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ABSTRACT: 

 

Landslide is painstaking as one of the most prevalent and devastating forms of mass movement that affects man and his environment. 

The specific objective of this research paper is to investigate the application and performances of some selected machine learning 

algorithms (MLA) in landslide susceptibility mapping, in Dodangeh watershed, Iran. A 112 sample point of the past landslide, occurrence 

or inventory data was generated from the existing and field observations. In addition, fourteen landslide-conditioning parameters were 

derived from DEM and other topographic databases for the modelling process. These conditioning parameters include total curvature, 

profile curvature, plan curvature, slope, aspect, altitude, topographic wetness index (TWI), topographic roughness index (TRI), stream 

transport index (STI), stream power index (SPI), lithology, land use, distance to stream, distance to the fault. Meanwhile, factor analysis 

was employed to optimize the landslide conditioning parameters and the inventory data, by assessing the multi-collinearity effects and 

outlier detections respectively. The inventory data is divided into 70% (78) training dataset and 30% (34) test dataset for model 

validation. The receiver operating characteristics (ROC) curve or area under curve (AUC) value was used for assessing the model's 

performance. The findings reveal that TRI has 0.89 collinearity effect based on variance-inflated factor (VIF) and based on Gini factor 

optimization total curvature is not significant in the model development, therefore the two parameters are excluded from the modelling. 

All the selected MLAs (RF, BRT, and DT) shown promising performances on landslide susceptibility mapping in Dodangeh watershed, 

Iran. The ROC curve for training and validation for RF are 86% success rate and 83% prediction rate implies the best model performance 

compared to BRT and DT, with ROC curve of 72% and 70% prediction rate, respectively. In conclusion, RF could be the best algorithm 

for producing landslide susceptibility map, and such results could be adopted for the decision-making process to support land use planner 

for improving landslide risk assessment in similar environmental settings. 

 

 

1. INTRODUCTION 

 

Globally, man encounter challenges in resolving check and 

balances between the search for shelter and the growing risk of 

environmental hazard as a result of climate change. The most 

densely populated regions around the world are the hills and 

mountainous areas, which are often prone to numerous forms 

of natural hazard including landslides. Landslide is a complex 

gravitational flow that initiates mass movements. Different 

categories of landslides and associated triggering factors have 

been reported in the literature with ambiguous definitions 

(Lollino et al. 2015; Pradhan et al. 2017a).  

A number of models with diverging steps of generalization 

have been established and investigated in geospatial science for 

evaluating landslide susceptibility. The models are categorized 

into five classes (Pradhan et al. 2017b), which include bivariate 

statistic, multivariate statistic, expert-based, machine learning 

and hybrid models. The individual models are subdivided into 

numerous subcategories with holds associated merits and 

demerits. 

                                                                 
*  Corresponding author 
 

Applications of these model groups in landslide mapping are 

reported in the literature these include analytic hierarchy 

process (AHP) (Sharma and Mahajan 2018) that requires expert 

knowledge, and fuzzy analytic hierarchy process (FAHP) 

(Yang et al. 2017) have incorporated expert-based model, 

which inventory data is not a requisite in the learning process. 

Nevertheless, the decision on the contributions of the landslides 

conditioning variables is subjective.  

Other landslides analytical models subclass like the weight of 

evidence (WOE) (Ilia and Tsangaratos 2016), statistical index 

(SI) (Razavizadeh et al. 2017), and frequency ratio (FR) 

(Sharma and Mahajan 2018) fits in the bivariate statistical 

models. While the logistic regression (LR) (Du et al. 2018), 

discriminate analysis (DA) (Pham and Prakash 2017), partial 

least squares (PLS) regression (Pradhan et al. 2017b) are 

multivariate statistical models group. The bivariate numerical 

models determine the impact of landslides conditioning 

variables on the menace incidence although, the focal drawback 

of this approach is the notion of conditional objectivity. On the 

other hand, the multivariate numerical models investigate the 
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relationship and involvements of all conditioning variables in 

predicting the occurrence of landslides; the perceived weakness 

associated with the models include huge data demand over a 

large scales regarding landslide distribution. 

