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ABSTRACT:

Semi-Global Matching (SGM) is a widely-used technique for dense image matching that is popular because of its accuracy and speed.
While it works well for textured scenes, it can fail on slanted surfaces particularly in wide-baseline configurations due to the so-called
fronto-parallel bias. In this paper, we propose an extension of SGM that utilizes image warping to reduce the fronto-parallel bias in the
data term, based on estimating dominant slanted planes. The latter are also used as surface priors improving the smoothness term. Our
proposed method calculates disparity maps for each dominant slanted plane and fuses them to obtain the final disparity map. We have
quantitatively evaluated our approach outperforming SGM and SGM-P on synthetic data and demonstrate its potential on real data by
qualitative results. In this way, we underscore the need to tackle the fronto-parallel bias in particular for wide-baseline configurations

in both the data term and the smoothness term of SGM.

1. INTRODUCTION

Structure from Motion (SfM) and Multi-View Stereo (MVS) are
fundamental tasks in Computer Vision and Photogrammetry. In
order to obtain dense 3D information about a scene from a set
of 2D images, SfM first simultaneously estimates sparse 3D ge-
ometry (structure) and camera poses (motion). From this, MVS
then reconstructs a dense 3D point cloud. Both steps are based
on the establishment of correspondences between images (image
matching). While there are approaches that can cope with wide
baselines for sparse image matching (Mishkin et al., 2015; Roth
et al., 2017), it still remains a challenging problem for dense im-
age matching.

Dense image matching aims at computing the apparent motion
between as many individual pixels of two images as possible. In
the case of rectified images of a rigid scene, this motion is called
disparity. One of the most widely used techniques for dense
image matching is Semi-Global Matching (SGM) proposed by
Hirschmiiller (2005). It is popular because of its accuracy and
speed and is, therefore, employed in a broad spectrum of applica-
tions ranging from 3D mapping (Hirschmiiller, 2008; Rothermel
etal., 2012; Kuhn et al., 2017), the navigation of robots and UAVs
(Unmanned Aerial Vehicle) (Schmid et al., 2012) to autonomous
driving (Franke et al., 2013). SGM has been implemented on
different hardware architectures like GPU (Graphics Processing
Unit) (Banz et al., 2011) and FPGA (Field-Programmable Gate
Array) (Gehrig et al., 2009). While it works well for aerial im-
ages and terrestrial images with small baselines and sufficiently
textured scenes mainly consisting of fronto-parallel surfaces, its
performance drops significantly for wide-baseline images, in par-
ticular at higher resolutions, and with slanted, weakly-textured
surfaces.

The reason for this is that SGM, just like all other local or win-
dow-based methods for dense image matching, has the underly-
ing implicit assumption that the disparity within the window be-
ing considered for the calculation of the matching cost is constant

(a) Left image with details

(b) Right image with details

Figure 1. Illustration of the fronto-parallel bias: In the bottom
row, the image patches marked by the green squares are almost
identical, because the disparity inside the window is constant.
The disparity can be reliably determined. The image patches
marked by the orange squares (middle row) are hardly similar,
since image plane and object plane are not parallel. The disparity
cannot be reliably determined.

(fronto-parallel bias). However, this assumption is only fulfilled
if image plane and object plane are parallel (fronto-parallel). This
is for instance approximately true for the wall shown in the bot-
tom row of Figure 1. Comparing the two windows marked by the
green squares, it is clear that the disparity at this position can be
reliably determined: The image patches are almost identical, i.e.,
all pixels have the same disparity as the center pixel. On the other
hand, for the ground shown in the middle row of Figure 1, image
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plane and object plane are not parallel. If one compares the two
windows marked by the orange squares, it is obvious that the dis-
parity at this position cannot be reliably determined: The image
patches are hardly similar, as most of the pixels have a disparity
different from the center pixel.

The aspect above refers to the data term of SGM describing the
cost of matching a pixel at a certain disparity. However, SGM
also incorporates a smoothness term that penalizes changes in
neighboring pixels’ disparity similar to global methods. Since
the fronto-parallel bias also occurs in the smoothness term, our
main motivation is to reduce the fronto-parallel bias in both the
data term and the smoothness term of SGM.

