary variables are used for all other corresponding restric-
tions. For example, we enforce height conditions with (i ∈ [N ],
k ∈ [m′])

−M [1− aheight
i,k ] ≤ ytop

i + ∆ytop+
i −∆ytop−

i

−ybottom
i −∆ybottom+

i + ∆ybottom−
i − hk

≤ M [1− aheight
i,k ].
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So far, the MILP does not check if rectangles overlap. Unfor-
tunately, the neural network might deliver overlapping bound-
ing boxes, and the described optimization procedure also might
generate overlaps. Thus, we add restrictions to resolve these
problems if overlaps are within the tolerance 2ε. Otherwise, we
merge overlapping windows or doors to become a single rect-
angle. For two rectangles r1 6= r2 ∈ [N ] let i 6= j ∈ {r1, r2}
such that ybottom

i ≤ ybottom
j , and let k 6= l ∈ {r1, r2} such

that xleft
k ≤ xleft

l . Then optimized rectangles r1 and r2 might
overlap if ytop

i ≥ ybottom
j − 2ε and xright

k ≥ xleft
l − 2ε. In

such a situation, we add an additional restriction either for the
x- or y-direction to avoid overlapping. If ytop

i − ybottom
j <

xright
k − xleft

l , we add condition

ytop
i + ∆ytop+

i −∆ytop−
i

≤ ybottom
j + ∆ybottom+

j −∆ybottom−
j − ε0,

otherwise, for a small minimum pixel distance ε0 > 0, we use

xright
k + ∆xright+

k −∆xright−
k ≤ xleft

l + ∆xleft +
l −∆xleft−

l − ε0.

Distance ε0 > 0 should exist between windows or doors.

After maximizing object function (2) subject to these restric-
tions, coordinates of each bounding rectangle are updated, for
example ytop

i is replaced by ytop
i + ∆ytop+

i −∆ytop−
i .

4.3 Performance Considerations

In general, MILPs are NP hard. This algorithm’s processor
time mostly depends on the number N of windows and doors
and on the solver to execute the MILP but also on the toler-
ance ε. When using the Callable Library of IBM’s state of the
art commercial optimizer ILOG CPLEX Optimization Studio
12.82 with standard parameters, the longest observed process-
ing time for aligning a facade of our test CityGML dataset was
less than 45 s, see Figure 7. The average number of windows
plus doors is 6.96, the average number of modified windows
and doors is 6.44, and the average processor time of CPLEX is
1.43 s whereas the median is 0.2 s. Due to parallel execution,
running times are much faster.

However, optimization of detected window rectangles of larger
ICG Graz50 facades was much more time-consuming, see up-
per right box plot in Figure 8. It shows processor times for 49
out of 50 facades. There were three outliers: One facade ex-
ceeded a processor time limit of ten hours (excluded from box
plot), one was optimized in 5.6 h and one in 4.2 h processor
time. Nevertheless, the MILP formulation of the aligning prob-
lem is applicable for practical purposes in connection with a
time limit. We reduced processor times by adding additional

windows and doors processor time

0 5 10 15 20

modified rectangles

all rectangles

0 s 23 s 46 s

Figure 7. Box plots with data of 160 optimized facades.

problem dependent constraints. Due to the objective function,
the number of windows that are aligned to the value of t1 is

2see https://www.ibm.com/customer-engagement/commerce

windows and doors processor time

0 9 18 27 36

modified rectangles

all rectangles

0 s 50 s 100 s

with (3)

without (3)

Figure 8. Alignment of windows that were detected on the
50 facade images of the ICG Graz50 collection.

avg. accuracy avg. precision avg. IoU
without MILP 0.94147 0.89194 0.71244
with MILP 0.93958 0.88615 0.70318

Table 3. Detection results of Faster R-CNN without and
with MILP post-processing.

the largest. Then the numbers decrease with t2, t3, and so on.
However, we can also sort values of all class variables in as-
cending order, e.g. by requiring t1 < t2 < t3 < · · · < tm.
Thus, because coordinate changes are limited by ε, we can mu-
tually exclude binary variables from being one. For example,
let indices i and j be chosen such that ytop

i > ytop
j + 2ε. Then

k∑
s=1

atop
i,s + atop

j,k ≤ 1 (3)

holds true. If we add such conditions to the linear program for
all six groups of binary variables (that indicate membership to
top, bottom, left, right, height, and width alignment classes),
then we can indeed shorten optimization times. The lower right
box plot in Figure 8 shows the increase in performance for ICG
Graz50 data. By using the additional constraints (3), the median
processing time could be reduced from 27.59 s to 5.97 s. With-
out (3), one computation exceeded a time limit of ten hours.
With constraints (3), the longest processor time was 1676 s, and
all 50 facades could be processed.