Different MLA have rapidly advanced in recent time these 

include support vector machine (SVM) (Kalantar et al. 2018a; 

Piragnolo et al. 2017; Feizizadeh et al. 2017; Lin et al. 2016); 

artificial neural network (ANN) (Kalantar et al. 2018b; Dou et 

al. 2017), decision tree (DT) (Pradhan 2013; Wang et al. 2016), 

boosted regression tree (BRT) (Lombardo et al. 2015), and 

random forest (RF) (Chen et al. 2018; Zhang et al. 2017; Pirotti 

et al. 2016; Paudel et al. 2016). Studies have shown that MLA 

models interpret the nonlinear relationship, handles missing 

values with better analytical capability than conventional 

regression approach, and apply uncertainty in landslide 

inventory. The most promising MLA indicate effective for 

landslide susceptibility mapping area SVM, RF, and ANN. 

However, they are time costing and have difficulty in detecting 

uncertainty directly, in view of these there is a need to improve 

the approaches considerably.  

Lastly, to astound various potential drawbacks emanate from 

individual models, hybrid models is developed; these 

comprised FR–SVM, FR–LR, and WoE–RF, AHP-FR (Yan et 

al. 2019), a combined fuzzy and support vector machine (F-

SVM) (Meng et al. 2016), integration of support vector 

machine and random space (Hong et al. 2017). Often report 

high complexity in the integrated models. Selection of most 

appropriate approach is one of the challenges for land use 

planner.  

Therefore, to develop a landslide susceptibility models three 

MLA were explored and evaluated, they have been considered 

effective prediction tools in dealing with dependent and 

explanatory variables of non-linear relationships. These 

include a random forest (RF), decision tree (DT), and boosted 

regression tree (BRT) methods. The specific objective of this 

study is to investigate the optimum prediction model from the 

advanced MLA that is suitable for landslide susceptibility in 

Dodangeh watershed, the province of Mazandaran, Iran. For 

this purpose, 112 landslide inventories point data and 14 

landslide conditioning variables derived from digital elevation 

model (DEM) with geographic information system (GIS) tools 

and other topographic databases were prepared. 

Lastly, the viability and success of the adopted MLA have been 

evaluated and compared using performance metrics. The 

landslide inventory dataset is divided into the training (70%) 

and the test (30%) data. The best model attainment from the 

proposed models in this study will contribute the urban 

engineers in the decision-making process in the area of land use 

allocations and suitability for risk-free zones. 

 

2. STUDY AREA 

The Dodangeh District is located in the Sari County, province 

of Mazandaran, Iran with a geographic position on latitude 

3602'44.56''N and longitude 53014'34.78''E was considered as 

the study area. The area suffered seriously of landslides effects 

during the wet season and have a maximum elevation of 2800m 

with a population size of 8,140 in 2006. Two climatic seasons 

(dry and rainy) exist in the area. The vegetation cover consists 

of forest, agriculture, orchard and mixture of both (Figure 1a). 

The lithology structure of the area is shown in Figure 1b.  

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Landuse and (b) Lithology maps of the study area. 

 

  

3. MATERIALS AND METHODS 

The methodological flow chart in Figure 2 illustrated five steps 
cover this research paper; including (i) landslide conditioning 
factors, (ii) landslide inventories, (iii) factor analysis and 
optimization (iv) machine learning methods (RF, DT, BRT), 
(v) validation using area under curve (AUC). 

 

3.1 Landslide Conditioning Factors 

In this study, fourteen conditioning factors, which includes 

TWI, TRI, total curvature, STI, SPI, slope, profile curvature, 

plan curvature, lithology, land use, distance to stream, distance 

to fault, altitude, aspect were derived from DEM and other 

topographic databases. While altitude, aspect, slope, curvature 

(profile, plan, total) were derived from DEM of 10m resolution, 

and TWI, TRI, STI, SPI were calculated using the flowing 

formula: 

SPI = As tan β     (1) 

TWI = log
e

(
As

tanβ
) ,        (2) 

                STI = (
AS

22.1
 )

0.6

(
sinβ

0.0896
 )

1.3

,                 (3) 

 TRI = √⌊x⌋(max2+min
2
)                      (4) 

Where     As = area of catchment (m2)  

                β  = gradient of the slope in radians (Hong et al. 2018)                           

                   max, min = largest and minimum value of pixel in                        

                               nine rectangular altitude neighbourhoods    

                                  (Kalantar et al. 2018a). 

