
ASSESSMENT OF CHROMATIC ABERRATIONS FOR GOPRO 3 CAMERAS IN 

UNDERWATER ENVIRONMENTS 
 

 

P. Helmholz 1*, D.D. Lichti 2 

 
1 Spatial Sciences, School for Earth and Planetary Sciences, Curtin University, Australia – petra.helmholz@curtin.edu.au 

2 Department of Geomatics Engineering, The University of Calgary, Canada - ddlichti@ucalgary.ca 

 

 

Commission I, WG 9 

 

 

KEY WORDS: Chromatic aberrations, underwater, camera calibration, GoPro, photogrammetry 

 

ABSTRACT: 

 

With underwater photogrammetric mapping becoming more prominent due to the lower costs for waterproof cameras as well as lower 

costs for underwater platforms, the aim of this research is to investigate chromatic aberration in underwater environments. Chromatic 

aberration in in-air applications is to be known to systematically influence the observations of up to a few pixels. In order to achieve 

pixel-level positioning accuracy, this systematic influence needs further investigation. However, while chromatic aberration studies 

have been performed for in-air environments, there is a lack of research to quantify the influence of chromatic aberration in underwater 

environments. Using images captured in a water tank from three different GoPro cameras in five datasets, we investigate possible 

chromatic aberration by running two different adjustments on the extracted red (R), green (G) and blue (B) bands. The first adjustment 

is an adjustment that calculates the interior orientation parameters for each set of images independently in a free network adjustment. 

The second adjustment solves for all interior orientation parameters (for R, G, and B channels) in a combined adjustment per camera, 

constraining the point observations in object space. We were able to quantify significant chromatic aberrations in our evaluation, with 

the largest aberrations observed for red band followed by green and blue. 

 

 

1. INTRODUCTION 

With more affordable water-proofed sensors (e.g. GoPro, 2018) 

and more affordable underwater remotely operated vehicles 

(ROVs; e.g. BlueRobotics, 2018) operating in water and 

unmanned water vehicles (UWV; Sardemann et al., 2018) 

operating on the water surface available, underwater 

photogrammetry utilising low cost systems is becoming more 

prominent and is being utilised for photogrammetric mapping. 

The applications of underwater photogrammetry range from 

heritage preservations such as mapping of ship wreck sites 

(Balletti et al., 2015; Diamanti et al, 2017; Ktistis et al., 2017; 

Van Damme, 2015) and mapping of archaeological sites and 

objects (Bruno et al., 2015; D’Amelio et al., 2015; Denker and 

Oniz, 2015), to the mapping of organic environments  such as 

underwater meadows (Rendea et al., 2015) and coral reefs (Burns 

and Delparte, 2017, Drap et al., 2017), and to the mapping and 

monitoring of engineering structures (Przybilla, 1988). However, 

underwater photogrammetric mapping faces a number of 

challenges compared to traditional in-air photogrammetry 

starting from lighting conditions to moving objects such as 

organic growth and fish in the field of view of the camera, and 

the introduction of location information. 

 

For instance, while sufficient sun light is available to illuminate 

the scene in shallow water, constantly moving wave patterns can 

create issues during the image matching. While data capture 

during overcast days can reduce the effects, it is also possible to 

reduce or even eliminate it through image processing, e.g. using 

Convolutional Neural Networks (CNN) applied to the image 

histograms (Agrafiotis et al., 2018). In contrast, artificial light, 

often fixed to the ROV, is used in deep water environments. The 

changing position of the ROV leads, and the installation of the 

light on the ROV will impact the light conditions (Gupta et al., 
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2008), which leads to poor visibility, lack of contrast and colour 

casting (Mangeruga et al., 2018). Changing lighting conditions 

are also known to impact image matching. Another challenge is 

the establishment of control, which is especially relevant to the 

monitoring of structures in an environment where every 

component is prone to changes. Neyer et al., (2018) overcame 

this issue applying the geodetic principles of trilateration and 

height difference measurements.  

