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ABSTRACT:

Dynamic Networks have been introduced in the literature to solve multi-sensor fusion problems for navigation and mapping. They have
been shown to outperform conventional methods in challenging scenarios, such as corridor mapping or self-calibration. In this work we
investigate the problem of how raw inertial readings can be fused with GNSS position observations in Dynamic Networks (DN) with
the goal of i) limiting the number of unknowns in the estimation problem and ii) improving the conditioning of the normal equations
arising in least-squares adjustments in the absence of spatial constraints (e.g., image observations). For that we propose a modified
version of the well known IMU-preintegration method, accounting for a non-constant gravity model, the Earth rotation and the apparent
Coriolis force, and we compare it with the conventional DN formulation in a emulated scenario. This consists of a fixed-wing UAV

flying four times over a 2 Km long corridor.

INTRODUCTION

In navigation, we would like to determine the position and the
orientation (pose, hereafter) of a moving rigid object, represented
by a body frame, with respect to a reference one. Nowadays, the
most popular solution in outdoor scenarios is based on the fusion
of inertial measurements, coming from one or multiple triads of
accelerometers and gyroscopes, with Global Navigation Satellite
Systems (GNSS) position and (possibly) velocity observations.
Inertial/GNSS fusion has been extensively studied in the last
sixty years and well established solutions exist based on recursive
Bayesian estimation and extended Kalman filters (Titterton and
Weston, 1997).

In many applications the solution of the navigation problem is
only an intermediate step. For instance, in direct integrated sensor
orientation, the pose estimates obtained with inertial/GNSS
fusion are used to assign geographic locations to the observations
of another sensor, e.g., a LiDAR, while another adjustment
follows to determine other parameters related to system
calibration (Skaloud and Lichti, 2006) or relative alignment
between flight lines. As another example, modern Assisted Aerial
Triangulation methods (AAT) (Bldzquez and Colomina, 2012)
rely on prior knowledge of the camera poses to eliminate or
reduce the number of Ground Control Points (GCPs) needed
for globally accurate geo-referencing or to de-correlate camera
internal and external parameters.

In general, inertial/GNSS fusion is handled as an initial step to
obtain a preliminary navigation solution, which is then used,
as it is or further adjusted, in subsequent processing steps.
For instance, in AAT, the poses determined by inertial/GNSS
fusion are used, together with their assumed uncertainty, as
prior constraints on the camera exterior parameters in the bundle
adjustment. While this approach has proven successful in most
cases, it is sub-optimal, and fails in challenging scenarios, for
instance when neither the inertial/ GNSS observations, or the
camera ones, taken alone, are sufficient to obtain a globally
accurate solution, as in corridor mapping or when the GNSS
signals reception is imperfect. A reason for this is that, in

*Corresponding author

the classical AAT pipeline the following is neglected: i) the
non-linear dependency between the inertial/ GNSS poses and the
systematic errors, such as inertial sensors biases or those due to
imperfect initial alignment, and ii) the time correlation of body
frame poses. One consequence is that in geometrically weak AAT
it is difficult to correct for a general inertia/GNSS trajectory,
e.g., because of poor initial alignment or incorrect inertial biases
determination, as discussed in (Cucci et al., 2017b)

Such limitations motivated the development of methods for the
joint adjustment of GNSS and inertial observations together with
other sensors of interest, e.g., cameras and LiDARs. One such
method goes under the name of Dynamic Networks (DNs), in
the geodesy literature (Colomina and Blazquez, 2004, Glennie
et al., 2011), or pose-graph optimization, in robotics, e.g., see,
among the others, (Indelman et al., 2013, Cucci and Matteucci,
2014). In DNs, all the unknown poses are determined by
means of a single least-squares adjustment step (differently
from recursive estimation schemes) minimizing the residuals
associated to all the available measurements from all the available
sensors, being those GNSS receivers, inertial sensors, cameras,
LiDARs, etc. The main advantages of DNs are: i) all the
different measurements are processed simultaneously, ii) no
marginalization of variables is ever performed, as in recursive
estimation, and the full non-linear observation models are always
employed, iii) in contrast with Kalman filtering/smoothing,
spatial constraints can be easily expressed as functions of
multiple poses at different time instants. Such advantages come
at the price of severely increased computational complexity,
especially when dealing with high rate sensors, such as modern
Inertial Measurement Units (IMUs).