         

 Distance to faults and stream are generated using Euclidean 

distance function in ArcMap. Furthermore, the variables were 

classified using quantile range in ArcGIS software 

environment, altitude was reclassified into five classes (210-

420m, 430-560m, 570-700m, 710-840m, 850-1200m), the 

slope angle was reclassified into five classes (0-7.3°, 7.4-12°, 

13-17°, 18-24°, 25-67°) (Figure 3a and 3b), slope aspect was 

classified into nine classes of directions (flat, Northeast, East, 

Southeast,South, Southwest West, Northwest, and North 

Figure 3c). In addition, the profile and plan curvature were 

categorized in three classes convex (negative values), flat (zero 

(a) (b) 
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value) and concave (positive values) (Figure 3d and 3e). The 

land cover classes are dry farming, highly dense forest, mixed 

forest and orchard, agriculture, mixed agriculture and orchard, 

orchard, mixed orchard and agriculture, Sandy/dune and urban 

area were illustrated in (Figure 2a). Lithology was used as 

mentioned in previous section (Figure 2b).  However, the TWI, 

STI, and SPI were ordered into five classes as shown in Figure 

3f, 3g, and 3h, respectively.  Finally, Distance to stream and 

Distance to fault were categorized into five classes, see (Figure 

3i and 3j).  

 

 
Figure 2. Overall workflow of this study.  

3.2 Landslide Inventories 

112 randomly landslide inventories points have been obtained 

with 14 different landslides conditioning variables 

(independent variables). The inventory is sourced from visual 

interpretation, previous reports, aerial photographs and satellite 

images. 70% of the landslide inventories were used for training 

and 30% was used for testing (Hong et al. 2018).  

In a successful prediction model, there must be a dependent 

variable (y) and independent or predictors variable (x1,..xn). To 

develop the landslides susceptibility maps, we considered two 

rejoinders (landslide denoted by 1 and no landslide denoted by 

0) as the (y) variable and the conditional variable as 𝑥-

variables. The generated datasets are continuous in natures and 

subjected to pre-processing that involve a check for 

multicollinearity effects, out layer evaluation feature 

contribution. Although, the variables were normalized prior to 

the model development to get rid of large dissimilarity and 

concentration on the certain variable principal dispersals. In 

view of this, variable scale domination of different variables; 

then the dataset has a unit (1) variance and zero (0) mean 

through individual conditioning variable. Hence, 𝑧-sore 

normalization was utilized, that could present as follows: 

 

                     norm,Xij=
Xij − mean Xj

std Xj

                        (5) 

 

3.3 Statistical Analysis and Optimization  

The next step is factor analysis was applied in the pre-process 

section to assess for the presence and eliminate of collinearity 

effect in a given landslide conditioning parameters and outlier 

values in the inventory dataset (Pradhan et al. 2017b). Multi-

collinearity denotes signifies the existence of a strong 

relationship amongst the independence or conditioning variable 

with one another in the model. Note that the presence of multi-

collinearity reduces the model performance by increasing the 

error term.  
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Figure 3. Conditioning factors. 

Researchers have developed and recommended a various 

approach to address multi-collinearity such as (a) discarding 

highly correlated features (b) Linear combination of the highly 

correlated features and (c) implementing progressive 

simulations, which explain multi-collinearity effect (Pradhan et 

al. 2017b).  We adopted the highly related features discard 

approach using an estimation of variance-inflated factor (VIF) 

as the following equation: 

VIF = 
1

1− R'2   (6) 

where     𝑅′ = multi correlation coefficient between individual 

feature and the other features in the model. 

 In the current study, the factors with a VIF greater than 4.00 is 

removed. Table 1 displays the estimated VIF values. The VIF 

values show that the TRI (VIF = 4.16) is the factor which 

suffers multi-collinearity in the dataset. Therefore, TRI is 

discarded (Pradhan et al.  2017b). 

 Factor optimization is another important stage in landslide 

susceptibility mapping. A large number of conditioning factors 

could increase the training sample size and computational cost. 

Consequently, the estimated regression coefficients are misled 

when the number of factors increased. In this research, 

attributes of factor optimization that include Chi-square and 

Gini importance was applied to identify the important features 

and get rid of the insignificance variables at 0.05 (95%) 

confidence level, used for further analysis. Table 2, shows the 

results of the model input selected based on their significant 

importance. Accordingly, the factors optimizations’ attributes 

have all agreed in selecting three factors (altitude, land use and 

lithology), which are considered the most important features 

for the prediction of landslide susceptibility in Dodangeh 

watershed. 
 