In this paper, we propose an extension of SGM that utilizes image
warping to reduce the fronto-parallel bias in the data term, such
that the calculation of the matching cost is no longer affected by
it. For this purpose, we generate hypotheses for dominant slanted
planes, using them for warping the images and as surface priors
improving the smoothness term of SGM. We calculate disparity
maps for each dominant slanted plane and fuse them to obtain the
final disparity map.

2. RELATED WORK

In this section, we review related work, focusing on dense image
matching methods that address the problem of the fronto-parallel
bias in general and on SGM-based methods in particular.

Dense image matching methods are usually classified (Scharstein
and Szeliski, 2002) into local and global methods. The former,
also termed window-based methods, make implicit smoothness
assumptions by aggregating the matching cost over a local win-
dow. Global methods, on the other hand, make explicit smooth-
ness assumptions and then solve an optimization problem over all
pixels.

Among the local methods, several approaches have been pro-
posed that reduce the effect of the fronto-parallel bias through tar-
geted warping of the input images. Burt et al. (1995) recommend
to warp the right image of a stereo image pair to align it with a
reference plane, such as the ground, before performing dense im-
age matching. They report improved performance at lower com-
putational cost due to the reduced disparity range. Einecke and
Eggert (2013) as well as Ranft and Strauss (2014) adopt the idea
of warping one of the input images, parameterized by horizontal
shear and shift. While the former set the parameters manually, the
latter propose a procedure that dynamically generates hypotheses
based on the scene structure. Disparity maps from both, the dif-
ferently warped image pairs and the original image pair, are fused
to avoid that the final disparity map deteriorates in image regions
not belonging to one of the planes.

Other local methods that aim at reducing the effect of the fronto-
parallel bias use oriented matching windows that adapt to the
scene structure. PatchMatch stereo (Bleyer et al., 2011) initializes
each pixel with a random disparity as well as a randomly slanted
plane and iteratively propagates these parameters to neighboring
pixels. Sinha et al. (2014) perform local slanted plane sweeps
around disparity planes that are estimated from sparse feature cor-
respondences. For the final disparity map, each pixel is assigned
to one of the local plane hypotheses by an efficient optimiza-
tion technique based on SGM. Among all the plane-sweeping ap-
proaches that succeeded Collins (1996), the one of Gallup et al.

(2007) was the first to explicitly handle slanted planes. In (Bula-
tov et al., 2011), triangular meshes from a sparse point cloud are
used to compensate for the fronto-parallel bias.

SGM-based methods address the problem of the fronto-parallel
bias either by replacing the unweighted sum over the aggregated
cost of each direction in SGM with a weighted sum or by ma-
nipulating the penalties of SGM’s smoothness term. Michael et
al. (2013) introduce both path-dependent weights and penalties
resulting in 20 parameters that are optimized by an evolutionary
algorithm. Spangenberg et al. (2013) propose to weight the ag-
gregated cost of each direction according to its compliance with
the scene structure. While the above two approaches use global
weights for each path, Poggi and Mattoccia (2016) predict per-
pixel weights for each path, using random forests based on sev-
eral disparity-based features. Random forests are also employed
in (Schonberger et al., 2018), where disparity proposals estimated
using features based on the aggregated cost of each direction are
fused directly. SGM-Net (Seki and Pollefeys, 2017) is a CNN-
based (Convolutional Neural Network) method that predicts the
penalties of SGM’s smoothness term. SGM-P (Scharstein et al.,
2017) instead utilizes surface orientation priors to modify the
penalties to favor surfaces coinciding with the expected scene
structure.

Just like Burt et al. (1995), Einecke and Eggert (2013) and Ranft
and Strauss (2014), our approach uses image warping to reduce
the fronto-parallel bias. Nevertheless, this is novel in the con-
text of SGM. Arguing that it is necessary to tackle the effect of
the fronto-parallel bias in both the data term and the smoothness
term, we adopt the approach of Scharstein et al. (2017) and incor-
porate it into our proposed extension. As we correct the effect of
the fronto-parallel bias beforehand, there is no need to introduce
a weighted sum in SGM’s sum-based aggregation over the paths,
such as, e.g., in (Spangenberg et al., 2013). Finally, we note that
we fuse disparity maps similarly to Sinha et al. (2014).

