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ABSTRACT: 

 

With this contribution we assess the potential of unmanned aerial vehicle (UAV) based laser scanning for monitoring shallow ero-

sion in Alpine grassland. A 3D point cloud has been acquired by unmanned aerial vehicle laser scanning (ULS) at a test site in the 

subalpine/alpine elevation zone of the Dolomites (South Tyrol, Italy). To assess its accuracy, this point cloud is compared with (i) 

differential global navigation satellite system (GNSS) reference measurements and (ii) a terrestrial laser scanning (TLS) point cloud. 

The ULS point cloud and an airborne laser scanning (ALS) point cloud are rasterized into digital surface models (DSMs) and, as a 

proof-of-concept for erosion quantification, we calculate the elevation difference between the ULS DSM from 2018 and the ALS 

DSM from 2010. For contiguous spatial objects of elevation change, the volumetric difference is calculated and a land cover class 

(bare earth, grassland, trees), derived from the ULS reflectance and RGB colour, is assigned to each change object. In this test, the 

accuracy and density of the ALS point cloud is mainly limiting the detection of geomorphological changes. Nevertheless, the plausi-

bility of the results is confirmed by geomorphological interpretation and documentation in the field. A total eroded volume of 672 m³ 

is estimated for the test site (48 ha). Such volumetric estimates of erosion over multiple years are a key information for improving 

sustainable soil management. Based on this proof-of-concept and the accuracy analysis, we conclude that repeated ULS campaigns 

are a well-suited tool for erosion monitoring in Alpine grassland. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Steep grassland in the montane to alpine elevation zone of the 

Alps is frequently affected by shallow erosion. Either shallow 

landslides or abrasion by snow gliding processes and full-depth 

avalanches initially displace the vegetation, soil and unconsoli-

dated deposits (Wiegand and Geitner, 2010). This results in 

patches in the grassland without a vegetation cover, where 

surface runoff and wind can further erode material, usually up 

to a few decimetres depth (Fig. 1). While the size of these erod-

ed areas (i.e. individual bare earth surface patches) typically 

ranges from only 2 to 200 m², their large number in some re-

gions (e.g. >30 areas per ha; Wiegand and Geitner, 2013) re-

sults in a considerable loss of soil and degradation of affected 

grassland (Tasser et al., 2005; Wiegand and Geitner, 2010; 

Alewell et al., 2015). As this also reduces the capability for 

slope water retention, negative impacts on hydrology and hy-

drological hazards can arise (Wiegand and Geitner, 2013). 

Therefore, the soil conservation protocol of the Alpine Conven-

tion, for instance, requests the monitoring and mitigation of soil 

erosion (CIPRA, 2005). 

Shallow landslides (e.g. Ma et al., 2016) and grassland degrada-

tion (Wiesmair et al.; 2016) can be monitored with high-

resolution satellite imagery. Availability and cost often con-

strain the use of these (usually commercial) data products. 

Moreover, the spatial resolution is limiting the accurate map-

ping of shallow eroded areas, which are often smaller than 10 x 

20 m (Wiegand and Geitner, 2013). In this respect, data from 

airborne platforms has advantages in terms of spatial resolution. 

On the one hand, eroded areas (i.e. individual patches of bare 

earth in grassland) can be mapped from the spectral-spatial data 

of orthophotos in terms of their spatial extent, i.e. in 2D (Wie-

gand et al., 2013; Mayr et al., 2016). On the other hand, eleva-

tion changes due to various geomorphological processes can be 

derived from multi-temporal airborne laser scan (ALS) data 

(Baltsavias et al., 2001; Heritage and Large, 2009; Sailer et al., 

2012; Jaboyedoff et al., 2012). Subtraction of raster digital 

elevation models (DEMs), derived from such topographic sur-

veys, produce differential DEMs, also called DEMs-of-

Difference (DoDs), which are commonly used to monitor geo-

morphic changes (Lane et al., 1994; Wheaton et al., 2010). To 

support semantic interpretations, surface classifications have 

exploited the laser intensity data (Syed et al., 2005; Höfle et al., 

2007; Zlinszky et al., 2012). Zieher et al. (2016) visually inter-

preted a DoD, derived from multi-temporal ALS, in combina-

tion with aerial orthophotos to map shallow landslides with a 

minimum scar width of 10 m. 