Factor Multi-collinearity and Statistics 

summary 

Means Standard 

Dev. 

Multiple VIF 

TWI 2.71 1.63 0.66 1.78 

TRI 2.77 1.39 0.87 4.16 

Total Curvature 1.94 1.00 0.62 1.63 

STI 2.61 1.07 0.73 2.19 

SPI 1.96 0.57 0.49 1.33 

Slope 3.02 1.39 0.85 3.71 

Profile Curvature 2.09 0.99 0.37 1.16 

Plan Curvature 2.02 1.00 0.49 1.32 

Lithology 8.33 3.01 0.26 1.07 

Land use 2.13 1.60 0.18 1.03 

Distance to Stream 103.67 128.25 0.11 1.01 

Distance to Fault 416.40 311.96 0.07 1.00 

Altitude 2.62 1.4801 0.62 1.62 

Aspect 185.26 103.59 0.14 1.02 

Table 1. The estimated Variance Information Factor (VIF) for 

landslide conditioning variables. 

 

Variables Chi-square 

( 𝑿𝟐) method Gini Method 

( 𝑿𝟐) p-

values 

Gini IV Cramer’s 

V 

Altitude 69.284 0.000 0.354 1.424 0.539 

Land use 63.483 0.000 0.367 1.188 0.514 

Lithology 35.529 0.000 0.463 0.319 0.271 

TRI 21.823 0.000 0.462 0.313 0.274 

STI 14.162 0.006 0.465 0.065 0.262 

Aspect 11.802 0.160 0.465 0.284 0.261 

Distance 

to Stream 
10.892 0.091 0.477 0.188 0.211 

Slope 9.336 0.053 0.479 0.180 0.204 

TWI 4.852 0.434 0.485 0.119 0.170 

Distance 

to Fault 
4.754 0.689 0.489 0.032 0.146 

SPI 2.813 0.244 0.493 0.050 0.111 

Profile 

Curvature 
1.460 0.226 0.496 0.026 0.080 

Plan 

Curvature 
0.017 0.893 0.499 0.0003 0.008 

Total 

Curvature 
0.000 1.000 0.500 0.000 0.000 

Table 2. The factors importance based on factor optimization 

(Chi-square and Gini). 

3.4 Machine Learning Algorithm (MLA)  

This study employed three MLAs (RF, DT and BRT) in 
developing the landslide susceptibility models using R 3.0.2 (an 
open source software). RF approach is an ensemble machine 
learning method that creates a large amount of DT; used to 
describe the spatial relationship that exists in landslide events. 
In contrast to other algorithms, RF has different procedures for 
essential factors. A recommended procedure is the influence on 
the classification accuracy because the value of the factor in a 
developed tree-like structure was evaluated randomly (Pradhan 
et al. 2017b). Application of RF method in landslides 
susceptibility has used the gain of high modification among the 
different trees, which permit individual tree to choose a class 
association or membership and allocation groups of a particular 
class are based on highest number of the supported polls. This 
ensemble exhibited a promising performance on complex 
datasets, with a simple preparation and processes (Stumpf and 
Kerle 2011).  

The second approach is the DTs, which have reported to be an 
effective data-mining tool capable of predicting both continuous 
and categorical (discrete) response features (Lee et al. 2006). 
Integrated nodes in the model are splits into different 
observation. Existing components of the initial nodes begin to 
nurture a tree via the training data and the explanatory features 
resulted in a number of division of child nodes. It is possible for 
the algorithm to further produce more division from the child 
nodes but advance split is not allowed at the node terminal. The 
model prediction ability depends on the structure of the tree 
nodes terminal; this procedure has numerous advantages. The 
most paramount importance of the model is the ability to predict 

 

(j) 
 

(i) 
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complex relationships between variables and give a simple 
explanation of a DT (Bui et al. 2012). Moreover, complex 
mathematical equations are not associated with DTs model for 
any predictions. Finally, the demerits attributed to this model 
involves their proneness to filthy data and allowed limited 
attributes result. for more details on DT equations, the interested 
reader is directed to (Bui et al. 2012). 