 

Another important aspect compared to air is the different 

refraction and chromatic characteristics in the water. For 

instance, the index of refraction depends on the medium, i.e. the 

refractive index of water is known to change by up to 2% with 

wavelength, depth, temperature and salinity and the shape of the 

camera housings and port may change with depth due to changing 

pressure levels (Shortis et al, 2009). Regarding this challenge, the 

majority of the research focus is on the radiometric calibration of 

the images in order to implement colour correction and 

enhancement of image matching approaches (Agrafiotis et al., 

2017). Another aspect is the geometric model for the handling of 

refraction effects on the optical path. Ray tracing can be applied 

to airborne images, enabling the derivation of bathymetry 

(Mandlburger et al., 2017) and for geometric correction of 

underwater images (Harvey and Shortis, 1998). A modular 

geometric model for underwater photogrammetry was introduced 

in Maas (2015).  

 

However, one aspect to which little attention has been paid is 

chromatic aberrations. Considering that especially low cost 

cameras are used for underwater photogrammetry, and 

considering the different characteristics of light rays underwater 

leading to different chromatic aberration characteristics from in 

air to underwater operation., it is important to not only 

qualitatively evaluate chromatic aberration but to quantify the 
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effect. Based on the results, it will be possible to improve the 

processing of underwater images, e.g. considering strategies for 

accurate image point observations and improving the results of 

colour mapping for the creation of ortho- mosaics. Hence, this 

paper aims to focus on this topic, and aims to quantify chromatic 

aberrations for a low cost camera system (GoPro Hero 3) in a 

controlled underwater environment. A comparison of in air and 

underwater comparison is outside of the scope of this paper. 

This paper is structured as follows. The next section will focus 

on related work regarding chromatic aberration and will also 

include above-water studies due to the limited number of 

researchers working on this topic. Then, after the background is 

introduced in section three, section four will introduce the data 

and the method used to quantify the chromatic aberration. The 

results are presented in section Five, and the paper concludes in 

section Six. 

 

 

2. RELATED WORK 

The existence of chromatic aberration in underwater images is 

shown in a number of publications. For instance, Menna et al. 

(2017) analysed the optical aberration in underwater 

photogrammetry with flat and hemispherical dome ports utilising 

a customised calibration field introduced in Menna et al. (2016). 

While the corners of the dome port show some blur effects due 

to field curvature, the flat port shows not only blur effects but 

also chromatic aberration. Nevertheless, only the green channel 

was utilised in the processing of the images. Hence, a 

quantification of the chromatic aberration was not performed. 

Based on the findings in Menna et al. (2017), further research 

published in Menna et al. (2018) employed empirical weighting 

to consider image degradation towards the borders of the image, 

i.e. a stochastic model for image observations that penalises those 

that are more affected by aberrations and departure from the 

pinhole model were applied within a self-calibration (Fraser 

1997) using the Brown model (Brown, 1971). 

 

Kaufmann and Ladstaedter (2005) did not quantify chromatic 

aberration explicitly as their main aim was to eliminate the effect 

of chromatic aberration for images. In their paper, images 

captured in-air are used in a least squares adjustment in which 

points from the green image are transferred to the red and blue 

images. Based on the transformation parameters displacement 

vectors are computed in order to eliminate the effect of the 

chromatic aberration. The conclusion was that the chromatic 

misregistration is generally more or less radially-symmetric, the 

amount of the radial image displacement is not necessarily a 

linear function of the radial distance, the geometric centre is 

likely not to coincide with the principal point and, finally, that 

the chromatic misregistration may in some instances be of a 

general geometric type (e.g. non-radial-symmetric). 

 

While Kaufmann and Ladstaedter (2005) were able to remove the 

chromatic shift, van den Heuvel et al., (2006), who applied a 

similar approach, were not able to remove the misalignment. The 

correction calculated were in the sub-pixel range while the actual 

shift was up to 5 pixels. It was concluded that further assessments 

are required. 

 

Matsuoka et al. (2012) and Rudakova and Monasse (2013) had 

similar aims, and only corrected for the chromatic aberration. 

Rudakova and Monasse (2013) first detected key points 

represented in pixel coordinates using the red, blue and green 

bands separately. The lateral misalignments between the red (or 

blue) and the green planes are corrected by identifying the 

parameters of polynomials. A dense correction vector field is 

then deduced by a general polynomial model to correct for the 

chromatic aberration. Matsuoka et al. (2012) concluded that the 

correction method, which is based on the assumption that the 

magnitude of chromatic aberrations can be expressed by a cubic 

function of the radial distance from an image frame centre, is the 

best method to correct chromatic aberrations satisfactorily in 

many cases. Furthermore, they could show clearly that if green is 

set as the one in focus, then a barrel distortion of the red channel 

and a pincushion distortion of the blue channel can be observed. 

