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ABSTRACT: 

 

Ground objects can be regarded as a combination of structures of different geometries. Generally, the structural geometries can be 

grouped into linear, planar and scatter shapes. A good segmentation of objects into different structures can help to interpret the 

scanned scenes and provide essential clues for subsequent semantic interpretation. This is particularly true for the terrestrial static 

and mobile laser scanning data, where the geometric structures of objects are presented in detail due to the close scanning distances. 

In consideration of the large data volume and the large variation in point density of such point clouds, this paper presents a structural 

segmentation method of point clouds to efficiently decompose the ground objects into different structural components based on 

supervoxels of multiple sizes. First, supervoxels are generated with sizes adaptive to the point density with minimum occupied points 

and minimum size constraints. Then, the multi-size supervoxels are clustered into different components based on a structural 

labelling result obtained via Markov random field. Two datasets including terrestrial and mobile laser scanning point clouds were 

used to evaluate the performance of the proposed method. The results indicate that the proposed method can effectively and 

efficiently classify the point clouds into structurally meaningful segments with overall accuracies higher than 96%, even with largely 

varying point density. 
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1. INTRODUCTION 

Mobile laser scanning (MLS) and static terrestrial laser 

scanning (TLS) point clouds can intuitively present the three-

dimensional (3D) geometric characteristics of ground objects 

with abundant details. In general, these detailed structures of 

objects can be grouped into linear, planar and scatter shapes 

that can be described by the eigenvalues derived from the 

covariance matrix of local neighbourhoods (Hackel et al., 2016; 

Landrieu et al., 2017; Liu and Boehm, 2015; Weinmann et al., 

2014, 2017; Yang et al., 2015). Accurate computation of the 

shape descriptors is essential for both the structural 

segmentation and semantic classification of terrestrial obtained 

point clouds (Qiao et al., 2010). However, as the point densities 

of such point clouds always vary dramatically with the scanning 

distance changing, a local neighbourhood with optimal size 

should be necessary for accurate measurement of shape 

characteristics. For instance, in the work of Weinmann et al. 

(2017), the three shape descriptors corresponding to linearity, 

planarity and scattering were computed point-wisely from the 

local optimal neighbourhoods defined by a minimum entropy 

function (Demantke et al., 2011). Similarly, in addition to the 

three shape descriptors, Landrieu and Simonovsky (2018) also 

computed the verticality descriptor of points from the local 

optimal neighbourhoods and then partitioned the points into 

superpoints based on the four local descriptors through global 

energy optimization via 0-cut (Landrieu and Obozinski, 2017). 

However, due to the great data volume of the point clouds, the 

point-wise feature computing and labelling processes are time 

consuming and require vast amounts of memory space for 

establishing the fundamental graphical model.  

 

To efficiently compute the shape descriptors and decompose the 

objects into different structural components, supervoxels (Lin et 

al., 2018; Papon et al., 2013) can be introduced as the 

primitives for structural segmentation. In fact, supervoxels have 

recently been widely used for the interpretation of large-scale 

scenes (Dong et al., 2018; Kang and Yang, 2018; Luo et al., 

2018; Zhu et al., 2017) for three reasons. Firstly, the local 

homogeneity can be well preserved within the supervoxels, 

secondly, supervoxels provide explicit adjacent relationships 

rather than vague neighbouring relationships among unordered 

points, and thirdly, exploiting supervoxels instead of individual 

points can significantly reduce the computation load and time. 

However, many state-of-the-art supervoxel segmentation 

methods generate supervoxels with fixed resolutions, such as 

the widely adopted voxel cloud connectivity segmentation 

(VCCS) (Papon et al., 2013) and this will lead the supervoxels 

located in areas with sparse densities to contain insufficient 

points for accurate feature computation. In order to generate 

supervoxels with adaptive resolutions, Lin et al. (2018) 

proposed a toward better boundary preserved (TBBP) method 

that formalized the supervoxel segmentation as a subset 

selection problem. Instead of supervoxel resolution, this method 

used the number of supervoxels as a direct constraint to select 

representative points, so that the final supervoxels would be free 

of size constraint and well preserve the object boundaries. 

However, the adaptability to the boundaries of this method also 

causes a problem that the supervoxels are quite sensitive to 

linear features and week at presenting the scatter properties of 

objects. 

