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ABSTRACT: 

During the last couple of years, there has been an increased interest to develop new deep learning networks specifically for processing 
3D point cloud data. In that context, this work intends to expand the applicability of one of these networks, PointNet, from the semantic 
segmentation of indoor scenes, to outdoor point clouds acquired with Airborne Laser Scanning (ALS) systems. Our goal is to of assist 
the classification of future iterations of a national wide dataset such as the Actueel Hoogtebestand Nederland (AHN), using a 
classification model trained with a previous iteration. First, a simple application such as ground classification is proposed in order to 
prove the capabilities of the proposed deep learning architecture to perform an efficient point-wise classification with aerial point 

clouds. Then, two different models based on PointNet are defined to classify the most relevant elements in the case study data: Ground, 
vegetation and buildings. While the model for ground classification performs with a F-score metric above 96%, motivating the second 
part of the work, the overall accuracy of the remaining models is around 87%, showing consistency across different versions of AHN 
but with improvable false positive and false negative rates. Therefore, this work concludes that the proposed classification of future 
AHN iterations is feasible but needs more experimentation.  

1. INTRODUCTION 

The extraction of semantic information from 3D point cloud data 
in a reliable manner has been a challenge over the last decade. 
Point clouds are a useful source of data for a large number of 
applications, such as 3D modelling, urban and itinerary planning 

or virtual tourism. But they are also unorganized and 
unstructured, and therefore basic operations such as point 
neighbourhood definition are not as trivial, depending on 
variables as the point density or the number of points within the 
point cloud unlike other data sources such as 2D images. Some 
of the applications related to object detection considered building 
reconstruction from aerial point clouds (Lafarge et al., 2008; 
Ortner et al., 2007), as well as tree detection and reconstruction 

(Wang et al., 2008; Xu et al., 2007). An object detection and 
recognition framework was proposed by Golovinskiy et al. 
(2009), which consists of an initial point clustering that segments 
objects in specific locations of interest, and then defines a number 
of features that gather information of each object in terms of 
shape and context. Finally, different classifiers such as Support 
Vector Machines (SVM) or Random Forest are employed to 
assign a class to each object. This approach has been repeatedly 
used in literature. Typically, a first differentiation of ground and 

off-ground points is made, then off-ground objects are clustered 
and classified, being the last step the main difference between 
similar works. A common application is the classification of 
objects related with the road network using Mobile Laser 
Scanning (MLS) systems. Pu et al. (2011) recognize poles and 
trees, as well as the shape of traffic signs, using a knowledge 
based analysis of the geometry of each object. Similarly, Yu et 
al. (2015) extract light poles along the road network by defining 

a pairwise 3-D shape context feature which classifies light poles 
using a threshold over a dissimilarity measure. Detection and 
recognition of infrastructure related objects have evolved during 
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this decade using both heuristic and machine learning based 

approaches (Arcos-García et al., 2017; Cheng et al., 2017; 
Sánchez-Rodríguez et al., 2018; Soilán et al., 2017; Wen et al., 
2015), as well as generic object classification approaches (Serna 
and Marcotegui, 2014; Yang et al., 2015).  

During the last couple of years, there has been a considerable 
increase of works that develop deep learning networks 
specifically for processing 3D point cloud data. Some of them 

rely on projecting the point cloud onto 2D images that are 
classified using 2D Convolutional Neural Networks (CNN) 
designed for semantic segmentation of images, and then 
projecting the image back to 3D space. Lawin et al. (2017) 
project the point cloud in different 2D views and render different 
properties such as colour and depth from each view. Then, they 
process each image with a CNN and aggregate individual 
predictions from all images where a point is visible to assign a 
label to it. Similarly, Boulch et al. (2017) generate random 

camera positions as point cloud projection centres, allowing to 
define RGB and depth composite images. Different existing 
CNN networks such as SegNet or U-Net are subsequently trained 
for semantic segmentation of the images, and the result is 
projected back on the point cloud. These methods alleviate the 
drawbacks of initial true 3D deep learning approaches, that 
required a voxelization that led to a decrease of the spatial 
resolution and a large consumption of memory. However, there 