 

Luhmann et al. (2006) was able to quantify the chromatic 

aberration of two camera systems in-air by calculating separate 

sets of interior orientation parameters per image band. Image 

observations were taken in three colour channels instead of just 

utilising the green band. While the higher quality rated camera 

(Canon EOS D1 Mark II) showed little deviation in the principle 

distance (4m), the effect was much stronger in the low cost 

system (Fuji S2 Pro, 27m), which exhibited longitudinal 

chromatic aberrations. Introducing observations from the red, 

green and blue channel in the bundle adjustment, and introducing 

additional constraints in object space, numerically improved 

RMS values and, therefore, a better relative precision could be 

achieved. Overall, a significant accuracy enhancement of about 

factor 1.3 could be achieved. 

 

Robson et al. (2014) describe the effect of wavelength on camera 

calibration parameters in their research on low cost 

monochromatic camera systems to. Results demonstrate not only 

a dependency of the principal distance on wavelength, but also of 

the principal point offset caused by physical misalignment of lens 

elements and the sensor cover glass. Furthermore, the radial 

distortion increases as a function of the radius, and the greatest 

distortion is observed around 480 – 500 nm (blue light) with less 

for both lower and higher wavelengths.  

 

As the motivation of this paper is to quantify chromatic 

aberrations in underwater environment using a low-cost sensor 

system (GoPro) a similar strategy as used by Luhmann et al. 

(2006) will be applied in this research. 

 

 

3. BACKGROUND 

While this section is only a brief introduction, more details about 

chromatic aberration is available in ASPRS (2004). Indeed, the 

explanations provide in in this section are based on this reference. 

 

In general, image imperfections are called aberrations. Next to 

spherical aberration, coma, astigmatism, curvature of field and 

distortion, in colour images there are also chromatic aberrations. 

A ray of white light in object space refracted at a lens surface 

becomes a small spectral fan of rays owing to the dependence of 

the index of refraction on wavelength. Aberrations can be 

expressed as longitudinal and lateral (transverse) measure.  

 

3.1 Longitudinal chromatic aberrations 

Longitudinal aberration is measured in the direction parallel to 

that of the optical axis. The variation of the principle distance is 

caused because wavelengths on the shorter side (i.e. red) of the 

mean (green) are more strongly refracted by a positive lens and 

hence, focus closer to the lens than the mean focus. On the other 

hand, wavelengths on the longer wavelength side of the mean 

(blue) focus long (Figure 1). Hence, if green is be set as the one 

in focus, then a barrel distortion of the red channel and a 

pincushion distortion of the blue channel can be observed. The 

effect can be reduced using a combination of lenses, so that two 
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colours focus on the mean. The effect cannot be eliminated as 

three colours cannot be focus on the same plane. In some cameras 

the effect can be reduced through the design of the lens. 

However, this is usually not the case in low cost sensors due to 

costs. 

 

 
Figure 1. Longitudinal chromatic aberrations. 

 

3.2 Oblique (lateral) chromatic aberrations 

Lateral aberration is measured perpendicular to the optical axis 

and is caused because the ray of white light in object space arrives 

at the image plane as a spread of light (Figure 2). Therefore, 

lateral aberrations are also called chromatic differences of 

magnification. As the illumination of an object point and its 

reflectivity may vary with wavelength, the mean position in the 

image plane the aberration magnitude also depends on the 

effective colour. Therefore, a calibration would also depend on 

the material of object points. Hence, when modelling lateral 

aberrations as radial lens distortion parameters per band (R, G, 

B), the assumption has to be made that the reflectivity of the 

object points is similar. While the secondary spectrum effect 

caused by lateral aberration can be eliminated using a 

combination of two lenses using design control, this is usually 

not done in low-cost camera systems. 

 

 
Figure 2. Oblique (lateral) chromatic aberrations. 

 

4. METHODOLOGY 

4.1 Test setup 

For this research three cameras of the type GoPro Hero 3+ (Black 

series) are used; the specifications of the camera are provided in 

Table 1. The cameras were used in their water proofed housings. 