 

To generate supervoxels that are adaptive to varying point 

density and, simultaneously, have better presentations of the 
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local geometric properties of different shapes, this paper 

proposed a coarse-to-fine supervoxel segmentation method 

based on an octree structure, which is built under constraints 

about the minimum number of points occupied by a supervoxel 

and the minimum resolution of supervoxels. Then three shape 

descriptors corresponding to the linear, planar and scatter 

properties of each supervoxel are computed and used to 

establish an energy function. Instead of an unsupervised 

labelling process as in Landrieu and Simonovsky (2018), we 

adopt a supervised labelling strategy by using Markov random 

field (MRF) (Li, 2009) and graph-cut algorithm (Boykov et al., 

2001), so that each supervoxel will be assigned with a 

geometrically meaningful label. Adjacent supervoxels with the 

same labels are finally clustered into the same structural 

components through region growing. Two experiments with 

different datasets were carried out to evaluate the performance 

of the proposed method and discussions and conclusions were 

drawn at last based on the experimental results. 

 

2. STRUCTURAL SEGMENTATION OF POINT 

CLOUDS USING MULTI-SIZE SUPERVOXELS 

2.1 Overview of the Approach 

As shown in Figure 1, the proposed method includes two steps. 

In the first step, the input MLS point cloud is partitioned into 

multi-size supervoxels through a coarse-to-fine seed selection 

process and a supervoxel expansion process, followed by 

recovering the adjacent relationships between supervoxels. In 

the second step, three shape descriptors corresponding to 

linearity, planarity and scattering, are firstly computed and used 

to build an MRF model. The global energy of the MRF is 

optimized to obtain a spatially smooth structural labelling 

configuration for all the supervoxels. Finally, a region growing 

algorithm is developed to merge the adjacent supervoxels with 

the same structural labels into a larger segment, called structural 

components. The ground objects are finally presented by 

connected structural components with different geometric 

characteristics.  

  

 

Figure 1. Overview of the proposed method. 

 

2.2 Generation of Multi-size Supervoxels 

The multi-size supervoxel segmentation is an extension of the 

VCCS (Papon et al., 2013). But unlike VCCS, which selects 

supervoxel seeds with a unified resolution, we selected seeds 

from multi-scale resolutions with a coarse-to-fine strategy. After 

the selection of seeds with multi-scale resolutions, we expand 

the supervoxels using a similar distance metric as VCCS. 

However, instead of expanding the supervoxels based on an 

adjacency octree used by VCCS, we expand the supervoxels 

based on the k-NN search to guarantee that the adjacent 

relationships will not be interrupted by varying point densities. 

During the expansion, the adjacencies between supervoxels are 

also determined by the neighbouring relationships between 

occupied points. 

 

2.2.1 Coarse-to-fine Seed Selection: Given a point set = 

{p1, p2, …, pn}, we would like to generate a set of supervoxels 

 = {V1, V2, …, Vm}, where each Vi = {p|p} (Vi) should 

contain sufficient points for local feature computation. 

Simultaneously, the resolution of Vi should not be too small so 

that it can effectively capture the local geometries at an 

appropriate scale. In other words, there are two constraints for 

the supervoxel sizes. First, Ki ≥ Kmin, Ki is the number of points 

contained in Vi, and Ri ≥ Rmin, Ri is the euclidean size (the 

maximum size of the bounding box) of Vi (Kmin and Rmin are 

user-defined thresholds, for example Kmin = 20, Rmin = 0.3 m). 

With these two constraints, we propose the following coarse-to-

fine seed selection method. 

 

First, based on the constraint Kmin, the maximum seed resolution 

Rmax can be defined as Rmax = max{max{d(p, p)}|p}, where 

p is the Kmin nearest neighbors of p. Then, with Rmax a coarse 

octree is built and the coarse seeds Seed0 are selected as the 

points in that are closest to the centroids of the leaf nodes in 

the coarse octree, as shown in Figure 2.  

 

 

Figure 2. Coarse-to-fine seed selection based on an octree 

structure. 

 

We then traverse all the coarse seeds in Seed0. If the number of 

occupied points Ki corresponding to a coarse seed i is larger 
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than 4Kmin, this coarse seed will be further split into deeper 

octree structures with a corresponding resolution of Rmax/2n (n is 

the difference between the current octree depth and the depth of 

the coarse octree). The new seeds are then selected as the points 

in closest to the centroids of the new leaf nodes. The 

traversing will be repeated until all the leaf nodes in the octree 

contain points less than 4Kmin or the supervoxel resolution 

difference | Rmax/2n - Rmin | stops getting reduced.  

