
USING 3D MODELS TO GENERATE LABELS FOR
PANOPTIC SEGMENTATION OF INDUSTRIAL SCENES

A. Nivaggioli 1, J. F. Hullo 1∗, G. Thibault2

1 EDF Energy R&D UK Centre, BN3 5PQ Hove, United Kingdom
2 EDF Lab Saclay, 7 boulevard Gaspard Monge, 91120 Palaiseau, France

adrien.nivaggioli@polytechnique.edu, jean-francois.hullo@edfenergy.com, guillaume.thibault@edf.fr

KEY WORDS: Deep Learning, Industrial Facility, 3D Model, Panoptic Segmentation, Labelled Dataset

ABSTRACT:

Industrial companies often require complete inventories of their infrastructure. In many cases, a better inventory leads to a direct
reduction of cost and uncertainty of engineering. While large scale panoramic surveys now allow these inventories to be performed
remotely and reduce time on-site, the time and money required to visually segment the many types of components on thousands of
high resolution panoramas can make the process infeasible. Recent studies have shown that deep learning techniques, namely deep
neural networks, can accurately perform panoptic segmentation of things and stuff and hence be used to inventory the components of
a picture. In order to train those deep architectures with specific industrial equipment, not available in public datasets, our approach
uses an as-built 3D model of an industrial building to procedurally generate labels. Our results show that, despite the presence of errors
during the generation of the dataset, our method is able to accurately perform panoptic segmentation on images of industrial scenes.
In our testing, 80% of generated labels were correctly identified (non null intersection over union, i.e. true positive) by the panoptic
segmentation, with great performance levels even for difficult classes, such as reflective heat insulators. We then visually investigated
the 20% of true negative, and discovered that 80% were correctly segmented, but were counted as true negative because of errors in the
dataset generation. Demonstrating this level of accuracy for panoptic segmentation on industrial panoramas for inventories also offers
novel perspectives for 3D laser scan processing.

1. INTRODUCTION

When engineering large industrial installations, there is a fre-
quent need for inventories and complete understanding of the
scene. For nuclear power plants for example, maintenance can be
optimised if precise location of equipment is known before going
on site, and deconstruction requires precise estimation of waste
type and weight for planning disposal. In many cases, a bet-
ter inventory leads to a direct reduction of cost and uncertainty
of engineering. To also reduce the time spent on-site, a greater
number of these inventories is now carried out remotely, using
thousands of panoramic images captured in the plant (Hullo et
al., 2015). Today done manually, the analysis of these images re-
quires several thousand hours of tedious work for each building.
Recent work in computer vision suggested that such a laborious
process could be helped by an automated analysis of images taken
on-site. Applications of deep learning for built environment are
already numerous, from facade modelling (Schmitz and Mayer,
2016) to indoor scenes analysis (Handa et al., 2016).

When one wants to analyze, classify or segment the content of
an image, deep learning techniques have proven their efficiency
in the past few years. These approaches are based on systems
known as deep convolutional neural networks (DCNN). In order
to make accurate predictions, these neural networks need to be
trained, which means that we need to have a labelled dataset of
tens of thousands of examples: a set of data on which we have
already performed the task we would like to automate. While
online dataset are available for everyday objects, specific indus-
trial equipment, such as those found in power plants, need a spe-
cific dataset. To avoid the high cost of manual labelling, we pro-
pose to use an existing as-built 3D model to generate a labelled
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dataset used for the training of image segmentation deep neural
networks. We experimented our approach on quality controlled
as-built 3D models of nuclear reactors.

The main body of this paper, about panoptic segmentation of in-
dor industrial images, is split in three parts. First, we explain how
we procedurally generated a large labelled dataset of panoramic
images using a 3D reconstruction of an industrial scene in sec-
tion 3, we describe how to prepare the dataset and review the error
budget of the procedure. We then present the tools we adopted to
assess the quality of our results in section 4: we detail metrics and
visual tools we recommend to build an in-depth understanding of
the results. Finally, we study the results of our implementation
in section 5, starting with a description of the implementation of
our neural networks and the associated trainings. Then, we look
at some statistics detailling the quality of our panoptic segmen-
tation. Lastly, we study the impact that the errors in the gener-
ated dataset had on our results and discuss the perspectives of
this work.