Due to the waterproof housings, the light of rays were not just 

affected by the medium water and the lenses/air in the camera but 

also the plastic of the housing. However, as discussed in Shortis 

et al, (2009), implicit inclusion of the refraction effects requires 

no assumptions to be made concerning the refractive indices of 

the air, glass or water media, and modelling of the optical 

components of the underwater housing is unnecessary.  The 

cameras used have the serial number #305E917, #3064F7C, and 

#3064F72 and are respectively referred to as “GB”, “GD” and 

“GT”. For the testing the cameras were mounted on a GoPro 

Extender Handle.  

 

Image sensor CMOS 1 / 2.5” 

Resolution used  4000 x 3000 (12MP) 

Lens aperture f/2.8 

FOV (under water) 92 degrees 

Pixel size 0.00155 mm 

Table 1. Specifications of GoPro Hero 3+ (Black series). 

 

The images were captured in a controlled environment, i.e. a 

water tank (3 m long, 2 m wide and 1.5 m in depth). The tank was 

large enough to submerge a calibration frame which was placed 

in the centre of the tank (Figure 3). The calibration frame is a 

steel frame with 52 targets placed in the frame. 

 

 
Figure 3. Test set up: water tank with places calibration frame in 

the centre. 

 

The GoPro cameras were set to time-lapse and submerged with 

the extender arm into the tank. The cameras were moved around 

the calibration frame whilst maintaining a constant distance. A 

convergence angle of 125 ± 10 degrees surrounding the frame 

could be achieved, and one camera position was tilted by 90 

degrees per sequence. All settings of the cameras were kept fixed 

in all sequences. While multiple images of the calibration frame 

were taken for each calibration sequence, only 8 to 10 images 

were used in the processing, eliminating those with motion blur 

or poor image quality. Nevertheless, this was not always possible 

and a few images still contained motion blur in (Figure 4). 

However, for all images a comparable and strong geometry was 

achieved. Further details about the data capturing is available in 

Helmholz et al., 2016.  

 

 
Figure 4. Effect of motion blur. 

 

For the processing five datasets were used. Out of those five, 

three were captured with the same camera (GB) in order to check 

the consistency within one sensor, and one dataset was captured 

for each of the other cameras (GD and GT) in order to check if 

the results are also visible in similar platforms. 

 

4.2 Pre-Processing 

While it is understood that the resolution of the images is 

influenced and correlated by the Bayer pattern used in the 
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cameras, three colour band images (Red, Green and Blue) were 

extracted from the captured RGB images. When the images were 

extracted, no further image enhancement steps were applied. 

Hence, the number of datasets processed increased from 5 to 20 

(five image sequence were processed using its RGB, R, G, and B 

images). 

 

While the targets of the calibration frame are retroreflective in 

air, they are not in water as the retro-reflective properties are lost 

underwater. However, as the targets are white dots on a black 

frame they were easily detectable because of the high contrast. 

The targets on the frame were automatically detected using a 

centroiding fitting approach, and when required manually 

adjusted (also using a centroiding fitting). Initially the labelling 

of points was done manually in the first three images, and then 

using the drive back function. Both, the target detection and the 

referencing in all images (five datasets times four bands (RGB, 

R, G, B)) was done using the software iWitnessPro. The derived 

image observations were used in a least square adjustment. For 

this least square adjustment, the EO and IO values calculated by 

iWitnessPro were used as initial values for the adjustment.  

 

4.3 Bundle Adjustment 

The aim of the least-squares adjustment was to determine the 

camera parameters of the 20 datasets using the Brown’s camera 

model. More specifically, we solved for the principal distance c, 

the principal point offset (xp, yp), radial lens distortion (k1-k3) 

and decentring distortion (p1-p2). Tests with four radial lens 

distortion parameters showed that k4 is not significant and, 

therefore, was not considered in the results. 

 

A number of adjustments were performed, adding different 

constraints to the adjustment. Firstly, all datasets were processed 

independently from each other using a free network adjustment, 

i.e. a total of 20 adjustments were run. The image observations 

were weighted equally for x and y observations for the 

adjustment of the RGB composite images. For the adjustments 

using the R, G, and B images the y coordinate were up to 4x 

worse in terms of rmse. Therefore, an approximate variance 

component estimation was used to set the weights once outliers 

were removed. When talking about this adjustment we referred 

to it as Independent Adjustment. 

