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ABSTRACT: 

 

Airborne photogrammetry and airborne laser scanning are two commonly used technologies used for topographical data acquisition at 

the city level. Change detection between airborne laser scanning data and photogrammetric data is challenging since the two point 

clouds show different characteristics. After comparing the two types of point clouds, this paper proposes a feed-forward Convolutional 

Neural Network (CNN) to detect building changes between them. The motivation from an application point of view is that the 

multimodal point clouds might be available for different epochs. Our method contains three steps: First, the point clouds and 

orthoimages are converted to raster images. Second, square patches are cropped from raster images and then fed into CNN for change 

detection. Finally, the original change map is post-processed with a simple connected component analysis. Experimental results show 

that the patch-based recall rate reaches 0.8146 and the precision rate reaches 0.7632. Object-based evaluation shows that 74 out of 86 

building changes are correctly detected. 

 

 

1. INTRODUCTION 

To make the urban topographical database up-to-date is of vital 

importance for urban planning and management (Tran et al., 

2018). A common data updating process is as follows: new 

remote sensing data are obtained at the new epoch and then 

changes are detected between the two epochs. This allows 

performing updates only where changes have happened. In 

practice, the two main remote sensing data used for this type of 

analysis are those issued from airborne laser scanning (ALS) and 

airborne photogrammetry. It is common that laser scanning data 

and photogrammetry data are available in different epochs. For 

example, in some mapping agencies the laser scanning point 

clouds are available as existing database, while aerial images are 

acquired as a new data set frequently. This paper aims to detect 

changes between laser scanning data and photogrammetry data. 

 

Both airborne laser scanning and photogrammetry can generate 

point clouds, but their principles for point cloud generation are 

quite different. In airborne laser scanning, the time of flight of 

laser beam is recorded from emission to reception. The distance 

from the laser sensor and the object is calculated based on the 

travel time (Vosselman and Maas, 2010). The objects’ location is 

calculated based on this distance, the instant sensor location and 

the attitude (i.e. the aircraft position). Finally, 3D coordinates of 

unordered points are obtained as a main product from laser 

scanning. In contrast, airborne photogrammetry starts from aerial 

image acquisition under strict flight control and image quality 

control. 3D point clouds are obtained from dense image matching 

(DIM) and forward intersection of corresponding rays. 

Additionally, 2.5D Digital Surface Models (DSMs) and 2D 

orthoimages can also be obtained after interpolation and ortho-

rectification, respectively (McGlone et al., 2013). 

 

The point clouds from airborne laser scanning and dense 

matching show different characteristics (Remondino et al. 2014; 

Nex et al., 2015; Ressl et al 2016; Mandlburger et al., 2017). Fig. 

1 illustrates the data differences between laser scanning points 

and dense matching points. There are no object changes between 

the two epochs but the two point clouds still differ. The last 

column shows that a simple DSM differencing between the two 

data sets leads to many falsely detected changes due to data 

inaccuracy, noise and data gaps. 

 

 Accuracy: The vertical accuracy of laser scanning can 

reach ±5 cm, while the vertical accuracy of dense matching 

points from strict quality control and state-of-the-art dense 

matching algorithms can be better than 1 Ground Sampling 

Distance (GSD), which is usually 10-20 cm from airborne 

platforms. 

 Precision: Generally the point clouds from laser scanning 

contain less noise than point clouds from dense matching. 

Dense matching brings mis-matchings when the image 

contrast is poor, as, for example, in shadowed areas. 

 Data gap level: In point clouds issued from dense 

matching, data gaps occur not only due to poor image 

contrast, but also due to limited visible rays. Therefore, data 

gaps in dense matching point clouds may occur on narrow 

streets, water surfaces, tree canopy or under shadow (Zhang 

et al., 2018). In laser scanning, data gaps occur due to 

occlusion or pulse absorption by the surface material. 

Considering the differences between the two point clouds, it is 

difficult to detect changes based only on prior knowledge and ad 

hoc rules. Meanwhile, Convolutional Neural Network (CNN) 

have shown excellent performance in extracting semantic 

features and change detection tasks. This paper proposes a CNN-

based framework to detect changes between point clouds. First, 

the point clouds are converted to 2.5D DSMs and then to 2D 

raster images. Square patches are selected from the raster images. 

Second, the ALS-DSM patch, the DIM-DSM patch, and the 

corresponding orthoimage patch (R, G, B) are stacked and fed 

into a feed-forward CNN for change detection. Finally, the 

change map is refined with connected component analysis. 
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Figure 1. A comparison between laser scanning data and dense matching data. From left to right: orthoimages for reference, laser 

scanning points colored by height (red colors mean higher points), dense matching points with true colors, DSM differencing colored 

by height (red colors mean large differences). The top row shows a dense residential area; the bottom row a scene with one tall tree at 

the middle bottom and thirty short trees.