2. RELATED WORK

Panoptic segmentation unifies the typically distinct tasks of se-
mantic segmentation (assign a class label to each pixel) and in-
stance segmentation (detect and segment each object instance)
(Kirillov et al., 2018). It then covers the detection and segmen-
tation of both the things and the stuff (Forsyth et al., 1996, Heitz
and Koller, 2008, Caesar et al., 2016). A thing is an object that
has a specific shape and dimension. It is often composed of a sin-
gle object in our 3D model. If we see only one part of a thing ob-
ject, we can easily infer what the whole object looks like. More-
over, we can count how many instances of an object is present in
an image. (e.g : Lamps, Valves, Ladders). A stuff is an object
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that has virtually no limits. It has a particular texture and global
form, but can not be defined by its shape. It is often decomposed
in multiple different parts in the 3D model. If we see only one
part of a stuff object, we can not estimate where it ends. This
means that we have no way of counting how many different stuff
objects of the same class are present in an image. (e.g: Grated
floors, Ventilation Pipes).

To carry out an exhaustive inventory of an industrial installation
using panoptic segmentation, we then need to carry out two dif-
ferent tasks: a semantic segmentation of stuff objects and an in-
stance segmentation of things objects.

Figure 1. Panoptic segmentation task of an industrial scene. left:
original picture. center: stuff objects, colored by class. right:

things objects, colored by class.

Semantic segmentation is a pixel-wise description of the image.
We attribute to each pixel the class it belongs to. Two differ-
ent objects of the same class cannot be considered as two differ-
ent entities. This task is has been vastly investigated in recent
years (Garcia-Garcia et al., 2018). To solve this task, we used the
DeepLab V2 network, that combines atrous convolution to ex-
plicitly control the resolution at which feature responses are com-
puted within Deep Convolutional Neural Networks and atrous
spatial pyramid pooling to robustly segment objects at multiple
scales with filters at multiple sampling rates and effective fields-
of-views, (Chen et al., 2016).

Instance segmentation consists of a pixel-wise segmentation of
every things objects in the image. It is a combined task of de-
tection, localisation and pixel-level contouring (Liu et al., 2018);
two different objects of the same class should then be considered
as two different entities. We used the Mask-RCNN network, that
offers great improvements of earlier versions of RCNN, including
a faster learning rate and a branch for predicting an object mask
in parallel with the existing branch for bounding box recognition
(He et al., 2017).

All recent DCNN are based on a deep neural network, called
backbone, that usually contains tens of millions of parameters
(Huang et al., 2017). The number of images required to train
these network for classification ranges between tens of thousands
to several millions. We used a ResNet-101 backbone with trans-
fer learning of its 44.5 million parameters (He et al., 2016). In
order to reduce the number of images needed to correctly train
the networks, usually based on human and time consuming an-
notations, several approaches have been developed. We used a
transfer learning approach in order to start with a network able
to extract interesting features for regular objects, that we then
trained on our cutsom classes.

To generate a dataset that would be large enough to train these
deep architectures, a simple approach consists in using human
made annotation. Many publicly available dataset have been cre-
ated that way, but the cost of creation remains a challenge for spe-
cific applications. Other ways have been explored to reduce the
cost of this stage, for example by generating a synthetic dataset

using 3D renderings, such as (Peng et al., 2015), but this requires
pre-existing textured 3D models. In this paper, we investigate
the use of a 3D model as a mask generation tool for panoramic
images of the same scene.

3. PROCEDURAL LABELS GENERATION

Many deep neural networks rely on the supervised learning
paradigm: the algorithm is trained on large labelled datasets.
Among the publicly available training dataset, none contains ob-
jects that can be found in a power plant. We developed and im-
plemented a pipeline to procedurally generate image labels from
a digital twin (namely a 3D model with located panoramic im-
ages), avoiding expensive manual labelling labour.