 

2.2.2 Supervoxel Expansion and Adjacency Recovery: 

After the coarse-to-fine seed selection, a set of seeds Seed = {s1, 

s2,…, sm} with corresponding multiple resolutions  = {r1, 

r2,…, rm}is obtained. At the same time, each seed points si 

corresponds to a set of points {p}   occupied by the 

corresponding octree leaf node.  

 

The supervoxels are then iteratively expanded using a similar 

strategy as in VCCS (Papon et al., 2013). In each iteration, the 

K nearest neighbors of point pnew, which is newly assigned to a 

supervoxel in last iteration, will be assigned to their nearest 

supervoxels based on a distance metric, until there are no points 

left. The distance metric D(p,V) is a combination of the 

distances in coordinate, colour (if exists) and normal 

(previously estimated through principle component analysis) 

spaces. But as the distances between supervoxel seeds selected 

by our method vary with point density, we define the coordinate 

distance measurement as 

 

 ( )
( ),

,
Eu i j

i j

j

d p c
d p V

r
=    (1) 

where rj is the corresponding seed resolution of Vj, cj is the 

centroid coordinates of Vj, and dEu is the euclidean distance 

between pi and cj. 

 

 

Figure 3. Recovery of adjacency between supervoxels and 

points. The red and green points refer to two different 

supervoxels. (a) shows two points are not adjacent because pi is 

not the Kmin nearest neighbours of pj and (b) shows two adjacent 

points that are mutually in each other's Kmin nearest 

neighbourhoods. 

 

In each iteration, the K-NN search is adopted during the 

expansion of the supervoxels. For two points pi  Vm and pj  

Vn, if pi and pj are adjacent points, expansion operation 

(reassigning pj to Vm) will be performed between Vm and Vn if 

D(pi, Vm) > D(pi, Vn). pi and pj are only regarded as adjacent 

when they are mutually in each other's Kmin nearest neighbors 

and their corresponding supervoxels are also regarded as 

adjacent as illustrated in Figure 3. If two points are adjacent but 

assigned to different supervoxels, the corresponding 

supervoxels will also be considered as adjacent. 

 

2.3 Generation of Structural Components 

2.3.1 Shape Descriptors Computation: The local geometric 

characteristics of object structures can be roughly grouped as 

linearity, planarity and scattering and they can be measured 

using the eigenvalues derived from the covariance matrix by 

principle component analysis (Jolliffe, 2011). Different 

measurement methods of the shape descriptors based on 

eigenvalues are found in the work of Weinmann et al. (2014), 

Hackel et al. (2016) and Yang et al. (2015), but it is found that 

the method of Yang et al. (2015) has better ability of presenting 

scatter points. Therefore, in this work, the three shape 

descriptors fl, fp and fs corresponding to the three structural 

categories are computed as defined in the work of Yang et al. 

(2015) that have the following format. 
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where 1 > 2 > 3 are eigenvalues from the covariance matrix 

of the supervoxel. 

 

2.3.2 Structrual Labelling via MRF: The structural 

partition of the supervoxels can be regarded as a labelling 

problem, during which each supervoxel will be assign a 

structural label y  {linearity, planarity, scattering}. To make 

the structural labelling spatially smooth, a graphical model is 

established to encode the adjacent relationships between 

supervoxels into the graph edges. Let x be the set of nodes that 

corresponds to the supervoxels, and let e be the set of edges that 

corresponds to the adjacencies between supervoxels. An energy 

function based on the graphical model is given as 

 

 ( ) ( ) ( )
( ),

min ,i i j

i i j

E 
 

=  +  y y y y y
x e

   (3) 

 

where y is a labelling configuration whose value space is  = 

{linearity, planarity, scattering}, ix corresponds to a 

supervoxel, (i, j)e corresponds to the adjacency between 

supervoxels and  is a constant parameter used to adjust the 

effectiveness of pairwise interactions.  

 

The unary potentials presenting the fidelity to the geometric 

measurements are given as 
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And the pairwise terms defined based on the Potts model (Li, 

2009) are given as 

 

 ( ),i j i j
  =  y y 1 y y    (5) 

 

where 1[] is a binary function that equals 0 if yi = yj, otherwise, 

1. 

 

The minimum global energy minyE(y) is approximated using 

Graph Cut with α-expansion operations (Boykov et al., 2001) to 

obtain spatially smooth structural labelling y. 

 

2.3.3 Clustering of Supervoxels with Structral Labels: 

After structural labelling, we then merge the supervoxels 

assigned with the same structural labels into a large segment, 

called structural components, by region growing (Vosselman et 

al., 2004). As each structural component is composed by 

supervoxels with the same labels, the local geometric 

characteristics on the component surface will be also consistent.  