For a more detailed geomorphological monitoring on a local 

scale, terrestrial (i.e. ground-based) topographic surveys, either 

by laser scanning or photogrammetric techniques, are frequently 

used (e.g. Vericat et al., 2014; Scaioni et al., 2015; Stumpf et al. 

2015; Fey and Wichmann, 2017). The applicability, data extent, 

quality and completeness of terrestrial surveys can be strongly 

limited, depending on the local terrain conditions (such as 
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accessibility and availability of scan or camera positions with 

sufficient visibility to the area-of-interest). In the last years, 

topographic surveys with unmanned aerial vehicles (UAVs) 

have strived to close the gap between (manned) aerial and ter-

restrial surveys for many applications. So far, UAV-based 

monitoring has mostly applied SfM-MVS (Structure-from-

Motion and Multi-View Stereo) techniques (Eltner et al., 2016; 

Smith and Vericat, 2015). Recently, survey-grade systems for 

unmanned aerial vehicle laser scanning (ULS) have become 

commercially available (Shan and Toth, 2018). Until now, these 

ULS systems have been tested mainly for forestry applications, 

in specific for tree stem diameter estimation (Brede et al., 2017; 

Wieser et al., 2017). 

For erosion monitoring, multi-temporal ULS is a promising 

method. Expected advantages include (i) a high spatial resolu-

tion and accuracy (compared to typical manned aerial surveys), 

(ii) coverage of larger areas with consistently high point density 

and accuracy (compared to typical terrestrial surveys), (iii) high 

accuracy with few or without ground control points (compared 

to photogrammetric techniques) and (iv) complementary provi-

sion of actively sensed signal intensity and co-registered colour 

images.  

The goal of this contribution is to assess the potential of un-

manned aerial vehicle laser scanning (ULS) to monitor shallow 

erosion in Alpine grassland. This includes two specific objec-

tives: 

(i) An accuracy assessment for the ULS point cloud using dif-

ferential global navigation satellite system (GNSS) and terres-

trial laser scanning (TLS) data as a reference. 

(ii) A proof-of-concept for mapping and volumetric quantifica-

tion of shallow erosion with ULS. 

The presented study uses one ULS epoch to get a first evalua-

tion of the potential of multi-temporal ULS campaigns for an 

erosion monitoring application before the upcoming field sea-

son (Fig. 2). Since a second ULS epoch is not yet available, an 

ALS epoch, acquired in 2010, is used as a substitute to develop 

and test an approach for raster-based mapping and volume 

quantification. To distinguish changes due to erosion and depo-

sition from other changes (such as the removal of trees by hu-

mans or by avalanches), we combine geometric surface changes 

with semantic information derived from spectral features 

(Figs. 2 and 6). 

 

 

Figure 1. Example for shallow eroded areas at the test site in the 

Dolomites (South Tyrol, Italy). 

 

Figure 2. Schematic overview of the study concept. 

 

 

 

2. TEST SITE 

The test site covers 48 ha of the Dolomites and is located in the 

Villnöß Valley (South Tyrol, Italy), with elevations ranging 

between 2110 and 2470 m a.s.l.. Parts of the test site are used as 

cattle pasture, while other parts are fallow meadows and pas-

tures. Only a minor part is still mown today. A few trees and 

shrubs are scattered over some sections in the lower and central 

part. In some locations rock crags as well as a couple of boul-

ders and debris from rock fall complement the morphological 

diversity of this typical subalpine/alpine site. 

