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ABSTRACT: 
 
3D point clouds acquired by laser scanning and other techniques are difficult to interpret because of their irregular structure. To make 
sense of this data and to allow for the derivation of useful information, a segmentation of the points in groups, units, or classes fit for 
the specific use case is required. In this paper, we present a non-end-to-end deep learning classifier for 3D point clouds using multiple 
sets of input features and compare it with an implementation of the state-of-the-art deep learning framework PointNet++. We first start 
by extracting features derived from the local normal vector (normal vectors, eigenvalues, and eigenvectors) from the point cloud, and 
study the result of classification for different local search radii. We extract additional features related to spatial point distribution and 
use them together with the normal vector-based features. We find that the classification accuracy improves by up to 33% as we include 
normal vector features with multiple search radii and features related to spatial point distribution. Our method achieves a mean Inter-
section over Union (mIoU) of 94% outperforming PointNet++’s Multi Scale Grouping by up to 12%. The study presents the importance 
of multiple search radii for different point cloud features for classification in an urban 3D point cloud scene acquired by terrestrial laser 
scanning. 
 
 

1. INTRODUCTION 

3D point clouds are sets of point coordinates (x, y, z) in space 
which can be acquired by Light Detection and Ranging (LiDAR), 
or by Dense Image Matching (DIM) using multiple images taken 
from different points of view. Laser scanning uses LiDAR meas-
urements to record vast numbers of points in a geographic scene 
that represent the geometry and textural information of objects 
(Otepka et al., 2013). It can even capture (micro-)topography of 
the surface that might be occluded by vegetation and is a power-
ful remote sensing technique that has been used, for example, in 
generating 3D models of cities (Rebecca et al., 2008), for flood 
and glacier modelling (Telling et al., 2017), sand dune modelling 
(Dong, 2015), and extraction of vegetation parameters (Rosette 
et al., 2009). 
 
For extraction of information from a point cloud containing dif-
ferent objects, typically a classification step is required. By clas-
sification, we refer to the assignment of a semantic label to each 
point in the point cloud. For example, if vegetation should be sep-
arated from other classes, we can use a label (e.g., the numeric 
value 1) for vegetation points while assigning a different label to 
other classes (e.g., 0). The assignment of labels depends on the 
type of information we want to retrieve. In this paper, we assign 
labels to points by the semantic object class they represent. In the 
context of an urban scene, typical classes are Building, Vegeta-
tion, Natural terrain, Man-made terrain, Water, Vehicle, and 
Scanning artefact (Noise). 
 
After classification, the point cloud can serve as data basis for 
analyses that may answer specific questions, such as the separa-
tion of natural and man-made terrain in urban planning tasks. 
With recent advances in technology, Mobile Laser Scanning 

(MLS) has emerged to scan large areas, such as entire cities (Ba-
lado et al., 2018). The 3D model produced from such scanning 
may, for example, serve as an input map to autonomous systems 
for navigation (Whitty et al., 2010; Yue et al., 2018), or automatic 
inspection of power transmission lines (Qin et al., 2018). For 
such autonomous systems, the classification is important to rec-
ognize the type of object represented by the point cloud. Thus, 
automatic classification of point clouds is crucial to achieve a 
higher rate of automation and is therefore a frontier research 
topic. 
 
Several traditional machine learning classification algorithms 
such as Support Vector Machine (SVM), Decision Trees and 
Random Forest are commonly applied to 3D point cloud data. 
However, the capacity of these models to learn is limited and they 
cannot extract additional features from the training data other 
than the ones obtained beforehand and input to the model. Neural 
networks (Rumelhart et al., 1986) have been around for many 
years, but have recently evolved as deep neural networks because 
of increased computational capacities and larger amounts of data 
readily available for training. Such deep neural networks can 
model highly varying and complex functions to learn the map-
ping between the input and the output (Brahma et al., 2016). Deep 
learning methods have recently been shown to be successful in 
various real-world problems such as image classification, object 
detection, image captioning, language translation, and text clas-
sification in computer vision and natural language processing 
(LeCun et al., 2015). 
  