The general concept of our approach of mask generation is, for
each panoramic images, to render a synthetic panorama of the 3D
model using pure flat and shadows free textures (”unlit” shader),
in the same position and with the same orientation as the original
panorama. Each object will then be colored by a unique value
encoded its class (red channel) and unique ID (yellow and blue
channels).

3.1 Data source

Figure 3. Data source: as-built 3D model and panoramic image
accurately positioned and oriented.

Our data source is a set of panoramic images and an as-built
3D model of a power plant building, as illustrated in Figure 3.
Our 3D models are as-built ones, reconstructed from 3D laser
scans that have been captured during the same period than the
panoramic images. These 3D models obey a strict grouping and
naming policy, allowing to identify the class of every compo-
nent through its name. We consider 9 things classes and 12 stuff
classes, listed in Table 1.

Panoramic images are captured approximately every 3 to 5 me-
ters in rooms and corridors of the installation. Each native origi-
nal panorama is 360° x 180° with approximately 30.000 x 15.000
pixels and all have been through a 2 levels procedure verification
to assess the quality of their geometric and colorimetric stitch-
ing. We resample each panoramic image to a resolution of 4096
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Figure 2. Overview of the procedural label generation pipeline, from a 3D model and panoramic images.

x 2048 pixels. Each panorama position and orientation are esti-
mated in the coordinate frame of the 3D model using an inter-
active procedure detailed in (Hullo et al., 2015), allowing a near
perfect overlay of 3D model and panoramas.

3.2 Labels extraction

Thanks to the accurate knowledge of position and orientation of
panoramic images, we can use the 3D model to generate labels
on a panoramic mask for each image. In order to extract these
labels, we start by colouring every objects in the 3D model with
an unique colour. As illustrated in Figure 4, each colour describes
the class of the object and the id of the object: the Red channel is
used for the class of the object, and the Green and Blue channels
are used to encode the id of the object in base 256. Using this
method, we can encode 256 different classes, and 65536 different
objects, which was largely sufficient in our case.

Then, for each panoramic image, we generate a panoramic mask
of labels using panorama’s pose. We generate a panoramic ren-
dering of the 3D model using a unlit shader that ignore normals
of the surfaces and scene lights. This simple rendering encodes
the object ID and gives us a complete description of the original
picture where each pixel of the original image is matched to a 3D
object. To avoid artifacts, we need to deactivate the anti-aliasing,
which would create incoherent pixels (pixels whose value does
not define the object they belong to).

Things Stuff
Power box Concrete floor
Lamp Grated floors
Telephone Concrete walls
Door Cable trays
Speaker Ventilation
Valve Stairs
Hydrogen recombiner Heat insulators
Fire hydrant Pipes
Ladders Handling structures

Structural steelwork
Support
Hand-rails

Table 1. Classes of things and stuff objects from a power plant

3.3 Dataset preparation

Once we have the labels for every panoramic images, we can
start using them with our neural networks. Our first tests showed
that our networks did not perform well on panoramic images, the
equirectangular projection adding distortions that had to be learnt
by the networks (straight lines are no longer straight). We then
transform each panoramic image in six 1024 x 1024 cubic im-
ages, to generate ’pinhole camera’ images that the networks have
originally been pre-trained on. This helps a lot our networks to

Figure 4. Label generation using an unlit rendering of a 3D
model (top) where object class is encoded in the R channel and

object ID in the G and B channels at the exact position and
orientation of a panoramic image (bottom).

learn. Also, training the networks on cubic images allows us to
use them to infer on regular images, and not only panoramas,
which allows us to adress a broader range of images.

To overcome side effects of cubic reprojection, we enrich our
dataset by adding transformations to the original images (and la-
bels): we create additional cubic images with a shift of 45°. To
increase the training dataset, we also add a horizontally mirrored
version of each horizontal faces of the cubemaps. Finally, to over-
come the limitations of current GPUs for semantic segmentation,
we divided every cube face in 9 smaller images (340 x 340 pixels)
to keep a sufficient resolution for the inventories of stuff.

3.4 Error budget

Because of the procedural generation of the labels, some errors
occur and need to be investigated. An error in labeling corre-
sponds to an incorrectly labeled pixel. All these type of errors,
as illustrated in Figure 5, will negatively impact the statistical as-
sessment of the results of the algorithm.