In this work we discuss how raw inertial observations can be
handled, together with GNSS ones, in Dynamic Networks, or
pose-graph optimization. At first, in Section 2. and 3., we
will review the state of the art method, in which each single
inertial observation it is used to form an observation model
constraining multiple successive poses. This method is rather
straightforward and it has been successfully employed, e.g.,
see (Cucci et al., 2017b), to show that the DN formulation is
superior to the cascade processing of inertial/GNSS, first, and
then image observations in AAT. However, the state of the art
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method suffer of two issues that become critical as the rate of
inertial observation increases. These are the number of unknowns
in the estimation problem, and the ill-conditioning of the normal
equations involved in the solution of the least-squares adjustment.

In Section 4. we present and alternative technique called
IMU-preintegration, first proposed in (Lupton and Sukkarieh,
2009) and now well established in the robotics literature, mainly
in visual-inertial navigation systems. This technique consists
in computing the integral of sets of raw inertial readings
during a pre-processing step. This effectively reduces the
number of unknowns to be estimated in DN and improves the
conditioning number of the normal equations, without affecting
the accuracy of the solution. We extend the formulation
available in the literature, e.g., in (Forster et al., 2017),
accounting for certain effects which are normally neglected in
robotics, or with low-grade IMUs, while they are significant for
longer/larger/faster missions or more precise IMUs: a position
dependent gravity model, the Earth rotation and the Coriolis
force.

In Section 6. we compare the two presented methodologies
in a emulated scenario, considering a real world fixed-wing
UAV flight as a model to generate synthetic inertial and GNSS
observations at different IMU rates. The RMS of the position and
orientation error is then compared for different setups of the DN
estimation and the IMU pre-integration step. The results suggest
that IMU pre-integration can safely substitute the conventional
method in the considered case. However, we notice some issues
in estimating inertial biases in case too many inertial readings are
integrated. We conclude and present some direction for further
investigations in Section 7..

NOTATION

In the derivations presented in this work we will often need to
mix between continuous time quantities and discrete samples of
these. A short preamble is therefore appropriate to clarify the
notation. We first define a function ¢(j) : N — R, abbreviated
with ¢; which gives the timestamp of the j-th sample of a given
quantity. As another shortcut, At = ¢; — ¢;_1. Continuous time
quantities will be denoted without index, e.g., ¢ is the continuous
time position of the body frame. If needed, the dependency with
respect to time will be made explicit, e.g., 7¢(7). The j-th sample
of r® will be denoted using a subscript on the left: ;7 = r°(t;).

INERTIAL OBSERVATION MODELS IN E-FRAME

Here we recall the well known inertial observation models in
the Earth-centered, Earth-fixed frame (ECEF), e hereafter, in
continuous time. Accelerometers and gyroscopes are assumed
to yield measurements with respect to a quasi-inertial, geocentric
frame ¢ with celestial (space-fixed) orientation. The e frame is
rotating with respect to ¢ with angular velocity wy,, and inertial
sensors measurements are expressed in body, or IMU, frame b.
thus the observation models for the gyroscope and accelerometer
readings, z,, and zy, are:

= wh e+ b= [RTWL RS 4l )
zp = P4 bf +& = RiT (0 + 2w 0 — g°(r%)), (@)

where all the symbols are defined as follows:

1. wy, is the angular velocity of frame ¢ with respect to frame
b, expressed in frame a,

2. the operator (-)* transforms a 3D vector into the
corresponding skew-symmetric matrix, i.e.:

0 —w3 w2
wt =0 = w3 0 —w1 | . 3)
—w?2 w1 0
Its inverse is the () operator.