Multi-temporal aerial orthophotos indicate the development of 

several new eroded areas during the last ten years. Field obser-

vations in spring and early summer 2018 pointed to snow glid-

ing processes and full-depth avalanches, tearing and scraping 

off the grass cover together with the root layer and soil, as the 

dominant mechanism for shallow erosion in most parts of the 

test site. 
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3. METHODS 

3.1 Data acquisition and pre-processing 

3.1.1 ULS: ULS data was acquired with a Riegl RiCopter, an 

octocopter with a payload of 16 kg and a maximum take-off 

mass of 24.9 kg. This carrier platform is equipped with a Riegl 

VUX-1LR laser scanner (Riegl LMS, 2019), combined with an 

Applanix AP20 (Applanix, 2019) inertial measurement unit 

(IMU) and GNSS receiver as well as two calibrated oblique 

Sony Alpha 6000 cameras. 

 

The VUX-1LR long range scanner is a lightweight scanner with 

a measurement accuracy of 15 mm. It works with a rotating 

mirror, deflecting the laser light orthogonally to the longitudinal 

axis of the device and allows a field of view (FOV) of 330°. It 

works in the near-infrared domain (1550 nm) and has a beam 

divergence of 0.5 mrad. The AP20 IMU/GNSS recorded sensor 

position and orientation during flight in order to derive flight 

trajectories, which are used for point cloud extraction. Due to 

the terrain complexity a detailed flight planning, graded in 

different height levels was made with the software UgCS (SPH 

Engineering, 2019). The flights were conducted with an average 

flying height of 70 m, a pulse repetition rate (PRR) of 820 kHz, 

an angular scan resolution of 0.0496° and a flight speed of 

8 m/s. The camera acquisition interval was set to 1.5 s. 

 

IMU/GNSS data was differentially corrected with the software 

POSPac (Applanix, 2019) using the permanent base station 

Sterzing/Vipiteno of the South Tyrolean Positioning Service. 

Based on the corrected trajectories, points were extracted by 

offline waveform decomposition and georeferenced with the 

software tools RiAnalysis and ReWorld, run from the applica-

tion RiProcess. Strip adjustment was done with the software 

RiPrecision (Riegl LMS, 2019). 

 

The point cloud was colorized in RiProcess using the simulta-

neously acquired Sony Alpha 6000 images. The ULS point 

cloud was exported in 100 m by 100 m tiles for subsequent 

batch processing in SAGA GIS (Conrad et al., 2015) with the 

extension LIS Pro 3D (Rieg et al., 2014). After removal of 

isolated points, a virtual point cloud was created (i.e an XML-

based catalogue description of all tiles for tile-free access to 

point cloud subsets). Furthermore, all tiles were rasterized to 

0.1 m cell size, using the interquartile (i.e. 25%-trimmed) mean 

of an attribute for all points in a raster cell. Subsequently, the 

raster tiles were merged to one large raster per attribute. This 

workflow produced (i) a digital surface model (from the z-

values), (ii) a reflectance raster (from range-corrected laser 

intensity) and (iii) a raster for each RGB colour channel. 

 

3.1.2 GNSS: GNSS reference measurements of characteristic 

points on existing furniture and infrastructure were acquired, in 

order to assess the absolute (georeferencing) accuracy of the 

ULS point cloud. A total of 22 reference points were surveyed, 

mainly on top of wooden fence posts, some on sitting bench 

corners (points 6, 7 and 20) or the lower ends of drainage 

culverts at a road (points 21 and 22). The measurements were 

acquired with a Trimble Geo7 GNSS receiver with Zephyr 

antenna (Trimble Inc., 2019), and differentially corrected in 

post-processing with data from the three closest permanent 

reference stations of the South Tyrolean Positioning Service, 

provided with one second temporal resolution. Reported 

vertical error estimates after correction range from 0.033 m to 

0.051 m with a mean error of 0.036 m (sd = 0.004 m). 

Horizontal error estimates are reported to range from 0.020 m to 

0.032 m with a mean error of 0.024 m (sd = 0.004). 