BRT is a hybrid of statistical and machine learning methods, 
aimed at improving the performance of a model through 
appropriate integration of various models for prediction of an 
event (Schapire 2003). The latest development in BRT approach 
is demonstrated in modelling the occurrences of natural hazard 
that is not linear in nature and prove adequate in conducting 
complex nonlinear relationships. In-depth feature or data, pre-
processing (transformation and outlier detection) is not 
necessary for this approach because the correlation effects 
between variables are reported automatically (Elith et al. 2008). 
The two approaches that made up BRT are regression and 
boosting, which produces intuitive results represented in a 
simple visualize on DTs.  Some outstanding characteristics of 
the DT models exist in literature, which includes, unaffected to 
outlier and surrogate approach is used to amend missing data in 
model input variables (Elith et al. 2008; Breiman et al. 1984). 
The boosting algorithm purposely employed to enhances model 
performance accuracy because it is capable of detecting 
numerous irregular procedural search better than to discover a 
solitary optimal or extreme forecasting control instruction 
(Schapire 2003). Addition of several appropriate trees in the 
BRT model will surmount the model’s weakness. 

3.5 Validation of the Model's Performance 

The initial analyses consist of the ability to create successfully 
landslide susceptibility models emphasis on address the highly 
susceptible area, this so-called success rate. The prediction 
rates are the ability of the test dataset to assess accurately the 
performances of the models’ prediction strength. Note that, a 
landslide is not evenly distributed in the area. There is not 
concrete thumb rule regarding the ratio of training and test 
dataset. Hence, in this research, the landslides inventory was 
divided into training (70%) and test (30%) set. The popular 
approach to decide the accurate performance of analytical 
investigation (Razavi Termeh et al. 2018). In this study models 
performance was conducted using receiver operating 
characteristic (ROC) curves (AUC) were considered 
(Pourghasemi et al. 2013); using success rate and prediction 
rate for the assessments of the robustness of individual machine 
learning algorithms in landslide susceptibility mapping (Pham 
et al. 2018). The ROC (AUC) value is categorized into scales 
in relation to qualitative classes 50% to 60% is poor, 60% to 
70% is average, 70% to 80% is good, 80% to 90% is very good 
and 90% to 100% is exceptional (excellent) (Razavi Termeh et 
al. 2018; Yesilnacar and Topal 2005). 

4. RESULT AND DISCUSSION 

4.1 Relative Importance Analysis of Landslide 
Conditioning Parameters 

Concerning the predictors’ contribution in the model 
development, chi-square results in Figure 4, shows that altitude 
(DEM) (69.28%), Landuse (63.48%) were the most 
contributing parameters, next by Lithology (36.53%), TRI 
(22.82%), STI (14.16%), Aspect (12.80%), Distance to stream 
(10.89%), the minimum importance conditioning parameters 
were slope (9.34%), TWI (4.85%), Distance to the fault 
(4.75%), SPI (2.81%), Profile Curvature (1.46%), Plan 
curvature (0.02%) and no significance conditioning parameters 
is Total curvature (0.00%). Therefore, all these conditioning 
parameters expect total curvature were utilized as thematic 

layers dataset were selected as input predictors in generating 
the landslide susceptibility maps. Since the analytical report of 
chi-square revealed their participation in the landslide 
prediction in Iran.  

 

Figure 4.  The important plot of conditioning factors using Chi-
square. 

The emergence of altitude and land use as the most contributing 
conditioning parameters to landslide occurrence; justifies the 
logical anthropogenic activities, which has backward effects on 
the natural environments and manifested on the altitude. These 
factors were proved leading factor capable to accelerate 
landslide activities in the study area. 

Factor analysis showed that the TRI with VIF values of 4. 16 is 
the highly correlated factors and need to be removed. On the 
other hand, results of factor optimization indicated that total 
curvature with chi-square and information value equal to zero 
was found to be statistically not significant. Important factors 
in predicting landslides in Dodangeh watershed which are 
altitude (Chi-square value = 69.284, information value =1.424), 
land use (Chi-square value = 63.483, information value = 
1.188), and lithology (Chi-square value = 35.529, information 
value = 0.319). On the other hand, total curvature (Chi-square 
value= 0.00, information value= 0.00) is removed as its 
important value is zero. 