We apply the proposed method to detect changes between 

multimodal point clouds obtained over a densely-built urban 

area. Results show that 74 out of 86 building changes are 

correctly detected. 

 

The paper is structured as follows. Section 2 reviews related work 

on point cloud change detection. Section 3 presents our proposed 

change detection method. Section 4 presents the study area and 

the experimental settings. Section 5 presents the results and 

discussions. Section 6 concludes the paper. 

 

 

2. RELATED WORK 

Change detection is the process of defining differences in an 

object by analyzing it at different epochs (Singh, 1989). The input 

data of two epochs can be either raw remote sensing data or from 

an existing database (Qin et al., 2016). Concerning 3D change 

detection, change detection can be performed either between 3D 

data or by comparing 3D data of a single epoch to a bi-

dimensional map (Vosselman, 2004). 

 

When 3D data are available at both epochs, a point-to-point 

comparison (also called surface differencing) is widely applied. 

Surface differencing is used to define the potential change 

locations, followed by a more accurate post-classification to 

recognize the specific types of changes (Lu et al., 2004). Basgall 

et al. (2014) compared laser points and dense matching points 

with the CloudCompare software. Single building changes were 

detected by visual inspection. Xu et al. (2015) detected changes 

on the DSM differencing map using knowledge-based rules. This 

method involved handcrafted rules which required heavy prior 

knowledge about the scene. Du et al. (2016) detected building 

changes in outdated dense matching point clouds using new laser 

points, which is the reverse setup with the one considered in this 

paper. Iterative Closest Point (ICP) algorithm was used to register 

the two point clouds. Height difference and grey-scale similarity 

were used with contextual information to detect changes in the 

point cloud space. Finally, the detected changes were refined 

based on handcrafted features. This framework required to set 

some thresholds based on prior-knowledge towards the scene. 

 

When raw data are only available for the past epoch, while a map 

or 3D models are available for the new epoch, a direct point to 

point comparison or surface differencing is not feasible. 

Vosselman et al. (2004) detected and updated building changes 

in a 2D map using laser scanning data. After segmentation and 

filtering bare earth points, the object points were classified as 

buildings or vegetation based on surface roughness, segment size, 

height, color and first-last pulse difference. The building 

segments were compared with the building objects on 2D maps 

for change detection. 

 

Olsen (2004) proposed a method to detect building changes in the 

3D topographic database TOP10DK using imagery. The data 

preparation steps included the registration between the map 

database and the images, the generation of normalized DSM, 

followed by a training data evaluation. The change map was 

computed with a pixel-by-pixel comparison between the map 

database and the classified images. The overall accuracy of 

change detection was 50%; 45 false alarms were detected (which 

corresponds to three times the quantity of real changes). Chen 

and Lin (2010) proposed a method to update 3D building models 

using new LiDAR points and aerial images. In the change 

detection process, the height differences between LiDAR points 

and old polyhedral building models based on facet orientation 

analysis indicated the major information about changes. The line 

features on images were used to verify the change detection 

results. However, such framework cannot detect newly-built 

buildings. Stal et al. (2013) detected changes between DSMs 

derived from laser scanning and dense image matching. Their 

method was based on surface subtraction followed by a series of 

refinements to remove false detections. 

 

Recently, CNNs show excellent performance in various 

computer vision tasks, e.g. image classification (Krizhevsky et 

al., 2012), semantic segmentation (Long et al., 2015; Volpi and 

Tuia, 2018; Audebert et al., 2018) and object detection (Ren et 

al., 2015). Compared to traditional classifiers with handcrafted 

features as inputs, convolutional neural networks learn the 

features directly from data and have inner hierarchical structures 

that allow learning features going from low level geometrical 

characteristics to more semantic features at the bottleneck of the 

network. Concerning image-based change detection, Mou et al. 

(2017) identified corresponding patches between SAR images 
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Figure 2. The CNN architecture proposed for multimodal change detection. The top row shows the operations, the parameters below 

feature maps show the feature map size and number of channels (e.g. 100 × 100 × 5).

and optical images using a pseudo SI-CNN. The feature maps 

from the two Siamese branches were concatenated, which 

worked as a patch comparison unit. Zhan et al. (2017) maintained 

the original input size in each convolutional layer in the two 

branches followed by a weighted contrastive loss function. The 

acquired change maps were acquired from threshold 

segmentation and post-processed by a K-nearest neighbor 

approach. 

 

In addition, CNN also shows superior performance in extracting 

distinctive features from point clouds (Hu and Yuan, 2016; 

Rizaldy et al., 2018). Our change detection framework was 

inspired by these two papers. We aim at developing an automatic 

multimodal change detection method for a large urban data set. 

The proposed method should involve very scarce thresholds to 

tune. 