There are two ways of classification using deep learning tech-
niques. One approach learns directly from the raw data, which we 
call end-to-end learning. The other approach is to first extract fea-
tures from the data which are input to the neural network for 
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learning. We call this approach non-end-to-end learning. At-
tempts have been made for the classification of 3D point clouds 
using both approaches, for example, by classifying 3D point 
clouds on a voxel grid as in VoxNet (Maturana and Scherer, 
2015), or in a graph-based approach as in SEGCloud (Tchapmi 
et al., 2017). These methods are non-end-to-end as they do not 
work directly on the primary point cloud data for classifying them 
through neural networks. Recently, end-to-end methods such as 
PointNet (Qi et al., 2017a), and PointNet++ (Qi et al., 2017b) 
have been developed that work directly on the 3D coordinates of 
the point cloud for classification. A drawback of end-to-end 
methods is that larger amounts of data are required for training 
than for non-end-to-end methods, and the features used for clas-
sification by the network are difficult to interpret. Few attempts 
have been made to classify 3D point clouds by first extracting 
geometrical and statistical features from the point cloud before 
classifying the points using a neural network (Zhang et al., 2018). 
However, the study by Zhang et al. (2018) does not give an inter-
pretation of how different combinations of extracted features af-
fect the result of the neural network-based classification. Further-
more, they only used the normal vector and height above ground 
as geometrical and statistical features.  
 
In our research, we investigate the neural network-based classifi-
cation of a terrestrial laser scanning point cloud by extracting 
meaningful point cloud features. We examine (i) how different 
combinations of features affect the result of classification, (ii) 
which sets of features are important for the classification of dif-
ferent class types, and (iii) compare our results to the deep learn-
ing framework PointNet++ (cf. Winiwarter and Mandlburger, 
2019). The advantage of our approach is that it does not require 
a large amount of data to train the neural network as we extract 
useful features from our geographic knowledge of the point cloud 
scene. From the results in this study, however, we cannot inter-
pret effects of distance from the scanner on the results of classi-
fication which can have an impact on the classification results as 
the objects closer to the sensor will have a higher local point den-
sity than those who are far away from the sensor (Kaasalainen et 
al., 2011). 
 
 

2. METHODOLOGY 

2.1 Dataset 

For our research, we use the Semantic3D dataset (Hackel et al., 
2017), consisting of around four billion points acquired by ter-
restrial laser scanning in 30 scenes of diverse urban places, in-
cluding market squares and streets. Of this dataset, we select the 
Bildstein scene and use the first scan (‘bildstein1’) only. For each 
3D point coordinate in the Semantic3D dataset, the laser return 
intensity (I), as well as Red (R), Green (G), and Blue (B) values 
corresponding to the true colors of the scene are provided. The 
data is classified according to the types in Tab. 1.  
 

Class number Class type 
1 Man-made terrain 
2 Natural terrain 
3 High vegetation 
4 Low vegetation 
5 Building 
6 Hard scape 
7 Scanning artefact 
8 Car 

Table 1. Classes in the Semantic3D dataset 

For our study, we perform two experiments. For both, we exclude 
unlabelled points from the dataset. In the first experiment, we 
randomly split the points in the dataset into 72% of points for 
training, 8% for validation, and 20% for testing. In the second 
experiment, we divide the scene spatially into two parts, one of 
which we use as training set and the other one as test set. From 
the training set and test set of experiment 2, we remove all exam-
ples from class 4, class 7, and class 8 which together constitute 
less than 1.5% of the total points in the dataset. The training set 
consists of 37% points of the dataset and the test set of the re-
maining 63%. 
 