are different deep learning approaches that work natively with 3D 
point clouds. Engelcke et al. (2016) proposed a sparse 
convolution over a 3D grid space where a feature vector is 
defined for each grid cell that has at least one point. The sparsity 
of the convolution helps to avoid the fact that in a 3D convolution 
across a point cloud, computation time is wasted given that a 
large number of voxels is empty. Tatarchenko et al. (2017) define 
a convolutional decoder architecture that generates 3D outputs 
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represented as octrees, scaling efficiently to higher resolutions 

and improving some of the drawbacks of the 3D deep learning 
approaches. Another relevant architecture for semantic 
segmentation, PointNet (Qi et al., 2016) will be explored in this 
paper and is explained in detail in Section 3.1. In conclusion, 
deep learning based approaches seem to improve previous 
methods. For example, some of the work related to the detection 
and recognition of infrastructure objects improve the previous 
state of the art (Wen et al., 2019; Yu et al., 2016).  

With this context, it is clear that state-of-the-art methods can be 
applied to automatize point cloud labelling processes, that are 
typically carried out in a semiautomatic or manual manner, 
requiring an investment on the process that do not add value to 
the personnel in charge of the labelling process. Nowadays public 
administrations develop actions to collect point cloud data from 
the national territory (e.g. for The Netherlands, Spain, Denmark 
or Switzerland) that end up being a massive amount of points 

which, if labelled, can be used as benchmark for a large number 
of applications and save economic resources invested on the 
labelling process.  

Therefore, the contribution of this work is twofold. First, to prove 
the capabilities of the PointNet architecture (originally intended 
for indoor data) for semantic segmentation applications in 
outdoor point clouds, and second, to evaluate if that architecture 

can be employed to assist the classification of future versions of 
a national aerial point cloud database (in the case of this work the 
database is from The Netherlands), given that there already exists 
a previous labelled version.  

In Section 2, the case study data employed in this work is 
described. Then, in Section 3, the methodological approach 
followed for the definition of three different classification models 

is explained. The evaluation of the classification models and the 
discussion of the results can be found in Section 4, and finally the 
conclusions of this work are outlined in Section 5. 

2. CASE STUDY DATA 

All the data employed to undertake this work has been obtained 
from the Actueel Hoogtebestand Nederland (AHN), which has 
collected aerial point clouds of The Netherlands.  Currently, the 
latest version of AHN 3D point cloud data is the AHN3 dataset 
(PDOK, 2018). This dataset is interesting for this work, as it has 
a decent point density of about 20 points/m2, and a label assigned 
to each point, indicating up to five different classes, namely: 

Ground, vegetation, building, bridge, and water. Furthermore, 
AHN3 data has several point attributes, from which intensity and 
return number are utilized in this work. Besides AHN3, in order 
to assess the performance of the classification models defined in 
Section 3 with different iterations of AHN, the previous version 
of these data, AHN2, is also employed. Although the point 
density is similar, these point clouds do not have measured 
attributes such as point intensity, nor class labels, facts that are 

reflected in the chosen classification models in Section 3.2.  

The data from AHN3 and AHN2 that is employed in this work 
are summarized in Table 1. Note that both datasets are divided in 
smaller point clouds following a rectangular grid, each of them 
covering a surface of 6.25x5 km2 and defined with a unique ID. 
The number of points shown for each section corresponds with 
the amount of data used for either training or testing, and does 

not represent the whole AHN section, as detailed in Section 3 of 
this work.  

Figure 1 shows the location of the point clouds in the map. As it 

can be seen, AHN2 data intentionally overlaps with a section of 
AHN3 data, in order to compare the results in Section 4. The only 
criteria that was taken into consideration for selecting training 
data was the presence of different environments (urban, 
countryside) in order to train models with as many different 
geometries as possible.   