 

3. METHOD 

Our method includes three steps: First, the multimodal point 

clouds and orthoimages are converted to raster images. Square 

patches are cropped from the images as the minimum unit for 

change detection. Second, the patches are fed into CNN for 

binary classification with an output of changed or not. Third, the 

original change map is post-processed with connected 

component analysis. 

 

3.1 Pre-processing 

The DIM data are registered to the ALS data because we did 

bundle adjustment and quality control in the photogrammetric 

workflow using Ground Control Points (GCPs). In the pre-

processing step, the ALS point cloud, DIM point cloud, and the 

orthoimage are converted to images. The ALS point cloud is 

converted following this sequence: point cloud -> DSM -> raster 

image -> patches. The ALS point cloud and DIM point cloud are 

converted to DSMs using Inverse Distance Weighting (IDW). 

The two DSMs are normalized to a raster image: 

 

  𝐻 = (𝐻0 − 𝐻𝑚𝑖𝑛) (𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛⁄ ) (1) 

 

where 𝐻0 is the height of a node in the DSM grid. 𝐻𝑚𝑖𝑛 and 𝐻𝑚𝑎𝑥 

are the minimum and maximum DSM height in the whole study 

area. After normalization, the values in the raster images range in 

[0,1]. This representation approach is able to maintain all the 

height details in the DSMs. In addition, the three channels R, G 

and B of the orthoimages from dense matching are also 

normalized to [0, 1] by simply dividing each pixel value by 255. 

At the end of this stage, all five channels are normalized into 

[0,1]: ALS-DSM, DIM-DSM, R, G and B. 

 

The building changes are manually labeled on the orthoimage 

with guidance of ALS points, DIM points and DSM 

differencing map. When a building is new or heightened, the 

boundary is delineated from the DIM point clouds; When a 

building is demolished or lowered, its boundary is delineated 

from the ALS point cloud. Data gaps and water appear in both 

laser points and DIM points. When data gaps appear in either 

epoch, we simply cannot make any prediction about the 

change. In addition, we are not interested in the water height 

changes caused by tides. Data gaps and water are marked on 

the ground truth map and are not considered during change 

detection. Four types of changes are manually delineated on 

the ground truth map: changed building, data gap, water, and 

other. Specifically, the changed building class includes new, 

demolished, heightened and lowered buildings. Other 

includes all the irrelevant changes and unchanged areas. 

 

After ground truth delineation, small square patches are cropped 

from the raster images based on the ground truth. When cropping 

the patches from images, the ALS-DSM, DIM-DSM and 

orthoimage patches are strictly registered with each other. A 

critical question is how to define a changed patch and an 

unchanged patch. Some previous patch-based classification work 

assigned the label of the central pixel of a patch to the whole 

patch (Hu and Yuan 2016; Daudt et al., 2018). However, this 

definition method is sensitive to slight displacement of the patch. 

In this paper, we label the patch as changed if the ratio of changed 

pixels in this patch is larger than a threshold. The rules used for 

patch labeling are as follows: 

 1. If the ratio of pixels for water and data gaps is larger than 

𝑇1, eliminate the patch. 

 2. If the ratio of changed pixels is larger than 𝑇2, the patch 

is labeled as changed (𝑇1 < 𝑇2); otherwise it is unchanged. 

3.2 CNN architecture 

The registered three patches with five channels (ALS-DSM, 

DIM-DSM and orthoimage) are stacked and fed into the CNN for 

change detection. The proposed CNN architecture is a typical 

feed-forward architecture as shown in Fig. 2. It contains three 

convolution blocks, three fully connected layers, and one 

classifier layer. The network is conceptually similar to AlexNet 

(Krizhevsky et al., 2012) and the change detection network 

proposed by (Mou et al., 2017), which has more convolution 

layers with respect to AlexNet. Our task is easier than theirs. In 

(Mou et al., 2017), the two patches to be compared are not only 

from different sensors (SAR and optical), but also involve 

translation, rotation and scale changes. In our case, the compared 

patches are strictly registered and normalized to the same scale. 

Therefore, we use only three convolution blocks for feature 

extraction. 
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(1) Convolution blocks and fully connected layers 

In Fig. 2, the input to the CNN contains 5 channels. The inputs 

are processed by three convolution blocks consecutively. Each 

convolution block contains a convolution operation followed by 

Rectified Linear Unit (ReLU) and max-pooling layers 

(Goodfellow et al., 2016). The size of convolution kernels is 5 × 

5. The padding size is 0 and the sliding is 1. The feature map size 

decreases by 4 pixels in height and width, respectively after one 

convolution operation. 

 

Fully connected layers are used in the final stages of the network 

for high-level reasoning. We use 3 fully connected layers. The 

last fully connected layer outputs a 2×1 vector, which is 

corresponding to the non-negative class scores. 