2.2 Extraction of Point Cloud Features 

The features we use in this paper are established in the 3D point 
cloud domain and commonly used for 3D point cloud classifica-
tion. The surface normals of points are estimated based on the 
local neighborhood in the point cloud via plane fitting, which is 
solved with an eigenvalue decomposition of the covariance ma-
trix (structure tensor) of the points. The normal vector features 
(NF) include the normal vector, eigenvalues (Weinmann et al., 
2013), eigenvectors and quality of the plane fit derived from re-
sidual point distances to the plane (Dorninger and Nothegger, 
2007). The feature Echo Ratio (ER) (Höfle et al., 2009) is a meas-
ure of the penetrability of the objects represented by the points. 
Intensity (I) is the strength of the laser signal scattered back from 
an object (Höfle and Pfeifer, 2007). 
 

Feature Search Radius [cm] 
 1 5 10 50 100 200 

 
NF Normal vector       

Plane-fit quality       
Eigenvalues       
Eigen vectors 
 

      

ER Echo Ratio 
 

X  X X X X 

NStat Minimum Z X X X  X X 
Normalized 
height 

X X X  X X 

Range X X X  X X 
Variance X X X  X X 
Rank X X X  X X 
Positive Open-
ness 

X X X  X X 

Points / Volume X X X  X X 

Table 2. Features extracted for different search radii 

We derive further features using Neighborhood Statistics (NStat) 
in the local 2D neighborhood of points, namely the range, nor-
malized height, variance, rank, points/volume, and openness. 
Range is the vertical distance from the highest to the lowest 
z value in the 2D neighborhood. Normalized height is the relative 
height of the current point’s z value to the minimum z value in its 
2D neighborhood. Variance describes the variance of all z values 
in the local 2D neighborhood. The rank of a point represents its 
relative vertical position 2D neighborhood and accordingly is 
100% if the point is a local maximum and 0% if the point is a 
local minimum. Points/volume describes the point count per unit 
volume of a cylinder of the neighborhood radius. Openness is de-
fined as the degree of dominance or enclosure of a location on an 
irregular surface (Yokoyama et al., 2002). 
 
We calculate the described features on the point cloud data for 
different search radii as shown in Tab. 2. For the calculation of 
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the point cloud features, we use the point cloud processing soft-
ware OPALS (Pfeifer et al., 2014).  
 
2.3 Preparation of Training Dataset 

We calculate the features in neighborhoods of different search 
radii, which we denote as a subscript to the name of the feature 
set. For example, (NF)1,5 means the normal vector, eigenvalues, 
eigenvectors, and quality of the plane fit are calculated for search 
radii of 1 cm and 5 cm, respectively. Additionally, we use the in-
tensity value for each point. We do not use the RGB values from 
the dataset as our objective is to study the classification only from 
features derived directly from the LiDAR point clouds.  
It is important to note that the number of points per class in the 
training dataset for experiment 1 is highly imbalanced as shown 
in the histogram of point numbers per class in the training set 
(Fig. 1). The balance is improved in the training dataset of exper-
iment 2, achieved by the alternative approach of creating it (sec-
tion 2.1).  
 

 
Figure 1. Histogram showing the number of examples in the 

training set 

We prepare the training set by combining different features. The 
feature sets are listed in Tab. 3 with IDs, to which we subse-
quently refer. For instance, {(NF)1, (ER)5, (I)} represents one fea-
ture set of training data.  
 

ID Features 
A {(NF)1, (ER)5, (I)} 
B {(NF)1,5,10,50,100,200, (ER)5, (I)} 
C {(NF)1,5,10,50,100,200, (ER)5, (NStat)50, (I)} 

PN PointNet++ Multi Scale Grouping 
using search radii of 25, 50, 100 and 
200 cm 

Table 3. Different sets of features used in the experiment 

2.4 Training the Neural Network 

After calculating features for the training datasets, we input them 
to a fully connected neural network. For meaningful comparisons 
of different sets of features, we use a fixed strategy for defining 
the neural network architecture for all sets of features. The fixed 
hyperparameters for experiment 1 and 2 are listed in Tab. 4. 
 