Dataset Section ID #Points·106 Usage 

AHN3 38FN1 30 Training 

31HZ2 30 Training 

32CN1 25 Test 

37EN2 20 Test 

AHN2 37EN2 20 Test 

Table 1. Overview of used data from the second (AHN2) and 
third (AHN3) version of the Dutch national point 

cloud archive `Actueel Hoogtebestand Nederland` 
(AHN) 

Figure 1. Map of the AHN sections selected as case study. 
Training data from the surroundings of Utrecht, and 
test data also from the area of Delft  

3. METHODOLOGY

In this work, the capability of the PointNet architecture for the 
semantic segmentation of aerial and terrestrial point clouds is 
assessed using the case study data presented in Section 2. First, 
the main characteristics of this network are outlined. Then, the 
strategy followed for training the PointNet models is explained 

in detail, including data preparation and organisation, and also 
result presentation.  

3.1 PointNet architecture 

This work employs PointNet, a Deep Learning architecture 
specifically designed for 3D point clouds (Qi et al., 2016). It 
considers 3D points as inputs, assuming three main properties: 
(1) Data is unordered (any permutation of 3D points results in the 
same set of points); (2) there is interaction among points 
(neighbourhood relationships are meaningful), and (3) data is 
invariant to rotations and translations in terms of semantic 
meaning of each point. With these considerations, the network 
can be roughly defined with three key modules: (1) A symmetry 

function that inputs n vectors and outputs another vector invariant 
to input order, making a permutation invariant model; (2) 
aggregation of local and global information, by concatenating a 
global point cloud feature vector with per point features; and (3) 
joint alignment network, called T-net in the literature, that 
predicts an affine transformation which makes the network 
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invariant to transformations such as rotations and translations 

(rigid transformations). 

This architecture is suitable for different applications, such as 
object classification, part segmentation, or semantic 
segmentation. In this work, semantic segmentation has a greater 
interest, as the objective is to offer a point-by-point classification 
of point cloud data.  

This architecture has proven to be efficient for semantic 
segmentation of indoor point clouds such as the Stanford 3D 
dataset (Armeni et al., 2016), following a tiling strategy of the 
point cloud, and randomly selecting a number of points of each 
tile block at training time, ending up with a 9-dimensional vector 
representation of each point: xyz coordinates, rgb colour and the 
normalized xyz coordinates of the point within the tile block (that 
is, the coordinates of each tile block are normalized to a [0,1] 
range). However, the performance of this network on outdoor 

point clouds has not been explored. Doing this is one of the 
principal interests of this work. 

3.2 Classification models 

Given the case study data as shown in Section 2 and their 
properties, three different PointNet based models were defined 
for semantic segmentation, as summarized in Table 2. 

Model Database Features Classes 

Model 
1 

AHN3 x, y, z, I, R, H 2 (Ground, Not 
Ground) 

Model 
2 

AHN3 
AHN2 

x, y, z 3 (Ground, 
Vegetation, Building) 

Model 
3 

AHN3 x, y, z, I, R, H 3 (Ground, 
Vegetation, Building) 

Table 2. Summary of the classification models 

3.2.1 Model 1: In order to assess the capabilities of the 
PointNet architecture for the semantic segmentation of aerial 
point clouds, a binary classification of the ground was initially 

proposed. That means, the labels of the training data are modified 
in such a way that all points which are not classified as ground 
share the same label. 

Some modifications were carried out for the correct 
implementation of the PointNet architecture with respect to the 
original network. First, RGB colour information is not included 
in AHN3, while this point feature was included in previous 

PointNet setups. Instead, colour was replaced by three features 
which could be considered as a false colour: (1) Intensity (I), (2) 
return number (R) and (3) height of the point with respect to the 
lowest point in a 3x3m neighbourhood (H) (Figure 2). 
Furthermore, as our model was intended to perform a binary 
classification, the output layer of the network was modified, 
defining only two output units. 