A first source of errors comes from the approximation of the posi-
tion and orientation of the panoramas, leading to a global shift of
the labels (Figure 5.a). This error has been partially mitigated
with our fine registration procedure of panoramas. A second
source of error comes from the geometry of the panorama itself,
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reconstructed from pictures, that leads to an imperfect overlay
of parts of the labels. Thanks to the quality control process of
our panorama generation, this error has a low impact on our re-
sized panoramas. The two first sources of errors will mainly im-
pact thin objects such as narrow pipes or ladder rungs. A third
source of errors comes from the level of detail of the 3D model,
leading to non pixel level labels for complex objects approxi-
mated in the 3D model, typically impacting thin objects such as
valve handwheels, reconstructed as plain cylinders (Figure 5.b).
The fourth error comes from differences between the 3D model
and the panoramas and might affect whole objects. These errors
might occur when the 3D model is coarse, when the position of
some objects might have changed between the 3D scanning used
for reconstruction and the panoramic survey, but mostly because
of temporary objects not reconstructed, such as scaffolds (Fig-
ure 5.c and .d).

Figure 5. Errors in the labelled dataset. a) shift b) 3D model
level of detail. c and d) temporary objects.

4. VALIDATION METHODOLOGY

For algorithms based on the learning paradigm, an in depth anal-
ysis of their results is crucial to evaluate their strengths and weak-
nesses, and hence plan their deployment. A first appreciation of
results can be done through the random visual exploration of part
of the results. But to explore the whole dataset, we need mean-
ingful metrics. To understand and explore the resulting statistics,
we also developed web dashboards to make the whole data anal-
ysis interactive and visual, both for inter and intra class investiga-
tions. These tools are important to explore results of both things
and stuff objects. Finally, we visually investigated all remaining
errors, to differentiate genuine inference errors against errors in
the generated labelled dataset.

4.1 Outputs

In order to investigate the results for each types of objects, we
have to compare expected and predicted outputs. Inference of
things objects using the Mask R-CNN network generates for each
instance of an object in an image a bounding box, an instance seg-
mentation mask, a class the object is predicted to belong to, and
a confidence score. Inference of stuff using the DeepLabV2 net-
work generates for each pixel of an image a scoring vector whose

length is equal to the number of classes (including background).
The predicted pixel’s class is chosen as the number of the class
with maximum score. The predicted stuff image mask is a grid of
equal resolution as the original image where each pixel value is
equal to the predicted pixel’s class number. Both things and stuff
inference layers are merged in Figure 12 to illustrate the results if
the panoptic segmentation.

4.2 Metrics

Loss functions - The first number that comes out the training
stage is the loss function of the algorithm. For things objects, the
loss function is made of 3 components that represent the losses
of classification, position and segmentation as defined in (He et
al., 2017). The loss function of stuff objects is the sum of cross-
entropy terms for each spatial position in the CNN output map
from (Chen et al., 2016).

Intersection over Union - Given two shapes, either a pixel mask
or a bounding box, we evaluate the Intersection over Union (IoU)
of expectation (ground truth) vs predicted (inference), given by
the ratio of the area of intersection over the area of union. This
measure gives a good and strict definition of the similarity of two
shapes. For things objects, we can compute the IoU for either
the instance mask or the bounding box; the mask IoU being more
sensitive to shift errors in the ground truth dataset. For stuff ob-
jects, the IoU is computed for each class, using the predicted class
image mask vs ground truth class image mask.

Precision and recall - In order to extend this analysis to a whole
set of shapes, we define precision and recall through a confusion
table (True/False Positive/Negative) for both types of objects. For
things objects, we compute confusion table on objects instances,
with thresholds on the IoU of shapes and the confidence score
of the prediction. For stuff, we compute precision and recall for
each image, at a pixel level.