 

3. EXPERIMENTAL RESULTS 

3.1 Test Data Description 

Two point cloud datasets were used to evaluate the performance 

of the proposed method. The first one is a benchmark dataset 

Semantic3D (Hackel et al., 2017) (http://www.semantic3d.net/). 

The Semantic3D point cloud dataset is acquired by a static TLS 

system and has very high but relatively consistent point density. 

The second one is an MLS dataset acquired by an UltraCam 

Mustang mobile mapping system, which was equipped with a 

multi-beam rotating light detection and ranging system and a 

high-resolution camera. The MLS dataset presents a quite 

complex scene with various objects and features with a strongly 

varying point density. 

 

3.2 Structural Segmentation Results 

The structural segmentation results of the two datasets with the 

proposed method are shown in this section and the results are 

also compared to the results based on supervoxel generated by 

other methods, including the VCCS (Papon et al., 2013) and 

TBBP (Lin et al., 2018). For both of these two datasets, the 

minimum point size Kmin is set as 20 and the minimum seed 

resolution Rmin is set as 0.3 m, which is the same with the fixed 

resolution in VCCS and the expected resolution in TBBP. With 

respect to the labelling process, the smooth parameter  is set as 

0.3 in all experiments. Below shows the segmentation results 

and the comparisons between different methods with the TLS 

and MLS datasets, respectively. 

 

3.2.1 Results of TLS dataset (Semantic3D): Figure 4 shows 

the comparison between segmentation results based on 

supervoxels generated by different methods. Generally, for this 

dataset, the supervoxels generated by our method are quite 

similar to those generated by VCCS with fixed resolution. This 

is because the TLS point cloud has a very high point density 

and this would lead to the iterative coarse-to-fine seed selection, 

most of the time, stops due to the octree depth constraint, which 

means the most of the final supervoxel seeds have the similar 

resolutions approximate to Rmin. As this dataset has a quite high 

point density, for most of the supervoxels generated by VCCS, 

the numbers of contained points would be similar with those 

contained in the supervoxels generated by our method, which 

will lead to the similarity between the final structural 

segmentation results.  

 

It is also found that, compared to our method and the VCCS, 

the supervoxels generated from TBBP are more sensitive to 

linear features. The TBBP method does not constrain the sizes 

of supervoxels so that it can well preserve the boundaries, 

however, scatter structures are likely to be presented by a set of 

narrow supervoxels by this method as the trees shown in the 

black circle in Figure 4(d). Therefore, while both of the 

proposed method and the TBBP can generate supervoxels with 

adaptive resolutions, the proposed method has better ability of 

presenting structural with different shapes, especially scatter 

shapes. 

 

The structural labelling results based on supervoxels generated 

by different methods were also point-wisely compared with the 

manually labeled ground-truth (as shown in Figure 4(b)). Table 

1 shows the structural labelling accuracy (accuracy = number of 

correctly labeled points / number of points in ground-truth) 

corresponding to different shape categories as well as the 

overall accuracy. The approximate accuracies of VCCS and our 

method are consistent with the above analysis that our method 

and the VCCS generated similar supervoxels. But generally, our 

method has better performance than VCCS. The high linearity 

and low scattering accuracies of the TBBP method indicates 

that supervoxels generated by TBBP could be sensitive to linear 

features and week for scatter shapes. 

 

 VCCS TBBP Ours 

Linearity 20.9 58.7 22.8 

Planarity 97.9 94.4 98.4 

Scattering 80.6 8.0 85.4 

Overall accuracy 94.9 87.8 96.7 

Table 1. Labelling accuracy (%) of the TLS test data based on 

supervoxels generated by different methods. 
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Figure 4. Comparison of structural segmentation results of the TLS dataset. (a) is the input TLS point cloud, (b) is the manually 

labeled ground-truth with red, green and blue referring to linearity, planarity and scattering, respectively. (c) – (e) show the 

segmentation results derived supervoxels generated by VCCS, TBBP and our method. In (c) – (e), from top to bottom are the random 

colour-coded supervoxels, visualized shape descriptors derived from supervoxels and the structural components colour-coded based 

on their labels. 