Since we aim to achieve a correct classification for all classes and 
the dataset is highly imbalanced, we chose Intersection over Un-
ion (IoU, Eq. 1), which is a per-class measure, as evaluation met-
ric. The evaluation measure per class i is calculated as 
 
                            𝐼𝑜𝑈 =  



ା ∑ ೕା ∑ ೖ ೖ ಯೕ ಯ
                         (1) 

 
where 𝑎 is the number of samples from the ground-truth class i 
predicted as class i in the confusion matrix, 𝑎 is the number of 

samples from the ground-truth class i predicted as class j in the 
confusion matrix, and 𝑎 is the number of samples from the 
ground-truth class k predicted as class i in the confusion matrix. 
To quantify overall performance, we use the mean IoU (mIoU) 
over all classes without weighting. The same evaluation metric is 
used by the Semantic3D benchmark (Hackel et al., 2017). We 
study sets of different feature combinations and their effect on 
the classification result by training a neural network. The results 
of our study are presented in the subsequent section. 
 

Table 4. Hyperparameters of the Neural Network 
 

 
2.5 PointNet++ 

As a state-of-the art baseline, we employ PointNet++. Since it 
automatically extracts features from the neighborhood, we as-
sume comparison to accurately depict the quality of our feature 
choices. However, PointNet++ does not calculate the full neigh-
borhood representation for every point, but employs two different 
grouping techniques: Multi-Resolution Grouping (MRG) and 
Multi-Scale Grouping (MSG). Because of the smaller memory 
footprint, we used MSG (Qi et al., 2017b). 
 
In MSG, the whole point cloud is only used for feature extraction 
on the smallest search radius (e.g. 25 cm). This information is 
gathered at a subset of the total points. For the next radius (e.g. 
50 cm), only this subset is used for the extraction. The subset 
sizes and search radii used in our study are presented in Tab. 5. 
This inevitably leads to a loss in information, but allows the net-
work to consider larger neighborhoods at all, which would not be 
possible without subsampling due to high memory requirements 
(Winiwarter and Mandlburger, 2019).  
 

Table 5. Number of points per PointNet++-Level, search radii 
and neighbor count. 

 
The parameters were selected to best represent the search radii 
used in feature set C, but may be tuned to achieve better results. 
 
 

2,520,358

1,692,719

931,952 894,213

549,558

47,334 35,802 10,019

1,194,545

333,826

913,666

338,335

585,566

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

Natural terrain High
vegetation

Man-made
terrain

Building Hard scape Car Low
vegetation

Scanning
artefact

Number of examples per class in the training set
Experiment 1

Experiment 2

Hyperparameter Experiment 1 Experiment 2 
Regularization λ = 0 L2 (λ = 0.5) 
Hidden layers 5 3 
Nodes in hidden 
layers  

60 60 

Mini-batch size 128 128 
Epochs 10 10 
Optimizer Adam Adam 
Feature Scaling Standard Scaling Standard Scaling 
Learning Rate  0.001 0.001 
Batch Normaliza-
tion  

True True 

Dropout False False 
Classifier Softmax  Softmax 
Loss Function Multinomial 

Cross-entropy 
Multinomial 
Cross-entropy 

Level Number 
of points 

Search radius 
[m] 

Max. 
neighbors 

0 200,000   
1 8,192 0.25 16 
2 4,096 0.5 16 
3 2,048 1 16 
4 512 2 16 
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3.  RESULTS 

3.1 Experiment 1 

We use the hyperparameters shown in Tab. 4 for training the neu-
ral network. In Tab. 6, we present results corresponding to differ-
ent combinations of features for experiment 1. The results shown 
here are for the test dataset, and the IoU as well as mean of IoUs 
(mIoU) scores have been rounded to two digits for readability. 
 

ID IoU for each class mIoU 
 1 2 3 4 5 6 7 8  

A 0.91 0.84 0.76 0.21 0.84 0.70 0.52 0.71 0.69 
B 0.97 0.99 0.99 0.76 0.98 0.95 0.78 0.95 0.92 
C 0.98 0.99 0.99 0.75 0.99 0.96 0.87 0.97 0.94 

PN 0.94 0.97 0.99 0.61 0.96 0.88 0.48 0.89 0.84 

Table 6. Classification results of the test dataset for different 
combinations of features 

From the classification results, we observe that as we increase the 
number of features, the IoU increases for each class. It is evident 
that when we use feature set A for training the neural network, 
class 4 (Low vegetation) and class 7 (Scanning artefact) are being 
classified with low IoUs of 0.21 and 0.52, which results in a low 
mIoU of 0.69. When including normal vector features derived 
from multiple search radii as in feature set B, the IoU increases 
for all classes. The increase is highest in the case of class 4 (Low 
vegetation) and class 7 (Scanning artefact).  
 