3. f? is the specific force in body frame,

4. bw and bf are two bias terms whose stochastic
characterization depends on the specific IMU at hand,

5. &, and &y are two white noise terms,
6. 7° is the position of the body frame with respect to e,

7. v° and a® are the linear velocity and acceleration of b with
respect to e, so that v¢ = r¢, a® = re,

8. Ry is the orientation of the frame b with respecto to a, so
that 7 = R{rP.

9. ¢%(r°) is a gravity model, defined as a function of °, since
in general the gravity vector depends on the body frame
position with respect to e. In this work we use the following

one:
e/ e ~ Vs PN \2 e
g (r') =g —(we )7r%,
(r%) VS]] (we )
s = r"diag ([a,a,b]) 7 — 1 )

In other words, we consider a nominal gravity vector of
magnitude g, corrected for the centripetal acceleration due
to Earth rotation, and orthogonal to a given ellipsoid, e.g.,
the WGS-84 one, defined in terms of its semi-major and
semi-minor axes a and b. In Equation 4, V is the gradient
operator. More complex gravity models could be also
employed, e.g., see (Heiskanen and Moritz, 1981).

DISCRETE INERTIAL OBSERVATION MODELS IN
DYNAMIC NETWORKS

In Dynamic Networks, the goal is to determine the navigation
solution (i.e., the trajectory), and, optionally, other parameters,
such as inertial sensor biases, fusing all the available sensor
readings in a single step. In this work we focus on the fusion
of raw inertial and GNSS position observations. The problem
formulation of DN allows to fuse raw inertial observation with
other sensors, such as, e.g., cameras and laser scanners.

A vector of unknowns is composed of positions and orientations
of the body frame at specific, discrete, time instants ¢;. These are
chosen to be the ones of the IMU readings, which are assumed
to be synchronized with GNSS positions and equally spaced in
time. Additional unknowns may be included to model inertial
bias terms. For the sake of simplicity, in this work we restrict to
two time-invariant bias vectors, one for the accelerometers triad,
bf, and one for the gyroscopes one, bw. Refer to (Cucci et al.,
2017a) for more complex noise models in DN. More precisely,
the vector of unknowns is defined as

X = [17'671R§,2T672R§,...,NT‘8,NRg,bf,bu.)]. (5)

The IMU readings are related to the unknown body frame
positions and orientations in X replacing the continuous time
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derivatives with finite differences in Equation 1 and 2:

e e
e j'f‘ _j_l'r'

= TTAr ©
N e re —2 5 7%+ ;_or

e Sy
e . 1 € € v

jWeb = AL log [jfleTij:| . ()

Higher order finite differencing schemes can be used, e.g.,
see (Bruton et al., 1999), yet the proposed ones suffice in most
cases. In Equation 8, log(+) is the logarithmic map in the special
orthonormal group SO(3): see (Strasdat, 2012, Chapter 2.4)
for an excellent introduction of Lie Groups for navigation and

mapping.

For each inertial reading, and for each GNSS position observation
we can formulate one instance of the appropriate observation
model. An estimate for X can then be obtained minimizing the
residuals associated to each observation model in least-squares
sense. This approach is well known and the reader can refer
to (Colomina and Bldzquez, 2004, Glennie et al., 2011, Cucci
et al.,, 2017b).

Two severe issues arise when the rate of IMU readings increases,
which are discussed in the following.