 

 

3.2.2 Results of MLS dataset: Figure 5 shows the 

segmentation results of the MLS dataset based on supervoxels 

generated by different methods. Compared to the TLS dataset, 

the point density of the MLS data is much lower but varies 

much more strongly. Due to the great variation of MLS point 

density, supervoxels with quite different sizes were generated 

by our method and the TBBP method. Unlike the VCCS 

supervoxels with fixed resolution, the adaptive resolutions 

guarantee the supervoxels located in areas with sparse density 

(such as the building façade edge far away from the scanner, as 

shown in the black circles in Figure 5) are valid for feature 

computation.  

 

The results of the MLS data set were also compared with the 

manually labelled results (as shown in Figure 5(b)) and the 

point-wise evaluation results are shown in Table 2. Compared 

with the VCCS, our method had higher accuracies on linear and 

planar structures and had a comparative accuracy on scatter 

structures. Although both the proposed method and the TBBP 

method generated supervoxels with adaptive resolutions, the 

TBBP method once again showed its weakness at presenting 

scatter structures (such as the tree crowns shown in the black 

circles in Figure 5) as indicated by the low accuracy shown in 

Table 2, while our method could effectively decompose objects 

into different parts with reasonable structural labels.  
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 VCCS TBBP Ours 

Linearity 65.3 96.7 85.8 

Planarity 97.2 94.4 97.9 

Scattering 95.7 34.0 95.6 

Overall accuracy 95.9 85.3 96.9 

Table 2. Labelling accuracy (%) of the MLS test data based on 

supervoxels generated by different methods. 

 

3.3 Efficiency Evaluation 

The efficiency of the proposed method is evaluated and 

compared with those based on different supervoxel 

segmentation methods, as well as the point-wise structural 

segmentation strategy. In the point-wise segmentation, the 

features are computed with K = 20 nearest neighbors for each 

individual point and the graphical model is built based on 

points and their adjacent relationships, which are defined as 

described in Section 2.2.2. 

 

 

 

Figure 5. Comparison of structural segmentation results of the MLS dataset. (a) is the input MLS point cloud, (b) is the manually 

labeled ground-truth with red, green and blue referring to linearity, planarity and scattering, respectively. (c) – (e) show the 

segmentation results derived supervoxels generated by VCCS, TBBP and our method. In (c) – (e), from top to bottom are the random 

colour-coded supervoxels, visualized shape descriptors derived from supervoxels and the structural components colour-coded based 

on their labels. 

 

As the point-wise labelling requires a large amount of memory, 

which can be out of the maximum memory of the used 

computer, we only chose a subset of the test TLS point cloud 

with about 5 million points to perform the evaluation. Table 3 

shows the time consumed by different methods of the same 

subset test data. All the methods were implemented in C++ with 

a single thread in order to allow a fair comparison. The time 

consumed by preprocessing steps, such as normal estimation, 

required in the VCCS, TBBP and our method, was included in 

the supervoxel generation stage in Table 3. 

 

From Table 3 it can be seen that using supervoxels instead of 

individual points can significantly reduce the time consumed by 

feature computation and structural labelling. With respect to the 

time cost by supervoxel generation, although both our method 

and TBBP cost more time than the VCCS, as more complicated 
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seed (or representative points) selection strategies were adopted, 

supervoxels with adaptive sizes to the varying point density can 

be obtained by our method and TBBP. Simultaneously, 

compared with the TBBP, our method is considerably efficient 

in supervoxel generation.  

 

 
Point-

wise 
VCCS TBBP Ours 

Supervoxel 

generation 
- 34.4 s 50 s 43.8 

Feature 

computation 
85 s 0.5 s 0.7 s 0.4 

Labelling 1247 s 1.5 s 2.5 s 0.7 

Region 

growing 
4568 s 4.9 s 6.0 s 2.3 

Total 5900 s 41.3 s 59.2 s 47.2 s 

Table 3. Time consumed (in seconds) of different methods with 

a subset of the TLS test data containing about 5 million points. 

 

4. CONCLUSIONS 

In this paper, we propose an effective structural segmentation 

method for MLS and TLS point clouds, which present objects 

with abundant details and features with varying point density. 

The proposed method consists of two stages. The first stage 

produces supervoxels whose sizes are adaptive to the variations 

in point density using a coarse-to-fine seed selection strategy. In 

the second stage, a spatially smooth structural label 

configuration was found the multi-size supervoxels through 

global energy minimization. The supervoxels were finally 

clustered into structural meaningful segment based on their 

corresponding labels and adjacent relationships. The 

performance of the proposed method is evaluated in terms of 

both effectiveness and efficiency with two different datasets. 

The experimental results indicate the proposed method has 

better ability of decomposing objects based on their local 

geometric characteristics even with strongly varying point 

density than the existing methods.  
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