 

(2) Loss function 

Suppose that (𝑥1, 𝑥2) is the 1D vector predicted from the last 

fully connected layer, the loss is computed between (𝑥1, 𝑥2) and 

the ground truth (1 for changed and 0 for unchanged). First, the 

vector is normalized to (0,1) by a Softmax function: 

 

 𝑝𝑖 =
exp(𝑥𝑖)

exp(𝑥1) + exp(𝑥2)
 , 𝑖 = 1,2 (2) 

 

 

where 𝑝1 + 𝑝2 = 1. Then, a weighted binary cross entropy loss 

is calculated: 

 

 𝐿𝑜𝑠𝑠 = −(𝑤1𝑦log(𝑝1) + 𝑤2(1 − 𝑦)log (𝑝2)) (3) 

where y is the ground truth. 𝑝𝑖 is the predicted probability from 

the Softmax function. 𝑤1: 𝑤2 is the negative training samples to 

positive samples ratio. In urban scenes, the negative samples 

(unchanged) are usually several times and even more than the 

positive samples (changed). By assigning imbalanced weights to 

the loss function, we make a larger penalization to a false positive 

than a false negative to guarantee less false positives. 

 

3.3 Connected component analysis 

Connected component analysis is adopted as post-processing to 

remove isolated patches. The principle is that small isolated 

patches are not likely to be a real building change but rather a 

false positive. It contains two steps. First, the changed patches 

are connected with their 8-neighborhood on the orthoimage, 

which brings many candidate changed components. Second, the 

minimum enclosing rectangle is calculated for each connected 

component. If the maximum side length of the rectangle is 

smaller than 𝑇3, this component is regarded as false positive and 

removed. 𝑇3 is set according to the minimum size of the changed 

buildings we propose to detect in the study area. After post-

processing, many isolated changed patches are amended to be 

unchanged. 

 

4. EXPERIMENTS 

4.1 Study area 

The study area is located in Rotterdam, a densely-built port city. 

The airborne laser points and aerial images were acquired in 2007 

and 2016, respectively. The study area is 14.5 km2 as shown in 

Fig. 3. 2160 aerial images were acquired by CycloMedia from 

five perspectives. The tilt angle of the oblique view was 

approximately 45°. The image size is 7360 × 4912 pixels. The 

Ground Sampling Distance (GSD) of the nadir images equals 0.1 

m. The bundle adjustment and dense matching were run in 

Pix4Dmapper. The vertical RMSE of 48 GCPs is 0.021 m and  

 
Figure 3. Study area. (a) ALS data colored according to point 

height. (b) Orthoimage colored based on true object color. 

 

the vertical RMSE of 20 check points is 0.058 m. After dense 

matching, DSMs and orthoimages were generated at the same 

resolution of 0.1 m. Fig. 3(a) shows the laser scanning data and 

Fig. 3(b) shows the generated orthoimage. The training, 

validation and testing area make up 28%, 25% and 42% of the 

study area, respectively. 

 

4.2 Experimental setup 

After pre-processing, the grid cells of the two DSMs are strictly 

registered with the pixels on orthoimages. The unified interval is 

0.1 m in X and Y directions. The patch size is 100 × 100 pixels, 

which corresponds to 10 m × 10 m in object space. During sample 

selection, 𝑇1 and 𝑇2 mentioned in Section 3.1 are both set to 0.1. 

Since only a few changed buildings exist in the training area, we 

use two strategies when preparing positive training samples: (1) 

Half-overlap sampling: Selecting positive patches with a stride of 

half-patch size allows us to make complete sampling of the 

changed areas. (2) Data augmentation: Each positive sample is 

rotated by 90°, 180°, and 270° and also horizontally and 

vertically flipped (Zhan et al., 2017). When selecting negative 

training samples, validation samples and testing samples, half-

overlap sampling is adopted but data augmentation is not. The 

number of training, validation and testing samples are shown in 

Table 1. Table 1 shows that there are much more negative 

samples than positive samples in the validation and testing sets. 

And the ratio of positive to negative samples in three sets are 

different. The ratio 𝑤1: 𝑤2 is set to 5.18 ∶ 1 based on the number 

of positive and negative samples in the training set. 

 

 Positive Negative 
Total 

samples 

Pos-to-

neg ratio 

Training 22,398 116,061 138,459 1 : 5.18 

Validation 2,925 104,111 107,036 1 : 35.6 

Testing 6,192 129,026 135,218 1 : 20.8 

Table 1. Number of training, validation and testing samples. 

 

Fig. 4 shows 5 positive and 5 negative training samples. Magenta 

indicates the building changes which are either new or 

heightened. Cyan indicates a demolished or lowered building. 

Yellow indicates data gaps in either laser points or dense 

matching points. 

 

𝑇3, mentioned in Section 3.3, is set to 10 m and 20 m for a 

comparative study, which means that only changed buildings  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019 | © Authors 2019. CC BY 4.0 License.