Number of unknowns

To fuse all the available sensor readings in a single adjustment
step, all the positions and orientations required to formulate
the observation models need to be available in X. In modern
formulations based on Lie Groups, e.g., (Strasdat, 2012), one
body frame pose is represented by a 3D position vector and a 3x 3
rotation matrix, totaling twelve unknowns. Since modern inertial
sensors yield readings up to 1 — 2 KHz, this results in millions
of unknowns to be determined simultaneously for navigation
problems of typical size. Such large estimation problems do not
pose severe issues for offline processing, provided that efficient
linear algebra methods are used to fully exploit the sparsity of the
problem, e.g., (Davis, 2006). However, real time (or close to real
time) processing becomes challenging and sub-optimal solution,
such as windowing schemes (Cucci, 2014) need to be used.

Ill-conditioning of the normal equations

Consider the following simplified 1D example: we would
like to determine the x coordinate of a moving body fusing
readings from an unbiased accelerometer and a GNSS receiver.
According to the Dynamic Network approach, the unknowns
are X = [yz,..., ;@,..., yx], with £(j) being the timestamp of
accelerometer readings. We can formulate Equation 2 for the
accelerometer readings:

1 .
J2f T §r = A2 (jflm -2 ;T + j+1$) , Vje {2, oy N — 1}
)
where ;z; is the accelerometer reading at ¢;, for simplicity
& ~ N (0,07/At) and o7 is power spectral density of the
accelerometer white noise. Suppose now that two position

observations are available at ¢4 = 0 and ¢ty = 1. The
corresponding model is

%z +§$=il‘7 VZG{LN}7 (10)
where , z, is the position reading at time ¢; and £, ~ N(0,02).

Given the timestamps of position readings, the number
of unknowns can be related to the accelerometer rate:
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Figure 1. Conditioning number of ATQA as a function of 1/At
andr = o, /0y.

N = 1/At, meaning that a higher rate accelerometer requires
the determination of more positions, as discussed in Section 3.1.
We have N — 2 observations from accelerometer readings and 2
observations from the GNSS. This means that this problem has
no redundancy, yet a solution always exists and it is unique.

There are different methods to solve this estimation problem,
however, we would like to follow the Dynamic Network
approach: the observation models in Equation 9 and 10 are
grouped together in the form AX = b and the estimates for ;z
are obtained in least-squares sense solving the normal equations
(ATQA)X = ATQb, where Q is a weight matrix encoding the
uncertainty of the sensor readings.

The presented problem always admits a unique solution, however
it might prove difficult to determine it numerically with the
DN approach: it can be shown that the conditioning number of
H = ATQA is a function of At and of o, /o ;. More precisely,
the higher is the rate of the accelerometer, and the lower is the
standard deviation of the white noise affecting accelerometer
readings, the more the conditioning number increases. This is
depicted in Figure 1. The conditioning number of H encodes
the stability of the solution with respect to small changes in the
observation vector, b. Note that cond(AA) = cond(A), so the
absolute values of o, and o are not important, only their ratio
counts.

The empirical conclusions that can be derived from this
simplified example are well known in numerical analysis, e.g.,
see (Grossmann et al., 2007, Chapter 4.9.1), and can be extended
to the general 3D inertial/GNSS fusion case. Such considerations
suggest that any DN solver employing the formulation in
Section 3. will break when a sufficiently high rate or precise
IMU is considered, as the conditioning number of H increases.
The actual breaking point of a specific algorithm depends on
the technique employed to solve the normal equations and its
sensibility to high conditioning numbers.

One solution for this issue is given by regularization. For
instance, in Tikhonov regularization X is obtained solving
(ATQA + X)X = ATQb. This solves any ill-conditioning
problem in ATQA at the price of introducing a bias in the
solution. Such bias can be made acceptable by choosing an
appropriate value for A, e.g., according to (Hansen and OLeary,
1993).
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IMU PRE-INTEGRATION

In this section we present a technique known as IMU
pre-integration. This mitigates the issues arising with higher
rate IMUs by reducing the number of the unknowns and by
increasing the time spacing between them. The core idea is
to compute certain integrals of groups of accelerometer and
gyroscope readings with respect to time during a pre-processing
step, before solving the DN. Such integrals form a new type
of observables available at a substantially lower frequency with
respect to the original IMU readings, but incorporating all
the information available from the inertial sensors. Rigorous
observation models are derived for those observables to be used
in Dynamic Networks. This allows to exploit the full potential
of high rate IMUs without incurring in the limitation of bloating
number of unknowns or ill-conditioning of the normal equations.