Figure 2. RGB colour has been replaced by three features, namely 
point intensity, return number, and height with 
respect the lowest point in a neighbourhood. Visually, 
it can be seen that the ground has a false colour easily 
distinguishable from other points 

The data organization parameters were also modified, as 

originally each point cloud was sampled into 1x1m blocks. Given 
that the density of the aerial point clouds is smaller, and the 
surface covered much larger, the block surface was set to 
10x10m, with a stride of 7.5m, which allows to capture 
efficiently the local geometric properties of the point cloud in 
each block. A total of 4096 points are sampled from each block 
in order to define data batches with a consistent number of points. 
If the number of points within the block is larger, they are picked 
randomly. Otherwise, random points are duplicated to get the 

required number of points per data batch. Hence, the network is 
fed by a Nx4096x9 array, where N is the number of data batches, 
and for each point a 9-dimensional feature vector is defined as 
shown in Equation 1:   

𝑓𝑒𝑎𝑡𝑚𝑜𝑑𝑒𝑙1 = (𝑥, 𝑦, 𝑧, 𝐼, 𝑅, 𝐻, 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) (1) 

where (𝑥, 𝑦, 𝑧) are the point coordinates, (𝐼, 𝑅, 𝐻) are the 

previously defined features and (𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) are the normalized
coordinates as defined in Section 3.1.  

With these considerations, the network was trained with data 
from the 38FN1 section of AHN3, sampling around 30 million 
points by tiling the whole section using a 25x25 square grid and 
randomly selecting one tile. The parameters used for training 
scarcely differ from the default, training for 50 epochs, mini 

batch size of 24, using Adam (Kingma and Ba, 2015) as 
optimizer, and regularization with an initial learning rate of 
0.001, with decay following a staircase function each 300 
thousand training samples.  

The results obtained for the test set, that are shown in Section 4.1, 
prove that PointNet is capable of performing semantic 
segmentation tasks in AHN point clouds; hence the proposal of 

assisting the classification of future AHN iterations with a 
multiclass classification model. 

3.2.2 Model 2: Considering that AHN3 is currently the latest 
iteration within AHN, AHN2 dataset was chosen to evaluate the 
capability of the PointNet architecture for classifying point 
clouds from different versions of the same data. That is, the 
objective of this model is to perform efficiently in AHN2 data 
while being trained with AHN3 point clouds.  
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This implied some issues: First, AHN2 point clouds do not have 

a classification field and therefore to generate a ground truth for 
evaluation is not straightforward. In order to solve this, a nearest 
neighbour search was performed between the AHN2 data and 
overlapping data from AHN3. Then, the label of each point in 
AHN3 was assigned to the closest point in AHN2, defining a 
ground truth for evaluation. Here, it is important to have in 
consideration a rough estimate of the proportion of mislabelled 
points in this process, which is directly related to changes (new 

buildings, different distribution of vegetation, etc.) in the time 
between the collection of both datasets. For that purpose, the 

distances between nearest neighbours in AHN2 and AHN3, 𝒅2→3

are obtained, and a rough estimate of mislabelled points is 

extracted from the proportion of points such that 𝒅2→3 is larger

than the average 𝜇 plus the standard deviation 𝜎 of the 
distribution of distances (Figure 3a-b).  

Figure 3. In order to get a rough estimate of mislabelled points in 

AHN2 after assigning the closest label from AHN3 to 
each point, the assignment distance is employed. (a) 
AHN3 point cloud. (b) AHN2 point cloud, points in 
red represent areas subjected to changes between both 
scans that are therefore likely to be wrongly labelled. 
(c) point cloud labelled with three classes: Ground 
(cyan), vegetation (dark blue) and buildings (yellow)  

Regarding the labels that are used for training the network, Model 
2 considers three different classes, namely: (1) Ground, (2) 
vegetation, and (3) building (Figure 3c). Note that both the bridge 
and water classes are not considered here, as they are excessively 
unbalanced in terms of number of points. While points classified 

as bridge are assigned to the ground class, those classified as 

water are removed from the training set.  