3. ALGORITHM

Before describing our proposed extension, we first give a review
of SGM and SGM-P.

3.1 SGM and SGM-P

SGM is an efficient algorithm for approximate energy minimiza-
tion of a 2D Markov Random Field (MRF). It defines the energy
function

E(D)=> Co(dp) + Y V(dp,da), 6))

€Ny

where Cp, (d) is a unary data term representing the cost of match-
ing pixel p at disparity d € D = {dmin, - - - , dmax} and V (d, d")
is a pairwise smoothness term penalizing changes in neighboring
pixels’ disparity:

0 ifd=d
V(dd)=¢P ifld-d|=1 2)
Py ifld—d|>1.

It adds a constant penalty P; for small changes in disparity and
a larger constant penalty P for all larger disparity changes. This
allows an adaption to slanted surfaces, while preserving discon-
tinuities at the same time. Unfortunately, this also introduces a
fronto-parallel bias in the smoothess term.
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As minimizing E (D) from Eq. (1) is NP-hard, SGM divides
the grid-shaped problem into multiple one-dimensional problems
that can be efficiently solved via dynamic programming by defin-
ing an aggregated cost L, (p, d) along a path in the direction r:

Le (p,d) = Cp (d) + min (Lr (p —1,d') + V (d.d')) . (3)

The aggregated cost Ly (p, d) is recursively computed from the
image boundaries for eight cardinal directions r and summed up
at each pixel, resulting in the aggregated cost volume

S(p,d) = Le (p,d). )

The final disparity at each pixel is chosen by a winner-takes-all
strategy:
dp = argmin S (p,d) . (5)
d

The sum of the minima of the aggregated cost Ly (p, d) of these
eight paths represents a lower bound for the minimum of the ag-
gregated cost volume S (p, d) for each pixel p. The difference
between these two quantities defines an uncertainty measure Up
(Drory et al., 2014):

Up = mdin Z L, (p,d) — Z mgn L. (p,d). (6)

If the minima of the aggregated cost of all eight directions agree
(they all occur at the same disparity), then Uy, equals zero. This
is often the case in image regions with textured, fronto-parallel
surfaces, where wrong disparities would lead to high matching
costs. In image regions with weakly-textured, slanted surfaces,
instead, different disparities can cause similarly high matching
costs. Therefore, the minima of the aggregated costs probably
occur at different disparities, causing Up to be different from
(greater than) zero. We use this uncertainty measure to fuse dif-
ferent disparity maps.

In SGM-P, surface priors are utilized to modify the penalties in
SGM’s smoothness term to favor these surfaces. This is done by
first rasterizing a real-valued disparity surface prior .S, as SGM
uses discrete (integer) disparities:

S (p) = round S (p) @)
with steps (or jumps)
jo=5()-5(P-r) ®)

for the discretized disparities S. The original smoothness term V'
is then replaced with

Vs (dpy dy) = V (dp + jp, dy) . ©

By this means, the zero-cost transitions coincide with the dispar-
ity jumps. As we want to tackle the fronto-parallel bias in both
the data term and the smoothness term, we incorporate SGM-P
into our proposed extension and feed it with the same hypotheses
for dominant slanted planes that we use for warping the images.

3.2 Generation of Hypotheses for Dominant Slanted Planes

Since our approach (see Algorithm 1) is to be used in the classic
StM/MVS pipeline, we assume that a sparse point cloud is avail-
able from SfM. From this sparse point cloud, we generate hy-
potheses for dominant slanted planes II and use them for warping

Input: rectified stereo image pair, sparse StM point cloud
(optional)

Qutput: disparity map D

Variables: SGM parameters, RANSAC parameters, o,

Calculate disparity map D, and uncertainty map Up
with original SGM
Generate hypotheses for dominant slanted planes 11
with RANSAC from sparse StM point cloud (or disparity
map) discarding almost fonto-parallel planes
for each dominant slanted plane 7; € IT = {7,...
do
Estimate approximate image extent of 7; with
GrabCut
Calculate disparity map D, and uncertainty map
Ux, with our proposed extension of SGM improving
the data term by image warping with H ., and
improving the smoothness term by manipulating
penalties according to S,