4.3 Validation and investigation tools

To quantify inter class results, we use the class confusion ma-
trices. They allow us to see whether the two networks mistake
an object for another. We compute a different confusion matrix
for each network (cf. Figure 9). The confusion matrix for things
objects only takes into consideration how the Mask R-CNN dif-
ferentiates the classes between them. For every ground truth ob-
ject, it takes the prediction with the maximum IoU and check to
which class it belongs. It does not take into account the objects
that were not found, or the predictions that did not correspond to
any objects. In the confusion matrix for stuff objects, the value
of a cell ci,j represents the ratio of the pixels of class i that were
predicted as a class j.

We use a second visual tool to investigate intra class results: IoU
contour plots (cf. Figures 10, 11). For the things objects, we in-
spect how our instance segmentation network performs on each
class by checking the distribution of object instances in the (IoU,
Confidence) contour plot. For the stuff objects, we compare how
well our semantic segmentation network detects objects of a spe-
cific class by plotting, for each object in the ground truth dataset,
the IoU of the prediction against the size of the object in the
dataset.
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5. RESULTS

5.1 Implementation of panoptic segmentation

The whole label generation pipeline and training of neural net-
works was implemented on a gaming laptop with an Intel(R)
Core(TM) i7-7820HK CPU @ 2.90GHz and a NVIDIA GeForce
GTX 1070 GPU. Panoptic segmentation was implemented using
two state of the art neural networks:

• Instance segmentation of things objects: we used the Mat-
terport implementation of the Mask-RCNN, (He et al., 2017,
Abdulla, 2017). We used a ResNet-101 backbone pre-
trained on the COCO dataset, and finetuned it on our own
dataset, (He et al., 2016, Caesar et al., 2016).

• Semantic segmentation of stuff objects: we used a Tensor-
Flow implementation of DeepLab(v2) to train a fully con-
volutional variant of ResNet-101 with atrous (dilated) con-
volutions, atrous spatial pyramid pooling and multi-scale
inputs, prestrained on PASCAL-VOC dataset (Chen et al.,
2016, Nekrasov, 2017).

With 1255 panoramic images describing our industrial structure,
we generated 20080 training examples for the Mask R-CNN and
90360 training examples for DeepLab V2 and filtered all small
objects from the training set (below 1000 pixels). This whole pro-
cess took 55 hours. Training the Mask-RCNN with ResNet-101
took 61 hours; an example of result is given in Figure 6. Train-
ing the DeepLab with ResNet-101 took 42 hours; an example of
result is given in Figure 7. The dataset was split in a training set
(70% of images) and in a validation set (30% of the images).

Figure 6. Two examples of things objects predicted by the
Mask-RCNN. Class colors legend is given in appendix.

Figure 7. Example of stuff objects predicted by the DeepLabv2.
Left: original image. Right: Masks prediction. The large blue

object, a ”mirror like” heat insulator, is correctly labeled. A full
class colors legend is given in appendix.

Figure 8. IoU results on the validation dataset (30 % of images).
Top: things objects. Bottom: stuff objects

5.2 Quantitative results

We present here some example of statistics used for the asses-
ment of the performances of our panoptic segmentation pipeline.
Figure 8 illustrates the performances of both parts of the panoptic
segmentation. The Mask-RCNN implementation delivers great
results on things objects it has seen enough times in the train-
ing dataset. DeepLabV2 also offers great results, especially for
large objects. Having in mind that the purpose of this panoptic
segmentation is mainly inventories, even a low IoU offer a great
feedback on the presence of objects.

Figure 9. Confusion Matrix of stuff objects

The confusion matrix in Figure 9 shows that thin objects like ca-
ble trays, pipes, support, handling or guard-rail are sometimes
classified as concrete walls in front of which they are placed. This
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can happen for two reasons: either the objects are too thin or too
small to be detected, or the labels we generated are wrong. In-
deed, those particular objects have a higher chance of having a
wrong ground-truth: because they are thin or small, even a slight
misalignment in the 3D model can make the ground truth of the
object entirely false, even if the prediction is correct.

For the things object classes, we can inspect how our instance
segmentation network performs on each class by checking how
confident the network is on each prediction, and the IoU between
the ground truth and the prediction. This gives us a 2D plot, on
which we can calculate a density, cf. Figure 10. On the density
plot of lamps, we see that the network is pretty confident and ac-
curate when finding lamps, and that he does not make many false
predictions. The density plot of ladders in the bottom of Figure
10 shows that when the network is confident in its prediction of
ladders, it is mostly correct. But he predicts some wrong ladders
(IoU = 0) with a lower confidence. This is not necessarily a bad
thing, as we can filter our results by confidence score.