4.2 The Coefficient of the Conditioning Parameter 

The developed coefficient for each factor is shown in Table 3, 
from different machine learning algorithms. The RF algorithm 
estimates values range from 0 to 1; altitude reveal to yield the 
highest estimated value of 1 and the lowest coefficient is 0.073 
for plan curvature. Meanwhile, the DT generated coefficient 
results that presented land use factor with the highest 
coefficient value of 1, the conditioning factor differs from the 
RF. It is observed that at the bottom estimates for both DT and 
RF models, shown a consistency in their coefficient results, 
though DT minimum coefficient values are 0.044 on plan 
curvature. Finally, the BRT highest coefficient result is similar 
to the RF model on the same conditioning parameters altitude. 
Hence, the developed output model using the RF, DT and BRT 
models are presented in Figure 5. 
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Figure 5: Landslide susceptibility maps produced by the RF, DT, and BRT. 

 

Factor Coefficients 

RF DT BRT 

Altitude 1.000 0.635 1.000 

Landuse 0.811 1.000 0.614 

Lithology 0.348 0.284 0.841 

STI 0.370 0.258 0.374 

Aspect 0.496 0.331 0.762 

Distance to 
Stream 

0.428 0.250 0.616 

Slope 0.215 0.183 0.445 

TWI 0.194 0.151 0.548 

Distance to Fault 0.402 0.284 0.844 

SPI 0.130 0.063 0.416 

Profile 
Curvature 

0.155 0.068 0.136 

Plan Curvature 0.073 0.044 0.212 

Table 3. Estimated coefficients of landslide conditioning 

factors by the RF, DT, and BRT. 

4.3 Validation of the Models  

The predictive and consistency strength of these approaches for 
landslide susceptibility was evaluated by success curve using 
the training data and prediction rate curves drawn from testing 
data that were not included in the training process) (Bui et al. 
2018). The ROC approach used in this study owing to its 
reputation, satisfactory and efficiency to quantitatively 
estimates of models. The observed findings for this study on 
the success rate and prediction rate curve for the three machine 
learning approaches were shown in Figure 6. In comparison, 
the RF models proved to outperformed other machine learning 

models with the success rate AUC value of0.86 (86%) and 
prediction rate AUC value 0.83 (83%). While the DT model 
have corresponding AUC values for success rates and 
prediction rates of 0.72 and 0.70 respectively, and BRT have 
the AUC values for success rates and prediction rates of model 
0.75, and 0.72 (Table 4). 

 

Methods Success rate Prediction rate 

RF 0.86 (86%) 0.83 (83%) 

BRT 0.75 (75%) 0.72 (72%) 

DT 0.72 (72%) 0.70 (70%) 

Table 4. Success and predication rates for RF, DT, and BRT. 

The prediction rate was derived from the (30%) testing dataset, 
which was used in the evaluation of the capability of the models 
in predicting landslides zones. However, the highest predictive 
model strength for landslide susceptibility areas in the 
Dodangeh watershed was evidence by the RF model follow by 
BRT and then DT (Figure 6). RF model emerged to be the 
global best model in both training rate and prediction rate for 
landslide modelling in the study area. 

So far, the findings of this study have been compared with 
similar research in the same line. The results of this study 
agreed with the findings of Pradhan et al. (2017b) that 
investigated and compared SVM, RF and DT models. Their 
result revealed RF model the best compared to SVM and DT. 
There is a need for advanced research in environmental hazards 
now due to the rising human population resulting in high 
demand in shelter and infrastructures; that require an accurate 
report on the hazard risk-free or suitable area setting, 
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5. CONCLUSION 

This research evaluated and verified machine learning (RF, DT, 
and BRT) models in landslide susceptibility mapping with a 
case study at Dodangeh watershed, Mazandaran province, Iran. 
A GIS database model was created using 112 sample points of 
landslide inventory coupled with 12 landslides conditioning 
parameters. The AUC values for the success rates and 
prediction rate was detailed from the model's validations. 

Research findings indicated RF model to have the best AUC 
values of success rate (0.86) and prediction rate (0.83) rate, 
following BRT model (success=0.75, prediction=0.72) and DT 
model (success= 0.72, prediction= 0.70). The results displayed 
efficacy of the three machine learning models to predict 
landslide susceptibility maps with significant accuracy. The 
research is relevant to reliable urban planning managers and 
engineers, as a tool for the adequate decision-making process. 
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