IMU pre-integration is well known in robotics literature: it
was first introduced in (Lupton and Sukkarieh, 2009, Lupton
and Sukkarieh, 2012) and it is now at the core of modern
visual-inertial systems, e.g., (Forster et al., 2017). Our
formulation extends this approach in two senses:

1. the poses are determined with respect to the e frame,
considering the Earth rotation, the apparent Coriolis force
and a position dependent gravity model,

2. differently from (Lupton and Sukkarieh, 2012), we do not
estimate body frame velocities explicitly, further reducing
the number of unknowns in X.

In the following, we will first develop the observation models for
pre-integrated IMU readings. More precisely, we will introduce
three quantities, AR, Ary and Ar_ for which an estimate can
be obtained computing the integral of raw accelerometer and
gyroscope readings in a pre-processing step. For such quantities,
we will rigorously derive the observation models that relate those
to the body frame poses available in X. Later on, we will discuss
the details of how the pre-integration step is performed.

We assume that IMU readings are available at ¢(j), and then
groups of M IMU samples are integrated with respect to time as
discussed later on in Section 5., so that, differently with respect to
Equation 5, we need to maintain body frame poses only at ¢(k),
with k € {1, M,2M, ...}. M can range from tents to hundred of
samples, and its effect is discussed in Section 5.1.

Observation models for pre-integrated gyroscope readings

In the following we relate the integral of M raw gyroscope
readings to two successive orientations available in X, Ry and

€
kMR

We first decompose R§ in RYR}. Since the angular velocity of
e with respect to ¢ is assumed to be constant for the purpose of
navigation,

Ri(tiar) = RE(t) exp (wi.” At). (1)

Regarding R}, if we neglect the effects of coning (Savage, 1998),
we have that

'3 7 tk+]u b A
Ry(te+m) ~ Ry(tr) exp (J wip(T) dT)~ (12)
t

k

Expanding Rf = R¢ R} using Equation 11 and 12 we obtain

te+ M

re Ry = exp (—wfeA At) rRpexp (f wib,,(T)A dT).
t

AR

k

k

13)

The highlighted term AR involves an integral of the angular
velocity of the body frame with respect to the inertial frame. An
estimate for ;AR, AR, can be computed integrating gyroscope
measurements, ; 2,,, between t; and x4 ar, provided that any bias
present in the measurements is accounted for, as we will discuss
in Section 5.. Equation 13 can be rearranged to obtain the desired
observation model for kAR:

VAR +ear® = oBT exp (Wl At) RS (14)

Equation 14 encodes the comparison between two rotation
matrices, so it is rewritten in form of a vector as

~ T e i A 1Y

log [k:AR wRy" exp (wie At) k+MRb] = 03x1 + &ar
s)
Note the similarity between Equation 15 and the observation

models for relative orientation control introduced in (Blazquez
and Colomina, 2012).

Observation models
readings

for pre-integrated accelerometer

In the following, we will relate two different integrals of M
accelerometer readings to three successive positions and one
orientation available in X, ,,,7° with h € {—M,0, M} and
Rg.
]

First note that, if we neglect the effects of sculling (Savage,
1998), the two following relations hold since the velocity v =re
and the linear acceleration a® = re:

M

wT¢ + MAL L0° + Jf a®(7)dr,
ty

e
k4+MT

te— M

b = pr¢ — MAt L0° + Jf a®(t)dr.
ty

Summing member-wise, we obtain

trq M te— M
TS — 27 + oyt = J] a®(r)dr + Jf a®(7)dr.
ty t

(16)
Recalling Equation 2, we can expand the first of the two double
integrals as the sum of three terms:

th+ M

JJ a®(r)dr=A+ B+ C, (17)
ty
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where:

thy M

A= H Ri(r) " (r)dr

thy M

=exp (—wfeA At) wRo Jf exp (JT wfb(v)A dv) rP(r)dr.

k

BATL

(18)

This has been obtained by decomposing R§ in R{R: and
proceeding as for Equation 13. An estimate for ,Ary,
kdr+ , can be computed integrating gyroscope and accelerometer
measurements between t; and ¢4 s, provided that any bias
present in the measurements is accounted for, as we will discuss
in Section 5..

For B, we have that

tet M

2
B o (MAY)

2w, " v (T)dT ~ 2w, " vt —,

5 19)

ty

where the continuous body frame velocity v* has been replaced
with ,v°, obtained finite differencing body frame positions as in
Equation 6. This corresponds to the mean velocity between ¢
and ¢+ 7. This approximation is tolerable for sufficiently small
M since wy, is small.

Finally, for C' we have that

Tkt M VAL
¢ [[ e~ g P e
ty

where the continuous body frame position 7° has been replaced
with its sample at time &, ,,7°. This is acceptable as 0g°/dr® ~ 0.

‘We can go trough the same reasoning for the second of the double
integrals in Equation 16, expanding it as done for the first in
Equation 18, 19 and 20. Expanding both double integrals in
Equation 16, we obtain the observation model for pre-integrated
accelerometer readings:

kAAT+ + kAA'r'f + é-ArJr + é‘A'r, =
= kRiT exp (wfeA MAt) |:k+]\/1’l"e -2 k’l“e + k_]\/[Te"v‘

+ (2wi. " v — g% (k7)) (MAt)Q}. 21)

COMPUTING DELTAS

In this section we present an algorithm to obtain kAR, kAAm and
kdr,, as well as the covariance matrices for the respective noise
terms §Ar, Ear, and {ar_ . The original quantities for which we
look for an estimate are reported in the following for the sake of
clarity:

AT = tkﬁ[Mexp (f: wh(v)” dv) fP(r)dr
UAVES t]]Mexp (J:C wh(v)” dv) P (r)dr

th+ M b N
AR = exp (J wip(T) dT) (22)
¢

k

We will obtain estimates for such quantities by numerical
integration of raw accelerometer and gyroscope readings,
employing the Runge-Kutta second order recursive integration
scheme described in the following. Recall from Section 4. that
inertial readings are available at times ¢;, with j € {1, ..., N},
but, if pre-integration is used, in the Dynamic Network state
vector, X, poses are estimated only at times tp, with k €
{1, M,2M,...}. Therefore, raw inertial readings at t;, with
je{k, ...,k + M — 1} will be integrated to compute ,Ar and
AR, while ,Ar_ will be computed using j € {k—1, ..., k—M}
(note the reversed order). In the following we present the full
algorithm to evaluate kAArJr, kAR and the covariance matrices
for the noise terms éAu and A r. Regarding k&r_ and Ear_,
the process is similar and it is left to the reader. Let

(23)
(24)

]X = [jAT’+7jAU+,]'AR,jbf,ijJ]7
kX = [03x1,03x1, I3xs, bf, bw],

be a state vector at time j and its initial value for j = k, where
bf, bw are the best known values for the inertial biases available
at time k. Note that such estimates may not be available, in which
case Ozx1 is used, see Section 5.1 later on. For each time j
with j € {k,...,k + M — 1} we employ the accelerometer and
gyroscope readings, ,zf, and ;2. to evaluate the state transition
function F:

AT + JAvp At + JAR(jzp — jbf)ATt2
ARGz = b)AL

AR exp [(j2, — jbw)” | At

b

X =F(GX):

(25)

Note the similarity between JF and the process models
conventionally used in Kalman filters for GNSS/Inertial
integration (biases are assumed constant in the integration
period). The main difference is that no gravity or Earth
rotation compensation is done in Equation 25 and raw specific
force and angular velocity readings are integrated as prescribed
by Equation 22. The compensation for those terms is done
rigorously at observation model level, as discussed in the
previous section, see in Equation 21. After M steps, the estimates
for ,ArT and AR, kA%* and ,AR can be taken from the
corresponding components of 5, 5, X .