Figure 10. 2D density plot of things objects IoU and confidence,
colored on a Jet palette; each white dot represent a predicted

instance. Top: Lamps. Bottom: Ladders

For the stuff objects, we can compare how well our semantic seg-
mentation network detects specific classes by plotting, for each
object in the generated dataset, the IoU of the prediction against
the size of the object in the dataset, cf. Figure 11. We can also
define the minimum size (how many pixels) an object need to
have in an image to be considered as ”findable”, here set at 5,000
pixels (4% of an image). This threshold discards from the box
plots some thin objects that might be correctly segmented (narrow
pipes), but for which the labels might not be accurate enough, due
to a slight shift in the orientation typically. The top part of Figure
11 is the density plot of cable trays. This density plot seems to
indicate that our network has some issues finding many of those

cable trays. This is actually because cable trays are mostly quite
small and in the background: their 3D reconstruction is often
coarse, being of less importance for maintenance and logistics.
As already illustrated in Figure 7, the density plot at the bottom
of Figure 11 confirms that our network performs surprisingly re-
ally well on heat insulators. When it does not find the heat insu-
lators, it is not because of their very specular surface, but because
they only appear on a small section of the image. It is one of the
major findings of this work for our industrial scenes: DeepLabv2,
trained on our dataset, does not get confused by reflections of heat
insulators, probably thanks to the slight ripples on their surface.

Figure 11. 2D density plot of stuff objects. Top: Heat Insulators.
Bottom: Cable Trays

5.3 Dataset accuracy: a visual investigation

We visually investigated all 3D objects of the dataset that were
not found by our networks in any panoramic image (the 20% of
true negatives with an IoU of zero). We exported for each of these
objects the image where the object instance was the largest.

Among the 381 3D things objects with a null IoU, we found that
only 38% were genuine true negatives, all the others were clas-
sified as hidden, shifted, rare or nearly invisible objects. Among
these true negative, 82% were small valves.

Among the 1383 3D stuff objects with a null IoU, we found that
only 36% were genuine true negatives, all the others were clas-
sified as hidden, shifted, rare or nearly invisible objects. Among
these true negative, 83% were small supports that could maybe
be better found by Mask-RCNN.

6. CONCLUSION

Panoptic segmentation on panoramic images offers many oppor-
tunities for companies interested in inventories of industrial in-
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stallations. It also provides a new way to control as-built 3D re-
construction. Our novel approach consists in a procedural gener-
ation of a labelled dataset used to train two neural networks (in-
stance and semantic segmentation), as an economic way to make
use of existing 3D model and located panoramic images. Despite
residual errors in the training dataset, this automated process led
to really good performances using state of the art neural network
architectures and have demonstrated value for many generic in-
dustrial components (ladders, cable trays, valves, pipes, etc.). For
some classes of objects, manually adjusting object masks is con-
sidered in order to increase accuracy of the training dataset, and
hence the quality of the results.

In order to improve the accuracy of semantic segmentation, high-
end GPUs would allow higher resolution inputs and implement-
ing post-processing could also deliver more precise predictions.
But beyond current panoramic images, different types of inputs
are now investigated to extend the use of panoptic segmentation
beyond image based inventories. Panoptic segmentation on 3D
laser scanner data would lead to great advances in automation of
large scale industrial engineering. The perspectives for 3D laser
scanning offered by this work include the use of new information
layers:

• Depth: RGB-Depth images, which are like regular images
but with an additional depth channel. This offers more in-
formation for the networks, which could use it to better un-
derstand the property of the objects, as proposed in (Qi et
al., 2018).

• Intensity: 3D point clouds captured with terrestrial laser
scanners usually have another channel: laser intensity. This
layer could give more information on the surface of an ob-
ject to perform segmentation, and might even also be used
as main source of information when RGB channels are not
captured.
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Figure 12. Examples of panoramas with predictions of things and stuff objects.
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