 

3.1.3 TLS: The central part of the test site was surveyed with 

terrestrial laser scanning (Fig. 3) using a Riegl VZ-6000 

scanner (Riegl Measurement Systems GmbH, 2018). To reduce 

occlusions, two scans from different positions were acquired, at 

a distance of approximately 200 to 350 m from the investigated 

slope section. The TLS point clouds were exported from RiScan 

Pro (Riegl Laser Measurement Systems GmbH, 2018) to 

continue the processing in SAGA GIS (Conrad et al., 2015) 

with the extension LIS Pro 3D (Rieg et al., 2014). The two 

positions were coarsely georeferenced using four targets, 

surveyed by GNSS (global navigation satellite system). Their 

co-registration was refined by iterative closest point adjustment 

(ICP; Besl and McKay, 1992). The two point clouds were 

merged to one point cloud and this one was registered to the 

overlapping part of the ULS point cloud by ICP adjustment. 

 

3.1.4 ALS: An unclassified ALS point cloud, acquired in 

2010, is provided by the Autonomous Province of Bozen – 

South Tyrol (2018). This ALS point cloud was registered to a 

downsampled copy of the ULS point cloud by ICP adjustment 

(Besl and McKay, 1992) and then rasterized to a DSM with 

0.1 m cell size using the interquartile mean of the points’ z-

values in each raster cell. Gaps were filled with a stepwise 

resampling (bilinear interpolation, grow factor = 2). The ALS 

point cloud contains a distinct stripe pattern of both point densi-

ty and elevation values, which is transferred to the ALS DSM. 

This pattern of relative local elevation differences was mitigated 

partly by application of a Gaussian filter (kernel radius = 10 

cells, sd = 5 m) to the ALS DSM. 

 

 

Figure 3. Test site overview and spatial coverage of the data 

sets. Shaded relief map: ULS data. Blue polygon: Coverage of 

ULS data used for change analysis. Light red: Convex hull of 

the TLS data. Red circles: Reference GNSS points used for 

georeferencing. Black circles: GNSS points excluded from 

georeferencing (points 18 - 21). 

 

 

3.2 Accuracy assessment for the ULS point cloud 

The absolute (georeferencing) accuracy of the ULS point cloud 

is assessed by a comparison with the 22 GNSS reference points. 

For a 1 m buffer around each reference point, a point cloud 

subset was extracted from the virtual ULS point cloud and 
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loaded into a 3D viewer. For each reference point, the 

corresponding ULS points were manually labelled (e.g. a group 

of points interpreted as the top of a fence post). The centroids of 

these labelled point groups were defined as ULS target points. 

They were compared to the GNSS target points by calculating 

their distances (to the closest point). 

 

In order to improve the georeferencing, a target matching of the 

ULS target points to the GNSS target points was performed. 

This was accomplished by deriving a transformation matrix 

from homologous point pairs (Horn, 1987) and applying the 

transformation to the ULS target points. Subsequently the dis-

tances between ULS and GNSS points were recalculated. 

 

Four points still showed comparatively large errors after target 

matching (Sect. 4.1), and apparently their errors could not be 

minimized with a rigid transformation. Hence, these points were 

excluded in a second run of target matching to prevent them 

from compromising the entire registration and, finally, distances 

were recalculated again. 

 

3.3 Mapping and volumetric quantification of shallow 

erosion 

The ALS DSM is subtracted from the ULS DSM to calculate a 

DSM-of-Difference (DoD), which represents elevation changes 

for the period 2010 to 2018. Horizontal registration errors 

produce large errors for elevation difference in steep areas. 

Moreover, comparatively low point densities of the ALS point 

cloud can strongly compromise the accuracy of the DoD in 

steep terrain (Sailer et al., 2013). Therefore, areas with a slope 

gradient > 50° (including a 1 m buffer zone) are masked from 

the DoD. These areas usually lack a continuous soil and grass 

cover and thus are irrelevant for soil erosion monitoring in our 

case. 

 

The requirement for this proof-of-concept for eroded area map-

ping with combined ULS/ALS is defined as the detection of 

elevation differences larger than 0.30 m in order to identify new 

eroded areas. In this context, Wiegand and Geitner (2013) 

report a mean depth of eroded areas of 0.21 m (measured at the 

scarp, excluding the vegetation height) for all their study areas 

in North Tyrol (Austria), while maximum depths tend to be 

higher. Since our DEMs are not assumed to represent the true 

ground but rather contain at least some of the vegetation (in 

undisturbed grassland), we account for this with a threshold of 

0.30 m. Only elevation differences with a magnitude larger than 

this threshold are analysed in the subsequent steps, even if the 

theoretical level of detection would be better. 