 
456



 

 
Figure 4. Training samples. (a) Top row: 5 Positive examples. (b) 

Bottom row: 5 negative examples. The digits below each sample 

are the ratio of changed pixels in the whole patch. 

 

larger than 10 m or 20 m in length are kept after post-processing. 

The network is trained from scratch. The batch size is 128. The 

optimization algorithm is Stochastic Gradient Descent (SGD) 

with momentum (Goodfellow et al., 2016). The learning rate 

starts from 0.008 and decreases by 0.003 after every 30 epochs. 

We train the network for 80 epochs with a momentum of 0.90. 

The training process is run on a single NVIDIA GeForce GTX 

Titan GPU with 11G memory. 

 

To evaluate the performance of our strongly-imbalanced 

classification, we consider widely-used evaluation metrics: 

recall, precision and F1-score. Recall indicates the ability of a 

model to detect all the real changes. Precision indicates the ability 

of a model to detect real changes. F1-score is a metric to combine 

recall and precision using the harmonic mean. 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), 𝐹1 = 2 ∙
(𝑅𝑒𝑐𝑎𝑙𝑙 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛). True Positive 

(TP) is the number of correctly detected changes. True Negative 

(TN) is the number of unchanged entities detected as unchanged. 

False Positive (FP) is the number of changes detected by the 

algorithm which are not changes in the real scene. False Negative 

(FN) is the number of undetected changes. 

 

 

5. RESULTS AND ANALYSES 

5.1 Validation and testing results 

It should be noted that our classification problem is a strongly-

imbalanced binary-classification problem. In real urban scenes, 

there are usually much more unchanged buildings than changed 

buildings. This brings two research problems: (1) The number of 

negative (unchanged) samples are several tens of times more 

numerous than the positive (changed) samples. The limited 

positive samples may not be enough to allow the model to learn 

change patterns. (2) Data distribution of positive and negative 

samples in the training set, validation set and testing set are 

different. In this case, the validation and testing performance of 

a CNN model will present a large difference. 

 

During training, the model is evaluated on the validation set after 

every three epochs to check its performance and ensure that there 

is no overfitting. Towards the end of training, the model with the 

highest F1-score is selected as the final trained model. The 

validation results are as follows: TP is 2,362; TN is 101,636; FP 

is 2,475; FN is 563. Recall equals 0.8075; Precision equals 

0.4883; F1-score equals 0.6086. That is, 80.75% positive samples 

are correctly inferred as positive; 97.62% negative samples are 

correctly inferred as negative. 

 

The testing results are listed in the beginning rows of Table 2. 

The model HHC-3convB indicates that the CNN model contains 

3 convolution blocks. And it takes ALS-DSM, DIM-DSM and 

orthoimage as input (H indicates height, while C indicates color). 

 

Network PP level Recall Precision F1-score 

HHC-

3convB 

w/o PP 0.8217 0.6717 0.7392 

T3 = 10 m 0.8212 0.7166 0.7654 

T3 = 20 m 0.8146 0.7632 0.7881 

HH-

3convB 

w/o PP 0.8143 0.6265 0.7081 

T3 = 10 m 0.8135 0.6737 0.7370 

T3 = 20 m 0.8112 0.7273 0.7670 

HHC-

4convB 

 

w/o PP 0.7988 0.5866 0.6764 

T3 = 10 m 0.7985 0.6402 0.7106 

T3 = 20 m 0.7943 0.6995 0.7439 

HH-

4convB 

w/o PP 0.8240 0.5789 0.6800 

T3 = 10 m 0.8236 0.6258 0.7112 

T3 = 20 m 0.8219 0.6798 0.7441 

Table 2. Testing results of different CNN architectures (w/o PP: 

without post-processing). 

 

As competing models, we also implement three other methods: 

HH_3convB, HHC-4convB, HH-4convB. HH indicates that only 

two DSMs are used as inputs and that the orthoimage is not used. 

4convB indicates that the CNN architecture contains 4 

convolution blocks followed by 3 fully connected layers. The 

classified patches are then post-processed with two different 

thresholds in the connected component analysis: 10 m or 20 m. 
The maximum value in each column is highlighted in bold. The 

motivation of studying 4convB is to check whether the model 

improves if deeper networks are adopted. The recall and 

precision in Table 2 are also visualized in Fig. 5. 

 

 
Figure 5. Recall and precision of different models with different 

post-processing levels. (a) Recall vs. post-processing level. (b) 

Precision vs. post-processing level. Four curves represent four 

different models. 

 

To qualitatively evaluate our results, the change maps are 

visualized in Fig. 6. Fig. 6(a) is the ground truth. Fig. 6(b) is the 

original output from the model HHC-3convB. Figures 6(c) and 

6(d) are the change maps after post-processing with 10 m and 20 

m thresholds, respectively. Fig. 7 shows the change maps from 

four CNN architectures. All these change maps have been post-

processed with T3 = 20 m. 