To also consider the height of points in their local neighborhood, 
we include normalized height, as well as other features derived 
from point cloud statistics as in the case of feature set C. Alt-
hough this does not affect the IoU of class 4 (Low vegetation), 
the IoU of class 7 (Scanning artefact) increases from 0.78 to 0.87. 
This increase is because without additional information from the 
neighborhood statistics, many points of class 7 (Scanning arte-
fact) were misclassified as class 5 (Building) and class 6 (Hard 
scape) in case of feature set B.  
 

 
Figure 2. Ground truth labels of the test dataset 

Classification using the PointNet++ Multi Scale Grouping frame-
work results in a mIoU of 0.84 compared to 0.94 for feature set C. 
PN achieves a higher mIoU than feature set A where only a single 
search radius is taken into account. The performance of PN is 
good with all classes except class 4 and class 7 where the number 
of training examples per class is less compared to other classes. 
 
The ground truth test dataset is visualized in Fig. 2. The classifi-
cation results for feature set C and feature set A are shown in Fig. 
3.  
 
 

 
(a) {(NF)1,5,10,50,100,200, (ER)5, (NStat)50, (I)} 

 

 
(b) {(NF)1, (ER)5, (I)} 

Figure 3. Classification by network with arrows showing the lo-
cations of misclassification for (a) feature set C and (b) feature 

set A 

When comparing the classification results in Fig. 3a and Fig. 3b 
to the ground truth data in Fig. 2, it becomes visible that misclas-
sification occurs at boundaries of the classes such as the corners 
of the building. This is shown by the arrows numbered (1) in Fig. 
3b. When there is overlap between similar classes, such as class 6 
(Hard scape) and class 1 (Man-made terrain), classification is 
dominated by the class which has more training samples. Arrows 
marked with (2) in Fig. 3 point to an example, where class 6 
(Hard scape) points are classified as class 1 (Man-made terrain) 
near boundaries between the classes. The low IoU of class 4 
(Low vegetation) by feature set A is due to misclassification of 
class 4 into class 3 (High vegetation) as shown by arrows num-
bered (3a). The arrow labeled (3b) shows misclassifications of 
class 8 (Car) into class 5 (Building). These misclassifications are 
reduced when we consider multiple search radii as in Fig. 3a. 
Fig. 3a also shows that the misclassification is reduced at the cor-
ners and boundaries as shown by arrows numbered (1) and (2). 
Also, the class 4 (Low vegetation) and class 8 (Car) is now cor-
rectly classified as shown by the arrows (3a) and (3b), respec-
tively. Confusion matrices normalized by reference with the clas-
sification results by feature set A, feature set C, and PN are 
shown in Tab. 7, Tab. 8, and Tab. 9, respectively. 
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Predicted 
True 

1 2 3 4 5 6 7 8 

1 96.39 2.37 0.22 0.07 0.19 0.76 0.01 0.01 
2 0.71 91.78 6.59 0.13 0.42 0.34 0.01 0.02 
3 0.09 10.21 87.40 0.33 1.24 0.62 0.02 0.08 
4 3.44 15.91 37.92 29.50 4.21 7.83 0.02 1.17 
5 0.40 1.09 3.01 0.10 90.59 4.67 0.02 0.12 
6 5.34 2.31 5.51 0.61 5.09 80.50 0.08 0.55 
7 0.68 0.68 11.44 0.07 10.58 16.80 59.42 0.32 
8 0.47 0.95 4.38 0.91 3.66 8.48 0.04 81.10 