 

The remaining DoD cells were vectorised to contiguous change 

objects. Subsequently, change objects with an area ≤ 2 m² were 

removed, since these contained many false positives (mostly 

due to ALS DSM artefacts) and are negligible for monitoring 

this type of erosion (c.f. Wiegand et al., 2013). Volumetric 

changes per change object were aggregated from the DoD. 

 

In the next step, a land cover map was created by a pixel-based 

Random Forest (RF) classification (Breiman, 2001), taking the 

RGB colour channels of the UAV-based orthophoto and the 

laser reflectance raster as input features. Reference areas were 

digitized and labelled for the target classes bare earth, grass-

land and trees (including shrubs) by a visual interpretation of 

the input feature maps. The raster cells of the training areas 

were randomly split into training and validation sets (70/30 

split, stratified by classes). Subsequently, we aggregated the 

land cover class to the change objects by the majority vote of 

land cover cells inside each change object. Finally, we defined 

specific types of change as unique combinations of eleva-

tion/volumetric change direction (gain vs. loss) and land cover 

class and assigned these change types to every object. 

 

A relatively small marginal part of the ULS surveyed area was 

completely excluded from this analysis, since it (i) suffers from 

georeferencing problems (Section 4.1) and (ii) contains almost 

no shallow eroded areas but buildings, parking cars etc. which 

would complicate the automated interpretation of the differen-

tial DSM and spectral data. Moreover, a few large change ob-

jects related to a larger landslide as well as conducted repairs 

and stabilisation measures at this landslide were deleted manu-

ally. This was necessary to derive unbiased summary statistics 

(Sect. 4.2). 

 

 

 

4. RESULTS AND DISCUSSION 

4.1 Accuracy assessment for the ULS point cloud 

4.1.1 Direct georeferencing: The 3D mean absolute error 

(MAE3D) of the directly-georeferenced ULS point cloud, 

calculated from all 22 reference points, is 0.213 m. At points 18 

- 21 the deviations differ considerably from the rest. Point 18 

differs from points 19 - 21. If these points are excluded the 

MAE3D is reduced to 0.190 m. Excluding these four reference 

points, the direct georeferencing of the ULS point cloud is 

comparatively accurate in terms of horizontal alignment to the 

GNSS reference measurements, with a mean absolute error 

MAExy = 0.023 m. In vertical direction, however, there is an 

offset with the ULS point cloud being consistently higher than 

the reference (MAEz = 0.188 m). 

 

4.1.2 Target matching (indirect georeferencing): Target 

matching using all reference points reduced the overall 

deviations from the reference points, but for points 18 - 21 the 

deviations remain relatively high (> 0.24 m). Thus, these points 

are either inaccurately measured with GNSS, or inaccurately 

marked in the point cloud (likely for point 21, which was 

difficult to identify) or (more likely for points 18 - 20) the 

respective parts of the point cloud are less well georeferenced. 

Georeferencing problems in this marginal part of the test site 

can be related to the end/start of flight strips, where the UAV is 

decelerating to turn and tends to become instable, especially in 

windy conditions. This should be considered for flight planning 

of future missions. As they could negatively impact the entire 

geo-referencing, these points are excluded from the target 

matching. The majority of their surroundings was excluded 

from the erosion mapping and quantification as well (Sect. 3.3). 