Another issue arises from the fact that AHN2 point clouds have 
less attributes than their AHN3 counterpart (i.e. it has no 
intensity). For that reason, this model could not take advantage 
of the features that have been employed in Model 1. Therefore, 
this model is defined as an end-to-end strategy that only considers 
the geometry, that is, using only the point coordinates as features. 

This way, and following the same data organization guidelines 
defined for Model 1 in Section 3.2.1, the network is fed with 
points whose feature is simply: 

𝑓𝑒𝑎𝑡𝑚𝑜𝑑𝑒𝑙2 = (𝑥, 𝑦, 𝑧, 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) (2) 

The network was trained with data from section 31HZ2 as 
introduced in Section 2, and using a similar number of points as 
for Model 1, which were considered enough training samples 
given its results. Training parameters were also similar, only the 
number of training epochs was increased from 50 to 70.  

This classification model was evaluated both for AHN3 and 
AHN2 data, using an overlapping area in order to offer a better 

comparison of the results, which can be seen in Section 4.2.  

3.2.3 Model 3: Model 2 has been trained using only the 

coordinates (𝑥, 𝑦, 𝑧) as feature, but it is also interesting to assess 
the impact of training the same network with more features, as it 
can be assumed that future iterations of AHN dataset will present 
at least the same point cloud properties as AHN3. For that reason, 
Model 3 has been defined for the same classification problem as 
Model 2, that is, a 3-class classification of ground, vegetation and 
buildings. However, three new features were added following the 

reference of Model 1. That is, the point feature is a 9-dimensional 

vector analogous to 𝑓𝑒𝑎𝑡𝑚𝑜𝑑𝑒𝑙1:

𝑓𝑒𝑎𝑡𝑚𝑜𝑑𝑒𝑙3 = (𝑥, 𝑦, 𝑧, 𝐼, 𝑅, 𝐻, 𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) (3) 

Regarding the training data, in order to stablish a comparison 
between Model 2 and Model 3 evaluations, the same data from 

AHN3 section 31HZ2 was chosen. Also, data organization and 
network parameters follow the same guidelines as for Model 2.  

3.3 Presentation of the results 

Once the different models are trained, they are evaluated using 
the test datasets defined in Section 2. The model evaluation 
process outputs a NxM array, where N is the number of points 

whose prediction is given by the model, and 𝑀 = 5 + 𝐾, where 
K is the number of classes predicted by the model. For each point, 

a vector 𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑥, 𝑦, 𝑧, 𝑝𝑟𝑒𝑑, 𝑔𝑡, 𝑝0 , … , 𝑝𝑘) is obtained,

which contains the point coordinates (𝑥, 𝑦, 𝑧), the point label as 
predicted by the network (pred), the point label of the ground 
truth (gt) and the probabilities of each class for the given point 

(𝑝0 , … , 𝑝𝑘). Using the outputs 𝑝𝑟𝑒𝑑 and 𝑔𝑡 it is straightforward
to define true positives, false positives and false negatives, 
obtaining different metrics chosen for evaluation: Precision, 
Recall and F-score (Equations 4-6). Results shown in Section 4 
can be produced with this data. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(4) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

(5) 
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𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(6) 

where  TP = number of true positives 
FP = number of false positives 

FN = number of false negatives 

4. RESULTS AND DISCUSSION 

In this section, the evaluation results for the three classification 
models based on the PointNet architecture are first presented and 
discussed one by one, followed by a global discussion to put the 
results in perspective.  

In order to train the different networks, resources from the 
computing infrastructure FinisTerrae II from the 
Supercomputing Centre of Galicia (CESGA) were employed. 

The GPUs available for the training processes were NVIDIA 
Tesla K80, and training times ranged from 8 to 12 hours 
depending on the model complexity and the number of training 
epochs. 