Table 7. Confusion matrix normalized by reference (in %) 
showing the classification result by feature set A 

{(NF)1, (ER)5, (I)} 

Predicted 
True 

1 2 3 4 5 6 7 8 

1 98.65 0.80 0.01 0.12 0.03 0.38 0.01 0.00 
2 0.20 99.60 0.01 0.02 0.05 0.11 0.00 0.00 
3 0.00 0.03 99.72 0.03 0.19 0.02 0.01 0.00 
4 3.65 1.00 0.37 91.03 0.35 3.33 0.06 0.20 
5 0.07 0.18 0.32 0.03 99.30 0.06 0.02 0.01 
6 0.42 0.94 0.04 0.87 0.15 97.46 0.05 0.07 
7 0.94 0.50 1.47 0.47 1.65 1.83 92.52 0.61 
8 0.23 0.05 0.02 0.22 0.14 0.25 0.10 98.99 

Table 8. Confusion matrix normalized by reference (in %) 
showing the classification result by feature set C 

{(NF)1,5,10,50,100,200, (ER)5, (NStat)50, (I)} 

Predicted 
True 

1 2 3 4 5 6 7 8 

1 96.88 0.72 0.04 0.74 0.26 1.02 0.16 0.18 
2 0.94 97.77 0.05 0.05 0.39 0.79 0.01 0.01 
3 0.02 0.22 99.01 0.14 0.42 0.09 0.02 0.08 
4 1.15 0.42 1.47 91.39 1.55 3.42 0.17 0.42 

5 0.04 0.32 0.51 0.23 97.98 0.83 0.03 0.05 

6 0.97 1.68 0.25 0.94 0.48 94.57 0.91 0.20 

7 7.09 0.91 0.73 0.36 0.73 3.45 85.82 0.91 

8 0.32 0.02 0.06 0.21 0.08 0.49 0.15 98.67 

Table 9. Confusion matrix normalized by reference (in %) 
showing the classification result of PN 

3.2 Experiment 2 

For experiment 2, we use L2 regularization in all layers and also 
reduced the number of hidden layers to three as compared to ex-
periment 1. The architecture of PN was unchanged. In Tab. 10, 
we present the results for feature ID A, C and PN. The classifica-
tion results for feature set C and feature set A are shown in Fig. 
4.  
 
From Tab. 10, we can see that IoUs for class 1 and class 3 have 
strongly improved with feature set C resulting in an overall in-
crease in the mIoU by 31% compared to feature set A. Comparing 
PN and C to A shows that the improvement in class 3 is similar, 
but PN does not improve as much as C in class 1, in fact perform-
ing worse than feature set A. Most misclassification occurs in 
class 5 (Building) and class 6 (Hard scape) with all the three fea-
ture sets.  They are emphasized by arrows marked with (3) in Fig. 
4.  The normalized confusion matrix in Tab. 11 shows 33.93% 
misclassification of class 5 into class 6, and 26.29% misclassifi-
cation of class 6 into class 5 using feature set C.  
 
 

 
(a) {(NF)1,5,10,50,100,200, (ER)5, (NStat)50, (I)} 

 

 
(b) {(NF)1, (ER)5, (I)} 

Figure 4. Classification by network with arrows showing the lo-
cations of misclassification for (a) feature set C and (b) feature 

set A 
 
The arrow marked with (2) in Fig. 4b shows the misclassification 
of class 3 (High vegetation), for which almost all points are pre-
dicted as class 5 (Building). This misclassification is largely re-
duced with feature set C as shown by arrows marked with (2) in 
Fig. 4a. Similar to experiment 1, the misclassification at locations 
of geometry change is reduced when we consider NF with multi-
ple search radii and NStat as shown by arrows marked with (1) 
in Fig. 4a and Fig. 4b. An occurrence of misclassification of class 
2 (Natural terrain) into class 6 (Hard scape) is shown by arrows 
marked with (4) in Fig. 4. From the normalized confusion matrix, 
it can be seen that 4.10% of the points from class 2 got predicted 
as class 6. 
 