 

For the remaining points (1 - 17 and 22), the MAE3D is 0.041 m 

after target matching (with individual point deviations ranging 

from min = 0.021 to max = 0.071 m). This is relatively good, 

considering that it contains the errors from (i) GNSS 

measurements, (ii) manual labelling of targets, (iii) placement of 

the GNSS antenna on the targets, (iv) the point density and (v) 

ULS point measurement accuracy. Due to a lack of additional 

reference points, the accuracy of the point cloud is unknown for 

some parts of the study area. Here, a comparison with a 

repeated acquisition over stable (and unvegetated) areas would 

be interesting. 
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4.1.3 Comparison with TLS data: After co-registration of 

the ULS and the TLS point clouds, their mean distance is 

0.045 m (with a standard deviation of 0.045 m) and the root-

mean-square error (RMSE) is 0.044 m. A DSM-of-Difference 

(DoD; Fig. 4) is calculated from the two point clouds and this 

DoD is analysed at representative sample areas for (i) bare 

earth and (ii) grassland, all in the central part of the test site 

(Fig. 5). The resulting mean elevation differences suggest that 

the two DSMs agree well in bare earth areas (0.002 m, sd = 

0.022 m), whereas in nearby grassland areas (-0.015 m, sd = 

0.047 m) the TLS DSM tends to be slightly higher than the ULS 

DSM and the variability of elevation differences is larger. The 

spatial pattern of the entire DoD (Fig. 4) indicates no 

remarkable internal deformations, but it suggests an effect of 

scan angle and range, two parameters with more variation in the 

TLS data than in the ULS data. Partly, the DoD also seems to 

reflect the spatial pattern of grassland vegetation observed in the 

field (with different species composition and height). Moreover, 

differences in sensors and signal processing (e.g. regarding 

multi-echo detection) can account for differences. Hence, future 

studies could investigate the impact of different scan angles and 

ranges for ULS and TLS sensors systematically, in particular 

with regard to penetration of the grass canopy. 

 

 

Figure 4. Raster elevation difference between the ULS DSM 

and the TLS DSM after fine registration; 10-m contours in grey. 

 

Figure 5. Relative frequency density of elevation differences 

(dz) between the ULS DSM and the TLS DSM for grassland 

and bare earth samples. 

4.2 Mapping and volumetric quantification of shallow 

erosion 

The combination of elevation change detection and land cover 

classification mapped a total of 127 (spatially contiguous) 

eroded area objects (see Fig. 6 for an example), with calculated 

volumetric changes per object ranging from -87.6 m³ to -0.7 m³, 

with a mean of -5.3 m³ (sd = 9.55 m³). Tab. 1 shows the total 

volume of different change types, while more statistics for the 

calculated volumes per object are presented in Fig. 7. A large 

portion of the total volumetric loss is attributed to the removal 

of trees. This phenomenon may partly result from human activi-

ty (clearing of the grassland from individual trees and shrubs). 

Interpretation of multi-temporal orthophotos, however, points to 

several cases, where a removal of trees by avalanches is more 

likely. None of the objects with volumetric loss were classified 

as trees (Tab. 1, Fig. 7), which is plausible. Note that the slope 

mask calculated from the ULS DSM (intentionally) removed 

most of the trees existing in 2018 from the analysis, with only 

some very small ones remaining. Type 3 changes (vegetation 

growth) typically refer to these cases. 

 

Change 

type 

Change 

type ID 
Gain/Loss 

Land 

clover 

class 

Total 

volumetric 

change 

[m³] 

Vegetation 

growth 
3 Gain Trees 16 

Deposition 2 Gain Grassland 189 

Deposition 1 Gain Bare earth 15 

Erosion -1 Loss Bare earth -672 

Removal 

of trees 
-2 Loss Grassland -631 

NA -3 Loss Trees NA 

Table 1. Volumetric changes for different change types and land 

cover classes. 

 

In general, the RF land cover classification with spectral fea-

tures (reflectance, RGB values from imagery) performed well, 

with an overall accuracy of 97% (calculated from the validation 

set). Trees misclassified as grassland, however, reduce the 

precision for trees to 60%, and grassland cells misclassified as 

bare earth are reflected by a comparatively low recall for bare 

earth (Tab. 2). In future studies, both the reliability and inter-

pretability of such a validation and the accuracy of the classifi-

cation results could be improved by increasing the amount of 

reference data. 