4.1 Model 1 results 

The objective of the first model was to perform a conceptually 
simple task on AHN point clouds, which is ground classification, 
in order to assess the capability of the PointNet architecture to 
carry out more complex applications. The test data employed to 
evaluate this model consists of around 25 million points from the 
32CN1 tile of AHN3 as shown in Section 2. In Table 3 the results 
are summarized. Results are also compared with (Rizaldy et al., 

2018) where a fully convolutional network (generating 2D 
images from the point cloud in a first place) is employed for the 
same ground classification application in AHN3 data.  

Precision Recall Fscore 

This work 0.955 0.970 0.962 

(Rizaldy et al., 2018) 0.849 0.959 0.901 

Table 3. Model 1 results. Our PointNet results improve upon 

previous results from (Rizaldy et al., 2018) 

An example of qualitative results can be seen in Figure 4. The 
main conclusion extracted from these results is that the trained 
model performs correctly, as it defines the ground segment with 
high accuracy with only few erroneous predictions. These results 
are good enough across a large surface of AHN3 to develop more 
complex classification models with this architecture.  

Figure 4. Ground classification using Model 1. Points predicted 
as ground are coloured in red 

4.2 Model 2 results 

The second model defines a three-class classification using 
AHN3 data for training. In order to assess the capability of the 
trained model to label data from different versions of AHN, data 

from both AHN3 and AHN2 are used for the evaluation of the 
model.  

The test data comprises around 20 million points from the 37EN2 
section of AHN3 and AHN2. Data from both datasets overlaps, 
which allows to define a ground truth in AHN2 data as described 
in Section 3.2.2. The results of the prediction for both datasets 
are shown in Tables 4-5. Here, a confusion matrix is presented 
for each case, showing the false positive and false negative rate, 

together with the overall accuracy defined as the ratio between 
points that are correctly predicted by the classification model and 
the total number of points within the test set. Qualitative results 
can be seen in Figure 5.  

GT/ predict Ground Vegetation Building FN rate 

Ground 10 233 948 225 557 138 446 3.43% 

Vegetation 322 025 8 677 499 124 554 4.89% 

Building 340 387 1 635 044 1 679 099 54.05% 

FP rate 6.08% 17.66% 13.54% 

Accuracy 87.77% 

Table 4. Model 2 results for the AHN3 test set. Note the 
confusion between building and vegetation points 

GT/ predict Ground Vegetation Building FN rate 

Ground 8 727 286 418 813 138 288 6.00% 

Vegetation 293 896 3 005 796 99 892 11.58% 

Building 328 280 1 034 028 1 389 390 49.51% 

FP rate 6.65% 32.58% 14.63% 

Accuracy 84.98% 

Table 5. Model 2 results for the AHN2 test set. For AHN2 similar 
results are obtained as for AHN3 (compare Table 4), 
indicating that it is feasible to automatically classify 
future AHN releases using our approach 
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Some conclusions can be extracted from these results. First, in 

terms of network performance, the predictions on AHN3 and 
AHN2 datasets are fairly similar. Although the performance on 
AHN2 is slightly less than on AHN3, it is important to recall that 
generating the ground truth data for the former has a small 
mislabelling rate (around 2-3%) as defined in Section 3.2.2. In 
conclusion, classifying future iterations of AHN with a model 
trained in a previous one seems feasible, as far as the model 
performs correctly in terms of accuracy. Considering the 

performance metrics in Tables 4-5, high confusion between 
vegetation and building points is observed, which is illustrated in 
Figure 5, while the ground class is classified with similar 
accuracies as for Model 1. 

Figure 5. Classification results using Model 2 on a subset of the 
AHN2 test data. (a) Prediction (ground, vegetation 

and buildings are coloured as blue, green and yellow 
respectively). (b) Ground truth. Many roof points are 
classified as vegetation 

4.3 Model 3 results 

Finally, a third PointNet model was trained with the same 
objective as Model 2, a three-class classification, but instead of 
relying only on the geometry, more features were considered for 
the training process.  