 

Secondly, the same weights and camera models as for the R,G,B 

independent adjustment were used performing a combined 

adjustment per camera, i.e. constraining the points in object space 

to be the same (Lichti and Chapman, 1997). For this test we did 

not process the RGB images, but only the R, G and B images. A 

total of 5 adjustments were performed (i.e. for each image 

sequence one adjustment solving for all camera parameters in one 

adjustment). When talking about this adjustment we refer to it as 

Combined Adjustment. 

 

 

5. RESULTS 

5.1 Independent adjustment results 

The analysis of the result will focus first on the principal point 

offsets and the principal distances followed by radial lens 

distortion parameters and the decentring distortion parameters. 

 

5.1.1 Principal Point Offsets and Principle Distance 

The estimated principal distance and the estimated principal point 

offset of the independent adjustment utilising the GB camera 1st 

repeat only are shown in Table 2. The principal distance using 

the RGB composite is the shortest, followed by G, then R and 

finally B. However, none of the differences are significant. It is 

interesting to see that the standard deviations of the B band for 

all three parameters (principle distance and principal point offset) 

are always the largest. Similar (even if sometimes not as strong) 

results can be also observed for the other datasets. 

 

mm c   xp   yp   

  est std est std est std 

RGB 3.6429 0.0016 0.014 0.0020 0.059 0.0019 

R 3.6438 0.0014 0.011 0.0021 0.058 0.0023 

G 3.6434 0.0012 0.010 0.0021 0.057 0.0024 

B 3.6478 0.0025 0.028 0.0040 0.066 0.0038 

Table 2. Calibration parameters (c, xp, yp) for the individual 

calibrations using the GB camera (1st repeat) independent 

adjustment. All units in mm. The largest standard deviation 

value for each dataset is in boldface text. 

 

In order to assess possible longitudinal chromatic aberrations 

Table 3 shows the principal distance and their standard deviations 

for all 20 independent adjustments. The repeats for the GB 

camera (1st, 2nd and 3rd repeat) show relatively stable results; the 

magnitude of c and its standard deviation are not significant 

different. Looking at the results of one camera and the results 

between the RGB composite and the different bands, it is also 

true that the magnitude of c and its standard deviation are not 

significantly different. However, a small trend (even if not 

significant) shows that blue usually has the longest principal 

distance, while the R and G principal distances are very similar. 

While it is possible that two wavelengths show similar 

longitudinal chromatic aberration (see background), the blue 

light should produce the smallest and not the largest corrections. 

However, as already pointed out, the differences are not 

significant, and the trend could be caused by the larger standard 

deviations in the results of the blue band images. Finally, the 

principal distance of the RGB composite is usually close to the R 

and G value for each dataset. 

 
[mm] GB 1st GB 2nd GB 3rd GD GT 

RGB c 3.643 3.644 3.637 3.630 3.658 

 std 0.0016 0.0020 0.0014 0.0024 0.0019 

R c 3.644 3.647 3.637 3.638 3.655 

 std 0.0014 0.0024 0.0024 0.0031 0.0024 

G c 3.643 3.641 3.636 3.635 3.656 

 std 0.0012 0.0018 0.0030 0.0019 0.0030 

B c 3.648 3.649 3.643 3.636 3.658 

 std 0.0025 0.0034 0.0040 0.0036 0.0031 

Table 3. Comparison of the principle distance for the individual 

calibrations of all assessed cameras (1st repeat). All units in 

mm. The largest values and standard deviations are highlighted. 

 

 

5.1.2 Radial Distortion 

In order to assess any lateral chromatic aberration, the radial lens 

distortion parameters are analysed. All radial distortion 

parameters were confirmed to be significant in the adjustment. 

The analysis is reduced to a smaller area as the calibration field 

did not cover the whole image format. The maximum radial 

distance of 3.875 mm was reduced to 1.9 mm. Table 4 shows the 

correction values in m for the radial distance of 1.9 mm.  

 

While the distortions of the repeats with the GB camera are 

similar in magnitude, they are significantly different from the 

other two camera models. As, the differences between the 

cameras are large, each sensor has to be treated independently. 
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Furthermore, there are clear differences visible between the 

bands in each dataset. Firstly, the RGB composite values are 

again close to the R value. Secondly, there is the clear trend that 

R has the largest corrections, followed by G and then by B. This 

disagrees with the explanations provided in the background 

section, and cannot be explained yet. While some wavelengths 

have higher absorption in water (e.g. red light) than others (e.g. 

blue lights), the wavelengths do not change, and therefore the 

lateral chromatic aberration behaviour should not change, too.  