 

Land cover class 
Producer Accuracy 

(Precision) 

User Accuracy 

(Recall) 

Bare earth 0.973 0.828 

Grassland 0.988 0.983 

Trees 0.602 0.997 

Table 2. Accuracy metrics for the RF land cover classification. 
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Figure 6. Example of change objects mapping with (clockwise from upper left) (i) elevation change between 2010 and 2018, (ii) 

Random Forest classification (RFC; no trees in this subset), (iii) RGB orthoimage, (iv) reflectance. Change objects (|dz| > 0.3 m) are 

outlined by black polygons. Contour equidistance is 5 m. 

 

Calculated volumes for erosion (a total of 672 m³) can be con-

sidered as minimum values. The threshold for elevation change 

results in an underestimation of eroded areas in the delineation 

step, because bare earth areas with smaller elevation changes by 

erosion are disregarded. Furthermore, local/regional authorities 

and farmers have repaired selected eroded areas with varying 

success, thus precluding the detection and correct quantification 

of erosion in these cases. This concerns the quantification of 

deposits even more, because material is often deposited to 

meadows at the foot slopes, where farmers usually remove 

them. Moreover, deposits are often dispersed on a larger area, 

thus resulting in smaller elevation change, and are excluded by 

the relatively high elevation change threshold. Some eroded 

areas might be underestimated likewise due to errors of omis-

sion for some raster cells (mostly in transitional areas at the 

border of eroded areas). Taking smaller changes into account, 

though, would introduce a lot of false positives due to (i) ALS 

DEM artefacts, (ii) changes of the actual grass height or (iii) the 

capability of different laser scanning systems to penetrate or 

record vegetation. 

 

Systematic registration errors between the ALS and the ULS 

data were minimized by ICP adjustment, as confirmed by a 

visualization of the grid differences. The point cloud RMSE, 

however, remained relatively high at 0.150 m. The ALS point 

cloud contains a distinct stripe pattern of both point density and 

elevation values, and this pattern is reflected by the differential 

DSM as well as the shaded relief of the ALS DSM. Thus, the 

quality of the ALS data is rated as the main limitation for the 

detection of geomorphological changes. Nevertheless, the plau-

sibility of the mapped erosion and deposition is confirmed by 

geomorphological interpretation and documentation in the field. 

 

When multi-temporal data is acquired by repeat ULS cam-

paigns, the level of detection will improve and probably make 

the detection of secondary erosion possible. This will, however, 

require a robust method to separate elevation changes by sec-

ondary erosion from changes of the grass height, for instance, 

which often have the same magnitude. As the presented classifi-

cation of change objects shows, spectral features can be used to 

support this task. Alternatively or complementarily, geometric 
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features could be exploited to distinguish various natural ob-

jects in an automated time series analysis (Mayr et al., 2017). 

 

 

 

Figure 7. Changed volume (dV) per object for different types of 

change. Top: Full range of changes per object, including ex-

treme values. Bottom: Changes per object only in the range 

between -15 m³ and 8 m³ (i.e. different y-axis scale). 

 

 

5. CONCLUSIONS 

With this contribution we evaluate the potential of unmanned 

aerial vehicle laser scanning (ULS) to monitor shallow erosion 

in Alpine grassland. In an accuracy assessment using differen-

tial GNSS points as a reference, the 3D mean absolute deviation 

(MAE3D) of our directly-georeferenced ULS point cloud is 

0.190 m. This deviation was reduced to 0.041 m by a target-

based registration. Comparison with TLS data confirms a simi-

lar level of accuracy for the ULS data in terms of geometric 

stability and noise. As a proof-of-concept for erosion quantifi-

cation, we calculated the elevation difference between the ULS 

DSM from 2018 and an ALS DSM from 2010. For contiguous 

areas of elevation change the volumetric difference was calcu-

lated and a land cover class, derived from the LiDAR reflec-

tance and RGB colour, was assigned to each change object to 

aid the interpretation of geometric changes. This yields a total 

eroded volume of 672 m³ for the test site (48 ha). Such volumet-

ric estimates of shallow erosion over multiple years are a key 

information for improving sustainable soil management. Based 

on this proof-of-concept and the accuracy analysis, we conclude 

that repeated ULS campaigns are well suited for erosion moni-

toring in Alpine grassland. 
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