In order to compare the results obtained from the evaluation of 
this model, the same test set as for Model 2 was used, that is, data 

from 37EN2 section of AHN3 dataset. In Table 6, a confusion 
matrix with the results is shown. It can be seen that the results are 
practically the same as those in Table 4 for Model 2. This implies 
that adding new features does not seem to have an impact at all 
on the network performance, and it relies purely on the geometry 

of the point cloud with its coordinates (𝑥, 𝑦, 𝑧). A visual example 
of these results in a particular case where the confusion between 
vegetation and building classes is noteworthy is shown in Figure 
6. Qualitatively, it was noted that the network tends to fail
classifying high buildings and their façades, assigning high 

probabilities to the vegetation class to those points.  

GT/ predict Ground Vegetation Building FN rate 

Ground 10 329 433 93 115 175 516 2.53% 

Vegetation 400 765 8 607 694 115 521 5.66% 

Building 449 368 1 637 483 1 567 664 57.10% 

FP rate 7.60% 16.74% 15.66% 

Accuracy 87.37% 

Table 6. Model 3 results. 

Figure 6. Classification results using Model 3 on a subset of the 
AHN3 data with a high confusion between vegetation 
and buildings. (a) Prediction (ground, vegetation and 

buildings are coloured as blue, green and yellow 
respectively). (b) Ground truth. Again many roof 
points are classified as high vegetation 

4.4 Global discussion 

This work proposed two main contributions in Section 1: To 
prove the capabilities of the PointNet architecture for semantic 
segmentation applications in outdoor point clouds, and to 
evaluate the specific application of classifying point clouds for 
future versions of the AHN dataset. Regarding the first one, a 
simple yet demonstrative application (ground classification) was 
considered, showing high classification accuracies and 
motivating the second contribution. However, the three-class 

classification proposed with models 2 and 3 showed that there is 
still room for improvement. While the ground segment of the 
point clouds is classified with decent performance metrics, there 
is a high confusion rate between the two remaining classes, 
vegetation and buildings (note that the accuracy values in Tables 
4-6 are biased by the large number of ground points). This same 
problem remains even when features that may help to 
discriminate between both classes such as the return number and 

the point intensity are added to the feature vector that is fed to the 
classification network. In order to solve that, different 
considerations can be made, such as proposing a hierarchical 
classification that in a first place classifies the ground, and in a 
second classification, using different features, distinguishes 
between buildings and vegetation. Besides the conclusions that 
have been extracted from the quantitative values of the 
performance metrics, it can also be concluded, from the 
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compared results of AHN2 and AHN3 datasets, that is feasible to 

automatically assist the labelling of future iterations of national-
wide point cloud databases.  

5. CONCLUSIONS

In this work, an already existing architecture for the semantic 
classification of point clouds, PointNet, which was initially 
developed for different applications including semantic 
segmentation of indoor scenes, was employed in order to assess 
its suitability for the classification of aerial point clouds from the 
AHN dataset, an aerial point cloud that covers The Netherlands. 
For that purpose, three different models based on the same 
architecture were proposed. The first one performed a binary 

ground classification, and proved that PointNet is suitable for 
applications in outdoor point clouds after modifications in some 
network parameters and in the data organization strategy, 
obtaining an F-score above 96% for the classification of the 
ground. This good result motivates the subsequent part of this 
work, where two different models are trained for classifying 
ground, vegetation and buildings, the three main elements that 
are labelled in AHN3. Although results across different versions 

of AHN are similar and therefore the classification of future 
iterations of the database with a previously trained model seems 
feasible, the results are not as positive as for the case of ground 
classification, with a high confusion between vegetation and 
building classes in both models.  

As future work, a deeper understanding of the network will be 
required in order to determine if the results can be improved with 

no significant changes at the training stage, or it is necessary to 
find different approaches for this semantic segmentation 
applications, such as PointNet++ network, which takes into 
account multi-scale context. In essence, more experimentation is 
needed in order to know if a point-wise semantic segmentation is 
achievable or recommendable over voxel or image based 
methods.  
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