 

5.2 Discussions 

(1) Comparison of the four models 

 

In Table 2, the F1-score is used to measure the overall model 

performance. Among the 12 configurations, HHC-3convB (T3 = 

20 m) achieves the highest F1-score of 0.7881. Its recall rate and 

precision rate reach 0.8146 and 0.7632, respectively. Comparing 

the testing results from four CNN architectures with no post-

processing, the F1-score of HHC-3convB is higher than the other 

three models. In the models with 3 convolution blocks, the F1-

score of the model with HHC as input are higher than the model 

with HH as input by a margin of 3%. This can be explained by 

the fact that orthoimages provide additional information on 

making a correct prediction. Namely, the two DSM patches tell 

the height difference between the two point clouds, while color 

features tell whether the object is ground or vegetation. 
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Furthermore, if it is vegetation, the model might learn that a DSM 

height change is probably caused by heavy noise. 

 

Table 2 also shows that the model with 3 convB performs better 

than the model with 4 convB concerning the F1-score. It is easier 

for larger CNN models (with more layers or more nodes) to 

overfit the training data. Although both HHC-3convB and HHC-

4convB fit well on the training data, the generalization capability 

of HHC-3convB is better than HHC-4convB. Based on Occam’s 

razor principle (Novak et al., 2018), when two models have 

comparable performance, it is suggested to take the simpler one. 

In addition, Table 2 also shows that taking both DSMs and 

orthoimages as inputs (HHC-3convB, HHC-4convB) is better 

than taking merely DSMs as input (HH-3convB, HH-4convB). 

The orthoimage can provide color features, which contribute to 

making correct inference. 

 

(2) Impact of the post-processing levels 

Fig. 6(a) shows that post-processing only slightly impacts the 

recall rate but makes a remarkable improvement on the precision 

rate. As mentioned in Section 3.3, a lot of FPs are converted to 

TNs. When a certain patch is FN (namely omitted in the change 

map), it cannot be remedied by post-processing. According to Eq. 

(2), the recall rate is not affected while the precision rate is 

affected. 

When selecting the post-processing threshold T3, T3 should be 

determined by the targeted size of changed buildings. Using T3 = 

20 m for post-processing will filter out all the patch components 

smaller than 20 m. Fig. 6(b) and (d) show that using post-

processing with T3 = 20 increases the precision rate by 9.15% at 

the expense of decreasing the recall rate by 0.69%. As mentioned 

earlier, post-processing converts many detected changed patches 

as non-changes. When the threshold is large, many small but real 

changed patches are regarded as non-changed and thus removed. 

This over-processing causes more FNs (omissions), which leads 

to a slightly decreasing recall rate. 

 

(3) Analysis on the change maps 

Fig. 6(a) shows the ground truth for the testing set. Fig. 6(b) 

shows the change map from HHC-3convB without post-

processing. Generally, most changed patches and unchanged 

patches are correctly inferred. Increasing the level of post-

processing (from Fig. 6(b) to (d)), the false positives (magenta) 

are gradually decreased, since post-processing with larger 

thresholds are employed. The original change map from the CNN 

model contains quite some isolated FPs. This can be explained 

by that these areas represented by the square patches are similar 

to the changed pattern learned from the training data. Therefore, 

they are misclassified into changed patches (FPs). In Fig. 6(b), 

several FPs can be viewed on the park covered by dense 

vegetation located in the middle-left of the testing area. As 

mentioned in Section 1, laser points and dense matching points 

show quite different properties on canopies. These patches on 

vegetated areas are wrongly inferred as changed due to large 

differences due to the acquisition types. 

 

Some FPs appear on the terrain, especially on some construction 

sites. In these cases, the terrain is excavated or re-paved, the 

height is changed and the texture of terrain surface is close to that 

of roof surface: therefore the model misclassifies a changed 

terrain into a changed building, which leads to FPs. In addition, 

Fig. 6(b) also shows that FPs are more likely to appear along 

narrow alleys or in the shadow between tall buildings. In these 

areas, dense matching tends to perform poorly due to limited 

visible rays and poor image contrast. The point clouds are 

inclined to be less accurate and noisier in these areas. 

 

Both FNs and FPs often appear along the edges of changed 

buildings. When a patch is exactly stretching over the edge of 

changed buildings, part of the patch is changed while part of it is 

unchanged. Patches along building edges are often difficult and 

ambiguous to infer for three reasons: First, dense matching 

performs poorly in narrow alleys so the DIM point cloud is noisy 

in those areas. Second, mis-registration between the two point 

clouds is more severe along building edges than on other smooth 

surfaces. Hereby, height differences between the two DSMs may 

appear due to mis-registration errors. Third, we define the 

changed patches based on the ratio of changed pixels within a 

patch. This leads to ambiguity if the changed ratio is close to the 

threshold (10% in our case). 

 

In Fig. 6(b), some FNs appear due to small changed buildings. 