The goal of the MILP is to reduce noise and to adjust facades
according to the rules that often windows are of equal size and
that they are aligned to each other. The aim is not to increase
detection results. However, accuracy, precision and IoU do not
change significantly if the MILP is applied on detected win-
dows and doors, see Table 3. Thus, beautification does not lead
to worse layouts.

5. ADDING WINDOWS AND DOORS TO LOD2
CITYGML MODELS

We apply the neural network to wall textures in LoD2 CityGML
2.0.0 models. Using vertex coordinates of wall polygons in con-
nection with their given texture coordinates, images are cor-
rected in perspective and clipped at walls’ boundaries. Re-
sulting images are scaled to fit with the neural network’s in-
put layer. This leads to transformed texture coordinates. For
alignment, the linear program then is performed on such scaled
data, too. To map results back to wall polygons, we utilize
the transformed texture coordinates. For each rectangle, our
tool cuts a corresponding opening into the counter-clockwise
oriented wall polygon by adding a clockwise oriented interior
polygon (“gml:LinearRing”). Thus, we now use LoD3 instead
of LoD2 CityGML structures. The tool also adds an opening
object of class “Window” or “Door” for each rectangle to the
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corresponding “WallSurface” object, see (Gröger et al., 2012,
p. 91) and Figures 9 and 10. Such opening objects can be used
to model windows and doors in detail. At this point, we just de-
fine a window or door by a simple counter-clockwise oriented
rectangle. However, with nearly no effort, one could replace
the rectangle by a prototype 3D window or door model using
implicit geometries. After adding openings to wall surfaces,
the tool has to update texture coordinates in “Parameterized-
Texture” objects by adding a new “textureCoordinates” object
for each new interior polygon. It is linked to the polygon via
the polygon’s “LinearRing” identifier, see (Gröger et al., 2012,
pp. 38–42).

Figure 9. LoD3 building models with windows, visualized
with Azul CityGML viewer.

Figure 10. LoD3 building models with windows, doors
and textures, visualized with FZKViewer.

6. CONCLUSION AND FUTURE WORK

We have shown that Faster R-CNN can be used to segment win-
dows and doors, even on low resolution facades. The focus
of this paper is on the improvement of LoD2 CityGML mod-
els using object detection, but we did additional tests using a
modified Faster R-CNN which is capable of predicting depth
information for more detailed facade modeling. To this end,
we enhanced the final step in the Faster R-CNN pipeline, the
R-CNN. The original R-CNN has the task to classify region
proposals and to adjust bounding boxes according to predicted
classes. To estimate a depth value, we integrated an FC layer
with 256 units additionally to the two existing FC layers re-
sponsible for class prediction and bounding box regression, see
Figure 11. Similar to class prediction, each depth value has its
probability score. We defined the depth with a range from 0 to
255, with the facade wall placed at 128. Thus, it can be used
for detailed modeling of windows but also of other objects like
balconies. Unfortunately, we could not find annotated openly
available datasets that would serve as ground truth for training
this depth value estimation. To be able to test our concept of
additional depth prediction for facade objects, we made simple
assumptions for depth values. For example, a window is more
likely to be placed behind the wall of the facade. According
to this, we added fixed depth values for our two classes to the
ground truth. Additionally, we tested openly available neural
networks for generating ground truth depth. Since results were
fuzzy and not usable, more research is needed to find better per-
forming neural network architectures.

Figure 11. Enhanced R-CNN architecture

Furthermore, our current procedure does only distinguish bet-
ween doors and windows but does not determine types of win-
dows. Based on a catalog of parameterized standard window
types, one could train the neural network to directly propose a
3D window model that can be used as an opening object. Apart
from that, image content of detected bounding boxes could be
matched with the catalog in a second step. Both approaches
could be an alternative to the depth predicting approach men-
tioned before and would additionally allow dealing with non-
rectangular window frames.
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