The covariance matrices for {ar-, and {ar is obtained as a
function of the assumed variance of inertial readings by means
of linear covariance propagation. Let ; ' and ;G be

_O0F(;X)

OF(;X)
F=x

a[§f7 &u] ’

and the following recursive transition function and initial
conditions:

(26)

J

27
(28)

R = 01515,
iR =,F jR;F" +,GQ ,;G7,

where () is a 6 x 6, time-invariant, diagonal matrix composed
with the assumed variances of the accelerometer and gyroscope
readings. The covariance matrices for {a,, and £ar are
obtained from the proper diagonal blocks of ., »,R.
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Figure 2. The UAV flight used to generate synthetic sensor observations. This corresponds to a real-world corridor mapping mission
and includes specific eight-shaped maneuvers that introduce the necessary dynamics to enhance the observability of inertial biases.

Estimating Biases

In Equation 22, AR, Ary and AR_ have been defined as a
function of angular velocities and specific forces. However,
inertial sensors yield only biased measurements of such
quantities. The state transition function F accounts for such
biases (see Equation 25), yet up to now we have not clarified how
the values for of bf and bw can be obtained, as required in the
initialization of X, see Equation 24.

One way to proceed is to examine the dependence of the estimates
kA}*', kA}—, +AR on bf and bw. Let us expand kA;"*' in
Taylor series with respect to bf and bw. First note that the
Jacobian matrix of the final state 5, X, from which A- terms
are extracted, with respect to the initial conditions, is given by:

a k+MX k+M
jrard = e Uk i F, (29)
Therefore
. . i _
RATE (bf) = (ATt + %(w —bf)+
0BT 5, (30)

where the partial derivatives are the proper blocks of ;. 5/, as
defined in Equation 29. In other words, ,, 5, X has been obtained
integrating inertial readings using a fixed, a-priori value for bf
and bw, or zero if no a-priori knowledge is available. Equation 30
gives us a way to obtain a corrected value for kA;“Jr every time
a new estimate of the inertial biases becomes available, without
having to recompute the integral. The same reasoning can be
made for kA;“* and ,AR.

The observation models for the pre-integrated inertial readings
defined in Equation 15 and 21 can now be modified making
the dependency of the A- terms on the unknowns present in X
explicit. This allows the Dynamic Network solver to estimate the
biases.

In Equation 30 a first order Taylor expansion has been used.
However, F is highly non-linear and such linear propagation will
be inaccurate if M is large or if bf and bw substantially differ
from the values of bf and bw in X. In this case, it might be needed
to re-compute the A- terms or to employ a higher order Taylor
expansion. This fact will be explored later on in the experimental
section.

EXPERIMENTAL EVALUATION

In this section we compare the conventional inertial
measurements processing in DN, as described in Section 3.
with respect to the IMU pre-integration technique presented in
Section 4. and 5.1 in a simulated scenario.

We consider a typical UAV flight for corridor mapping for which
we would like to determine the navigation solution using inertial
and GNSS position observations. We consider different IMU
rates and for each rate we compare the conventional processing
and different choices of M in IMU pre-integration.