When building changes are too small, dense matching may not 

generate sufficient points to form an accurate DSM. The patches 

are thus misclassified into unchanged. In Fig. 7, (a) and (b) 

generally contain less FPs than (c) and (d). This is also reflected 

in Table 2(b) that the precision rate of CNN models with 3 

convolution blocks is higher than those with 4 convolution 

blocks. A possible explanation is that the larger model has been 

overfit to the training data. 

 

(4) Object-based evaluation 

Until now, the evaluation has been made based on individual 

patches. We can also evaluate the performance on individual 

building level. Each connected component is counted as a 

detected building change. There are 86 buildings labeled as 

changed in the testing area. In Fig. 6(b), 6(c) and 6(d), 79, 76 and 

74 building changes are detected, respectively. Using post-

processing with T3 = 20 removed many false detections as well 

as 5 true changes. These five changed buildings are all small 

changes and mis-classified into FPs in post-processing. 

 

 

6. CONCLUSIONS 

This paper proposes a framework to detect building changes 

between laser scanning points and dense matching points. The 

two types of point clouds present different characteristics and 

each of them contains noise and data gaps. A light-weighted feed-

forward CNN with three convolution blocks and three fully 

connected layers is used for change detection. Square patches 

cropped from ALS-DSM, DIM-DSM and orthoimage are fed into 

the CNN architecture. The feature maps inferred by CNN are 

post-processed by connected component analysis. Patch-based 

evaluation shows that the recall rate after post-processing reaches 

0.8146 while precision rate reaches 0.7632. Object-based 

evaluation shows that 74 out of 86 building changes are correctly 

detected although the change maps still contain many FPs. 

 

The advantage of our method is that CNN allows to fastly 

localize the building changes without feature engineering or 

change vector analysis. The feature extraction and comparison 

steps are both implicitly included in the CNN network. 

Concerning the limitations of our method, there are still some FPs 

and FNs in the change map after post-processing. In the future 

work, the change detection framework can be improved from two 

aspects: First, we can add more contextual information between 

the patches. Specifically, Fully Convolutional Neural Network 

(FCN) might be a solution (Long et al., 2015). FCN model is 

more complicated than feed-forward CNN and requires much  

more samples to train. Second, the current feed-forward CNN 

architecture can be extended to a Siamese CNN (Mou et al., 

2017), which extracts features separately in two branches and 

then concatenates them in a later stage.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019 | © Authors 2019. CC BY 4.0 License.

 
458



 

 
Figure 6. Change maps generated from model HHC-3convB. (a) Ground truth; (b) original change map without post-processing. (c) 

post-processed with T3 = 10 m. (d) post-processed with T3 = 20 m. 

 

 

 
Figure 7. Change maps from four CNN architectures (T3 = 20 m): 3convB-HHC, 3convB-HH, 4convB-HHC, 4convB-HH. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019 | © Authors 2019. CC BY 4.0 License.

 
459



 

REFERENCES 

 

Audebert, N., Le Saux, B. and Lefèvre, S., 2018. Beyond RGB: 

Very high resolution urban remote sensing with multimodal deep 

networks. ISPRS J. Photogram. Remote Sens., 140, pp.20-32. 

 

Basgall, P.L., Kruse, F.A. and Olsen, R.C., 2014. Comparison of 

lidar and stereo photogrammetric point clouds for change 

detection. In Laser Radar Technology and Applications XIX; and 

Atmospheric Propagation XI. Vol. 9080, pp. 90800R. 

 

Chen, L.C., and Lin, L. J., 2010. Detection of building changes 

from aerial images and light detection and ranging (LIDAR) data. 

J. of Appl. Remote Sens., 4(1), 041870. 

 

Daudt, R.C., Le Saux, B., Boulch, A. and Gousseau, Y., 2018. 

Urban change detection for multispectral earth observation using 

convolutional neural networks. In Int. Geoscience and Remote 

Sens. Symp. (IGARSS). 

 

Du, S., Zhang, Y., Qin, R., Yang, Z., Zou, Z., Tang, Y. and Fan, 

C., 2016. Building change detection using old aerial images and 

new LiDAR data. Remote Sens., 8(12), pp.1030. 

 

Goodfellow, I., Bengio, Y., Courville, A. and Bengio, Y., 2016. 

Deep learning (Vol. 1). Cambridge: MIT press. 

 

Hu, X. and Yuan, Y., 2016. Deep-learning-based classification 

for DTM extraction from ALS point cloud. Remote sens., 8(9), 

pp.730. 

 

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet 

classification with deep convolutional neural networks. In 

Advances in neural information processing systems, pp. 1097-

1105. 

 

Long, J., Shelhamer, E. and Darrell, T., 2015. Fully convolutional 

networks for semantic segmentation. CVPR, pp. 3431-3440. 