 

[m] RGB R G B 

GB 1 -45.0 -45.6 -43.7 -41.8 
 2 -45.2 -47.5 -43.7 -40.8 
 3 -45.9 -46.4 -45.5 -38.7 

GD  -39.9 -41.6 -41.3 -35.7 

GT  -45.3 -46.1 -44.9 -35.9 

Table 4. Comparison of radial distortion correction in 1.9 mm 

radial distance. All units in m. The largest correction value for 

each dataset is highlighted. 

 

For better visualisation, the profile of the GB camera (1st repeat) 

is presented in Figure 5. All other profiles look similar. The 

figure highlights that the RGB composite radial distortions are 

similar to the R and G distortions, and that B shows the largest 

distortions.  

 

 
Figure 5. Radial distortion profile of camera GB camera 1st 

repeat (RGB – black, R – red, B – blue, G –green bands) for the 

individual adjustment. X axis in mm, y axis in m. 

 

 

5.1.3 Decentring Distortion 
To further analyse any lateral chromatic aberrations, the 

decentring distortions (also up to 1.9 mm radial distance) are 

presented in Table 5, and the profile of the GB camera (1st repeat) 

is shown in Figure 6. All decentring distortion parameters were 

confirmed to be significant in the adjustment. 

  

[m]  RGB R G B 

GB 1 3.3 3.3 3.2 3.4 

  2 2.7 3.0 2.9 2.7 

  3 3.6 3.4 4.1 3.9 

GD   5.4 4.7 4.8 4.6 

GT   4.2 4.1 4.2 5.4 

Table 5. Comparison of the decentring distortion correction in  

1.9 mm radial distance, independent adjustment. All units in 

m. The largest correction value for each dataset is highlighted. 

 

As to be expected, the magnitudes of the decentring distortion 

corrections are much smaller compared to the radial lens 

distortion corrections. Similar to the radial lens distortions, the 

decentring distortions of different cameras are significantly 

different. While the GD camera had the smallest radial distortion 

correction, it has the largest decentring distortion correction. The 

GT camera has relatively high radial and also decentring 

distortion corrections. Overall, there is no clear trend which band 

produces the highest corrections.  

 

 
Figure 6. Decentring distortion profile of camera GB camera 1st 

repeat (RGB and R – black, B – blue, G –green bands) for the 

individual adjustment. X axis in mm, y axis in m. 

 

 

5.2 Combined adjustment results 

Again, the principal point offsets and the principal distances will 

first be analysed followed by radial lens distortion parameters 

and lastly the decentring distortion parameters. 

 

5.2.1 Principal Point Offsets and Principle Distance 
When analysing the principle distance and principal point offsets 

parameters with their standard deviations of the GB camera (1st 

repeat) of the combined adjustment (Table 6), the first 

observation is that the standard deviations of all parameters are 

similar; the previously largest standard deviations for the blue 

band is not present in the data anymore. Similar results also can 

be observed for the other cameras. 

 

  c [mm]   xp [mm] yp [mm] 
  est sd est sd est sd 

R 3.6455 0.0013 0.0156 0.0019 0.0592 0.0020 

G 3.6450 0.0012 0.0141 0.0019 0.0558 0.0020 

B 3.6443 0.0012 0.0169 0.0019 0.0696 0.0020 

Table 6. Calibration parameters (c, xp, yp) for the individual 

calibrations using the GB camera (1st repeat) combined 

adjustment. All units in mm. 