771—”7«}

end

Fuse disparity maps Do, D, ...
map D based on uncertainty maps Uo, Ur,, . ..
with SGM

, Dr,, to final disparity
bl UTFn

Algorithm 1. Our proposed method.

the images. It is not our goal to improve the disparity map over
the entire image by finding as many planes as possible. We aim
at improving the disparity map in image regions that could only
be poorly reconstructed or are partially or even completely miss-
ing due to the fronto-parallel bias by only considering dominant
slanted planes. In urban environments, these often are the ground,
facade or roof planes. We use RANSAC (Random Sample Con-
sensus) (Fischler and Bolles, 1981; Schnabel et al., 2007) to find
these dominant slanted planes in the sparse SfM point cloud.

If no sparse point cloud is available, the disparity map Dy cal-
culated with original SGM in the first step of our algorithm (cf.
Algorithm 1) is used to search for dominant slanted planes. In this
case, the search is performed in disparity space rather than in 3D
space. Since we only consider dominant slanted planes, calcu-
lating the disparity map Dy is always necessary to obtain a com-
plete disparity map D at the end. Almost fronto-parallel planes,
for which the angle between the normal and the cameras’ orien-
tation is smaller than g, (we used an empirically determined an-
gle ag, = 60° in our experiments), are discarded and not further
considered. For these planes, reliable estimates should already be
obtained by the disparity map Dy.

3.3 Improving SGM’s Data Term and Smoothness Term

Based on the generated hypotheses for dominant slanted planes
II, we utilize image warping to improve the data term of SGM.
In our proposed extension, we particularly warp the right image
so that the window which is considered for the calculation of the
matching cost coincides with the left image with respect to the
considered plane. We use a plane-induced homography (Hartley
and Zisserman, 2004). With the left camera placed at the origin
and the camera projection matrices P, = K [ | 0] and P> =
K> [R | t] for the left camera and the right camera, respectively,
the plane-induced homography from the left image to the right
image is given by

.
Hy = K> (R - ti) Kt (10)
a
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for a plane 7 = (n',a) " with normal n and distance a to the
origin. As we map from the right image to the left image, we use
the inverse of matrix H. from Eq. (10).

The generated hypotheses for slanted planes II are also used to
calculate the surface priors to manipulate the smoothness term in
SGM to favor these surfaces. The surface prior S for a plane 7
with the plane equation n,x + nyy +n.z + a = 0 can be calcu-
lated in the following way. For a perspective camera with focal
length f, we have x = (u —uo) z/f and y = (v — vo) 2/ f for
image coordinates (u,v) with (uo, vo) being the camera’s prin-
cipal point. Substituting these quantities into the plane equation
results in

z=—af/(ne (u—uo) +ny (v—10)+ fnz). (11)

For a rectified stereo pair, we also have z = bf/d, where b and
d are the baseline between the cameras and the disparity, respec-
tively. The disparity d to be expected for an image point (u, v)
lying on plane 7 is then given by

d(u,v) = —g(nx (w—wo) +ny (v—20)+ fn.). (12)

Besides calculating the surface prior S for a plane 7 to modify
the penalties in the smoothness term, our proposed method uses
Eq. (12) to limit the disparity search space.

For each dominant slanted plane 7; € II = {m1,..., 7}, our
proposed extension of SGM calculates a disparity map D, as
well as an uncertainty map U, using Eq. (6). Thus, the fronto-
parallel bias is reduced in both the data term and the smoothness
term.

In order to limit the calculation of the disparity map Dy, to the
corresponding image regions, we estimate the approximate extent
of the considered dominant slanted plane 7; in the images. For
this, we use image segmentation, particularly GrabCut (Rother et
al., 2004) applied to the down-scaled images with the foreground
pixels being initialized with regions around the 3D points belong-
ing to the considered plane projected into the images.