 

Lu, D., Mausel, P., Brondízio, E., and Moran, E., 2004. Change 

detection techniques. Int. J. of Remote Sens., 25(12). pp. 2365–

2401. 

 

Mandlburger, G., Wenzel, K., Spitzer, A., Haala, N., Glira, P. and 

Pfeifer, N., 2017. Improved topographic models via concurrent 

airborne lidar and dense image matching. ISPRS Ann. 

Photogram. Remote Sens. Spatial Inf. Sci. IV-2/W4, 259-266. 

 

McGlone, J.C., 2013. Manual of Photogrammetry (Sixth 

Edition). ASPRS. 

 

Mou, L., Schmitt, M., Wang, Y. and Zhu, X.X., 2017, March. A 

CNN for the identification of corresponding patches in SAR and 

optical imagery of urban scenes. In Urban Remote Sensing Event 

(JURSE), 2017 Joint. IEEE. pp. 1-4. 

 

Nex, F., Gerke, M., Remondino, F., Przybilla, H.J., Bäumker, M. 

and Zurhorst, A., 2015. ISPRS benchmark for multi-platform 

photogrammetry. ISPRS Ann. Photogram. Remote Sens. Spatial 

Inf. Sci. 2(3), pp. 135-142. 

 

Novak, R., Bahri, Y., Abolafia, D.A., Pennington, J. and Sohl-

Dickstein, J., 2018. Sensitivity and generalization in neural 

networks: an empirical study. arXiv preprint arXiv:1802.08760. 

 

Olsen, B. P., 2004. Automatic change detection for validation of 

digital map databases. Int. Arch. of Photogram. and Remote 

Sens., 30, pp. 569–574. 

 

Qin, R., Tian, J. and Reinartz, P., 2016. 3D change detection–

approaches and applications. ISPRS J. Photogram. Remote Sens., 

122, pp. 41-56. 

 

Remondino, F., Spera, M.G., Nocerino, E., Menna, F. and Nex, 

F., 2014. State of the art in high density image matching. The 

Photogrammetric Record, 29(146), pp. 144-166. 

 

Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-cnn: 

Towards real-time object detection with region proposal 

networks. In Advances in neural information processing systems, 

pp. 91-99. 

 

Ressl, C., Brockmann, H., Mandlburger, G. and Pfeifer, N., 2016. 

Dense image matching vs. airborne laser scanning–comparison 

of two methods for deriving terrain models. Photogrammetrie, 

Fernerkundung, Geoinformation (PFG). 2, pp. 57-73. 

 

Rizaldy, A., Persello, C., Gevaert, C., Oude Elberink, S. and 

Vosselman, G., 2018. Ground and multi-class classification of 

Airborne Laser Scanner point clouds using Fully Convolutional 

Networks. Remote sens., 10(11), pp.1723. 

 

Singh, A., 1989. Digital change detection techniques using 

remotely-sensed data. International journal of remote sensing, 

10(6), pp. 989-1003. 

 

Stal, C., Tack, F., De Maeyer, P., De Wulf, A., & Goossens, R., 

2013. Airborne photogrammetry and lidar for DSM extraction 

and 3D change detection over an urban area – a comparative 

study. International Journal of Remote Sensing, 34(4), pp. 1087–

1110. 

 

Tran, T.H.G., Ressl, C. and Pfeifer, N., 2018. Integrated change 

detection and classification in urban areas based on airborne laser 

scanning point clouds. Sensors, 18(2), pp. 448. 

 

Volpi, M. and Tuia, D., 2018. Deep multi-task learning for a 

geographically-regularized semantic segmentation of aerial 

images. ISPRS J. Photogram. Remote Sens., 144, pp. 48-60. 

 

Vosselman, G. and Maas, H.G., 2010. Airborne and terrestrial 

laser scanning. CRC. 

 

Vosselman, G., Gorte, B.G.H. and Sithole, G., 2004. Change 

detection for updating medium scale maps using laser altimetry. 

Int. Arch. of Photogramm., Remote Sens. and Spatial Inf. Sci., 

34(B3), pp. 207-212. 

 

Xu, S., Vosselman, G. and Oude Elberink, S., 2015. Detection 

and classification of changes in buildings from airborne laser 

scanning data. Remote sens., 7(12), pp. 17051-17076. 

 

Zhan, Y., Fu, K., Yan, M., Sun, X., Wang, H. and Qiu, X., 2017. 

Change Detection Based on Deep Siamese Convolutional 

Network for Optical Aerial Images. IEEE Geos. and Remote 

Sens. Letters, 14(10), pp. 1845-1849. 

 

Zhang, Z., Gerke, M., Vosselman, G. and Yang, M.Y., 2018. A 

patch-based method for the evaluation of dense image matching 

quality. Int. J. of Appl. Earth Observation and Geo-information, 

70, pp. 25-34. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-453-2019 | © Authors 2019. CC BY 4.0 License.

 
460