 

Table 7 shows the principal distance and its standard deviation of 

the different test datasets. Firstly, the repeats using the GB 

camera showed relative stable results with 3rd repeat being a bit 

“off”. However, the differences are not significant. Furthermore, 

the standard deviations compared to the independent adjustments 

are smaller, and the standard deviations for each dataset for the 

different bands are basically the same. There is no significant 

difference visible between the bands, again only a small trend 

(even if not significant) that blue has usually the longest principle 

distance. This agrees with the results from the independent 

adjustment, but again disagrees with the explanations provided in 

the background section. However, as the differences are not 

significant, a final conclusion cannot be drawn. 
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 [mm]  GB 1st GB 2nd GB 3rd GD GT 

R c 3.645 3.644 3.637 3.635 3.655 

  std 0.0013 0.0015 0.0018 0.0021 0.0018 

G c 3.645 3.644 3.639 3.636 3.656 

  std 0.0012 0.0015 0.0018 0.0021 0.0018 

B c 3.644 3.649 3.641 3.638 3.658 

  std 0.0012 0.0015 0.0018 0.0021 0.0018 

Table 7. Comparison of the principal distance for the individual 

calibrations of all assessed cameras (1st repeat). All units in 

mm. The largest principal distance values are highlighted. 

 

 

5.2.2 Radial Distortion 

The analysis of the radial distortion corrections was again 

reduced to a smaller area of 1.9 mm radial distance. The results 

are presented in Table 8. 

 

Again, differences between the bands are clearly visible for all 

tests. While the magnitude of the correction is comparable to the 

independent adjustment, the additional constraint led to more 

comparable results between the repeats using the GB camera 

system. Again, there is a clear trend that R has the largest 

magnitude, followed by G and then B which is the opposite of 

what is expected following the explanations in the background 

section.  

 

 [m]  R G B 

GB 1 -45.842 -43.630 -42.115 

  2 -46.850 -44.332 -41.066 

  3 -46.464 -45.280 -38.477 

GD   -39.952 -39.684 -38.291 

GT   -45.445 -45.043 -36.112 

Table 8. Comparison of radial distortion correction in 1.9 mm 

radial distance. All units in m. 

 

Figure 7 shows the profile of the same camera (GB 1st repeat) as 

presented in Figure 5 for the independent adjustment. As 

discussed, the profiles are similar. 

 

 
Figure 7. Radial distortion profile of camera GD (RGB – black, 

R – red, B – blue, G –green bands) for the combined 

adjustment. X axis in mm, y axis in m. 

 

 

5.2.3 Decentring Distortion 

The corrections for the decentring distortion are presented in 

Table 9. Compared to the independent adjustment, there is a clear 

difference between the B and the R/G band visible. In this test, it 

also shows clearly that B has always the largest correction values. 

While this trend disagrees with the radial lens distortion 

parameters, it agrees with the information provided in the 

background section. Figure 8 makes this trend clearly visible. 

 

 

 [m]  R G B 

GB 1 2.901 2.691 4.605 

  2 2.304 2.316 3.802 

  3 3.395 3.596 4.546 

GD   4.385 4.766 4.775 

GT   4.541 4.230 5.125 

Table 9. Comparison of the decentring distortion correction in  

1.9 mm radial distance, combined adjustment. All units in m. 

The largest correction value for each dataset is highlighted. 

 

 
Figure 8. Decentring distortion profile of camera GB camera 1st 

repeat (R – red, B – blue, G –green bands) for the combined 

adjustment. X axis in mm, y axis in m. 

 

 

6. CONCLUSION AND OUTLOOK 

We were able to detect significant corrections for the radial and 

decentring distortion parameters indicating lateral chromatic 

aberration. However, while the literature specifies that the largest 

correction values for lateral chromatic aberration should be 

present in the blue band followed by green and red, we could 

observe the largest corrections for red followed by green and 

blue. This trend is unclear and will have to be confirmed with 

further tests. Furthermore, a significant trend of different 

principal distance indication longitudinal chromatic aberration 

was not able to be observed. 

 

For the next tests, a more suitable calibration frame covering the 

whole field of view of the camera will be used. A larger 

calibration frame also would allow to analyse the correlations 

between the different groups of calibration parameters and the 

estimated EO parameters. In addition, the bands have been 

extracted out of an image which was generated by the Bayer 

filter. However, due to the Bayer filter, the different bands are 

highly correlated with each other. Future work will analyse the 

impact of those correlations to the derived chromatic aberration.  

In addition, it is aimed to compare the results produce with the 

same camera for underwater and in-air environments.  

 

Finally, we are going to add further constraints to the adjustment, 

more specifically we will add constraints to the exterior 

orientation parameters assuming that the location of the camera 

is the same for all image bands. 

 

The different behaviours of different camera models should be 

also investigated, in order to produce a guideline supporting 

underwater photogrammetric applications. 
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