Table 10. Classification results of the test dataset for different 
combinations of features 

 
 
 
 

ID IoU for each class mIoU 
 1 2 3 5 6  

A 0.58 0.74 0.56 0.38 0.12 0.48 

C 0.87 0.84 0.83 0.42 0.19 0.63 

PN 0.52 0.81 0.84 0.50 0.20 0.57 
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Predicted 
True 

1 2 3 5 6 

1 96.13 1.83 0.04 0.96 1.04 
2 1.05 89.14 3.80 1.91 4.10 
3 0.02 3.08 89.04 7.06 0.80 
5 0.81 6.02 6.84 52.40 33.93 
6 3.60 4.70 1.87 26.29 63.54 

Table 11. Confusion matrix normalized by reference (in %) 
showing the classification result for feature set C 

{(NF)1,5,10,50,100,200, (ER)5, (NStat)50, (I)} 

 
4. DISCUSSION 

4.1 Experiment 1 

Results of the classification point out that when we consider fea-
ture set A as input to the neural network, it results in a low IoU 
especially in the classes 4 (Low vegetation) and 7 (Scanning ar-
tefact). This is due to the features being only calculated based on 
a single search radius. Thus, they cannot take into account how 
the same feature will vary depending on the size of the object as 
we adapt the search radius. The difference in the IoU of class 3 
(High vegetation) and class 4 (Low vegetation) can be attributed 
to the fact that these classes have similar properties and are only 
distinguished based on a threshold criterion of height. As the 
number of examples in class 4 is higher than in class 3 (cf. Fig. 1), 
this resulted in a low IoU for class 4 as most of the points of class 
4 got classified as class 3, as shown by the normalized confusion 
matrix in Tab. 7. Class 7, representing artefacts/noise, is difficult 
to classify using only one search radius for feature calculation. 
By calculating NF on multiple search radii, we are able to 
strongly increase the classification accuracy. This results in an 
average increase of 33% with respect to the IoU for each class, 
with an increase in IoU for class 4 (Low vegetation) of 261%, 
and for class 7 (Scanning artefact) of 34%. This increase can be 
attributed to the fact that normal vector-based features for differ-
ent search radii extract information from the point cloud on dif-
ferent scales, representing objects of different sizes. The pattern 
of variation, however, is similar for the same type of object. For 
example, in the case of class 6 (Hard scape), change is expected 
to be small in the normal vector features when increasing the 
search radius from 1 cm to 200 cm. However, in the case of 
class 8 (Car), the NF will change as the search radius increases, 
since a search radius of 200 cm, for example, might include 
points from around the object itself. Since there will be a distinct 
pattern for NF derived for multiple search radii of each object, it 
can be recognized and learned by the Neural Network, effectively 
improving the classification result. This has been observed in the 
case of feature set B. The classification result further improves 
when we additionally consider NStat features as in the case of 
feature set C. This particularly improves the classification of 
class 7 (Scanning artefact). Class 7 includes artefacts caused by 
moving objects. NStat can take such cases into account. For ex-
ample, if we have an artefact because of a moving car then the 
local point cloud density in the neighborhood of the artefact will 
be lower compared to other objects. Such concepts can be learned 
by the neural network when including NStat features in the clas-
sification task. NStat further helps the classification of class 4 
(Low vegetation) and class 3 (High vegetation). However, when 
including NStat features, points from class 6 (Hard scape) are 
classified into class 4 (Low vegetation). This constituted 13.38% 
of the points classified as class 4 as shown in Tab. 8, resulting in 
a decrease of 1.31% IoU for class 4. 
 