To generate the simulated observations, we proceed as follows.
A flight of a real fixed-wing UAV is considered as a model
to generate synthetic observations, so that those would encode
realistic motion patterns. A navigation solution (computed by
other means) is available for the chosen flight and is depicted
in Figure 2. We downsample the solution to 25 Hz and we use
these poses as control points for a third order spline, as described
in (Lovegrove et al., 2013). Such spline defines a continuous
curve in SE(3), with continuous derivatives up to order two. We
can then sample this spline at arbitrary time instants, obtaining
analytically all the kinematic properties of the body frame needed
to evaluate the continuous time models for inertial sensors. From
these samples, the nominal w, and f° are derived and later
corrupted by noise and bias as in Equation 1 and 2.

We consider the following different test cases: 100 Hz IMU
readings and 200 Hz IMU readings, both with GNSS position
observations at 1 Hz. For those, we compare the method
presented in Section 3. with IMU-preintegration and different
choices of M, so that the effective pose rate becomes 25 Hz,
10 Hz, and 5 Hz. These correspond to different choices of M
depending on the IMU rate. For each test case, we compare
the processing methods in Monte Carlo fashion, generating
100 different noise realizations. All the measurements are
corrupted with white noise. For the inertial sensors, we assume
the following power spectral densities: 41 ug/+/Hz for the
accelerometers and 1 deg/(hv/Hz) for the gyroscopes, which
correspond to a typical InterSense NavChip IMU. For the GNSS
position observations, we consider a stand-alone operation mode
and 2.5/3 m horizontal and 5/3 m vertical white noise standard
deviation. The inertial sensors are also affected by a constant,
“turn on” bias, which we draw uniformly within [—8, 8] mg
for the accelerometers and within [—720, 720] deg/h for the
gyroscopes. A box plot for the position and orientation RMS
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obtained in each Monte Carlo run, for each processing method, is
shown in Figure 3.

From the experimental results we can make the following points:

1. As expected, the conventional processing scheme, as in
Section 3., yields consistently better RMS when the IMU
rate is increased from 100 to 200 Hz. In our experiments,
this improvement may be lower than what could be
obtained in real world cases: the process of generating
synthetic observations from a continuous spline based on
25 Hz control points intrinsically smooths the motion
and eliminates effects such as vibrations and other high
frequency components.

2. The processing with pre-integrated IMU readings equals
the conventional scheme when M is small, e.g., 4 or 10.
Note that when M = 1 the two techniques are virtually
equivalent.

3. When M is large, e.g., M > 20, the performances
of pre-integration deteriorate. This is essentially due to
the difficulty of determining the biases of inertial sensors.
Indeed, when M is large the first order Taylor expansion
in Equation 30 does not capture the highly non linear
dependency of kA;“*' with respect to bw and bf.

To confirm point three, we examine the bias estimation error for
the IMU pre-integration cases. A box plot for bf — bf,,. in
each Monte Carlo run is shown in Figure 4. It is possible to
see that the bias estimation error considerably increases with M,
and appears to converge to 0 as M decreases, which gives us
an explanation for the degraded performances of pre-integration
schemes shown in Figure 3. As a further confirmation, we repeat
the experiments without adding the constant bias to the synthetic
measurements. We find that this way, the position and orientation
RMS for pre-integration schemes do not depend on M. These
plots are omitted for space reasons.

CONCLUSIONS

In this work we compared two different methods for handling
raw inertial measurements in Dynamic Networks. The first
method consist in formulating an observation model for each
measurement. This results in large estimation problems, and
ill-conditioned normal equations, as the IMU rate increases.
The second method, known in the robotics literature as
IMU pre-integration, mitigates such issues while performing
comparably to the first method. = However, difficulties in
estimating the inertial biases arise when the number of
pre-integrated IMU measurements increases. This calls for an
extension of the bias estimation method presented in Section 5.1.
One possible solution could be considering higher order Taylor
expansions in Equation 30.
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Figure 3. Box plot for the position and orientation RMS obtained in each Monte Carlo run, for each processing method.
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Figure 4. Box plot for the accelerometer bias estimation error in
each Monte Carlo run, for each processing method.
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