4.2 Experiment 2 

The results of classification for experiment 2 are consistent with 
those of experiment 1. The mIoU for experiment 2 compared to 
experiment 1 is lower due to the fact the we used only 37% of the 
points in the training set compared to 72 % in experiment 1 and, 
more importantly, the points in training and test set are not cor-
related in experiment 2.  Strong misclassification occurs in class 
5 (Building) and class 6 (Hard scape) with all feature sets, which 
is expected as they have similar geometric properties. The num-
ber of examples for class 5 in the training set is lower than for 
class 6 (Fig. 1). The training samples for class 5 seem to be in-
sufficient to learn different examples of the test set, which results 
in misclassifications. Misclassifications in class 3 (High vegeta-
tion) and also at locations of geometry change are reduced with 
feature set C as also seen in experiment 1. Features with multiple 
search radii as in feature set C and PN have improved learning in 
the neural network and generalization on the test set. 
 
4.3 Comparison of Experiments with PointNet++ 

Comparison of our result with PointNet++ shows that our model 
with feature set C outperforms PN by 12% and 11% in mIoU for 
experiment 1 and 2, respectively. 
 
In experiment 1, PN especially suffers from misclassifications in 
class 4 (Low vegetation), of which more than 3% (cf. Tab. 9) are 
classified as Hard scape. Class 7 points (Scanning artefact) are 
also misclassified as class 1 (Man-made terrain) in more than 7% 
of the test cases, leading to a lower mIoU. Since artefacts do not 
have a clear geometric signature and make up only 0.7% of the 
dataset, they cannot be effectively learned by the end-to-end ap-
proach of PointNet++, which would need more training data 
(Winiwarter and Mandlburger, 2019). 
 
In experiment 2, we find that classification result with PN is com-
parable to feature set C in all classes except for class 1 (Man-
made terrain). Using feature set C, the IoU in class 1 improves by 
67% when compared to PN. PN, however, surpasses the mIoU of 
feature set A by 19%. 
 
When comparing our model with feature set A to PN or our 
model with feature set C, we can see the clear improvement of 
classification metrics, showing the significance of features de-
rived from multiple neighborhood definitions, i.e. search radii. 
This is especially the case for class 4 (Low vegetation), which is 
expected to exhibit very different feature values on different 
search radii due to the penetrability and volume of the objects. 
 
 

5. CONCLUSION 

In this paper, we present a method for the classification of 3D 
point clouds using deep learning techniques by manually extract-
ing features from the point cloud and then feeding them through 
a Fully Connected Neural Network. We show that multiple 
search radii for normal vector features improve the result of clas-
sification compared to considering only a single search radius. 
The result further improves when we include features derived 
from neighborhood statistics of the point cloud. We can see that 
even though our training dataset is highly imbalanced in experi-
ment 1, we achieve comparable classification accuracies for all 
classes. With only 37% of the data as training set in experiment 2, 
we find that our model generalizes well on the test set. The state-
of-the-art deep learning framework PointNet++ in experiment 1 
performs equally well as our model except for classes 4 and 7, 
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two classes with exceptionally low frequency in the dataset. Sim-
ilar results are observed in experiment 2 except for classification 
of class 1 where PointNet++ performs even worse than that with 
feature set A. For the overall classification of point clouds, we 
can conclude that features extracted with multiple search radii ei-
ther manually or using the end-to-end deep learning framework 
PointNet++, greatly improves the classification result. An inter-
esting continuation of this work would be to investigate the fur-
ther generalization of the model for similar objects. For example, 
it could be examined if the model can also learn to classify other 
vehicles such as a mini bus or truck as car, which were not part 
of the training set. 
 
For the neural network architecture in experiment 1 and 2, we can 
use Automated Machine Learning (AutoML) techniques such as 
Adanet (Cortes et al., 2017) for the best neural network architec-
ture search as part of further research. 
 
Further, the ground truth data we use is labelled by humans and 
always contains some human error associated with the labelling 
process. An approach to overcome this could be to use synthetic 
data generated by LiDAR simulation, for example using HELIOS 
(Bechtold and Höfle, 2016). Such data will have no error for 
ground truth examples, and it is further possible to augment train-
ing examples by scanning a scene from different viewpoints. Us-
ing simulated data, the training examples can be easily balanced 
over the classes, improving the classification result of the rare 
classes. Furthermore, using different search radii not only for the 
normal vector-based features, but also for the neighborhood sta-
tistics may give better results.  
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