3.4 Fusion of Disparity Maps

In the last step of our algorithm (see Algorithm 1), the dispar-
ity maps Do, Dr,, ..., Dy, are fused to form the final disparity
map D based on the uncertainty maps Up, Ux,,...,Ur,. We
follow the idea of Sinha et al. (2014) and formulate this fusion as
a pixel labeling problem, where each pixel p has to be assigned
to a label I. In our case, these labels [ are equivalent to the dis-
parity maps Do, Dy, , ..., Dx,. The optimal assignment L is
computed by minimizing the energy function

E(L) = ZUP (Ip) + Z V(lpla), 13)

q€Np

where the uncertainty maps Uo, Ur,, ..., Ux, are used as unary
data term. As there is no order among the labels [, the pairwise
smoothness term differs from Eq. (2) in equally penalizing vary-
ing labels between neighboring pixels with a constant penalty P.
We also use SGM to efficiently obtain an approximate solution
for this optimization problem and the final disparity map D.

Figure 2 exemplarily shows the individual steps of our approach
for the image pair from Figure 1.

(a) Disparity map Do

(d) Hypotheses II (GrabCut)

(e) Disparity map Dy,

(f) Uncertainty map U,

(g) Fusion map

(h) Final disparity map D

Figure 2. Individual steps of our approach exemplarily shown for
the image pair from Figure 1.

4. EXPERIMENTS

We report a quantitative evaluation on synthetic data as well as
qualitative results on real data demonstrating the potential of our
proposed method. In this way, we underscore the need to tackle
the fronto-parallel bias in both the data term and the smoothness
term of SGM, in particular for wide-baseline configurations.

4.1 Implementation Details

We compare our approach against SGM and SGM-P, emphasiz-
ing the individual contributions of reducing the fronto-parallel
bias in the data term and the smoothness term. In order to ensure
an unbiased evaluation, we build on the same implementation of
SGM for all experiments. We use the OpenCV implementation
(Bradski, 2000) extended to allow the Census transform (Zabih
and Woodfill, 1994) to be used as a cost function and to calculate
uncertainty maps. For all experiments, the employed parameters
of SGM’s smoothness term are P = 8 and P> = 32. For the
data term, we rely on the Census transform calculated on patches
of a size of 7 x 7 pixels. Since we use SGM also for the fusion
of disparity maps, we note that, in this case, the constant penalty
in the smoothness term is P = 32.

When comparing our proposed method against SGM-P, we use
identical hypotheses for dominant slanted planes for both. In
contrast to (Scharstein et al., 2017), where a single surface prior
is derived, we create a surface prior for each dominant slanted
plane and fuse the corresponding disparity maps, just like for our
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approach, to allow a fair comparison. By this means, differences
in the final disparity maps from SGM-P and our proposed method
express the effect of additionally reducing the fronto-parallel bias
in the data term. On the other hand, the effect of reducing the
fronto-parallel bias in both the data term and the smoothness term
can be seen when comparing the final disparity maps from origi-
nal SGM and our approach.

If the dominant slanted planes are estimated in the (isotropic) dis-
parity space, the RANSAC parameters are fixed to 0.99 for the
confidence threshold and to 2.0 for the distance threshold. For
sparse (anisotropic) SfM point clouds, the RANSAC parameters
have to be adapted. We discard almost fronto-parallel planes, for
which the angle between the normal and the cameras’ orienta-
tion is smaller than «g, = 60° (empirically determined). These
parameters are the same for SGM-P as for our proposed method.

4.2 Quantitative Evaluation

We start by evaluating our approach on the Driving dataset of
Mayer et al. (2016). This synthetic dataset inspired by the KITTI
dataset (Geiger et al., 2012) provides between 300 and 800 stereo
image pairs with a resolution of 960 x 540 pixels for each setup.
Besides the virtual focal length (15 mm or 35 mm), the setups dif-
fer in the “speed” they were recorded (fast or slow), causing more
or less motion blur and defocus blur. We consider the follow-
ing four setups, using only the backwards scenes: (35 mm, slow),
(35 mm, fast), (15 mm, slow) and (15 mm, fast).
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Figure 3. Performance on the Driving dataset (35 mm setups).

As ground-truth disparity maps are available for all setups, we
use the Driving dataset to quantitatively evaluate our proposed
method. For this purpose, we consider the disparity error, i.e.,
the percentage of pixels in the image whose disparity differs by
more than 2.0 pixels from the ground truth. In Figures 3 and 4,
this disparity error is plotted against the image number for the

35mm and the 15 mm setups, respectively, comparing our ap-
proach with SGM and SGM-P. For all four setups, our approach’s
curve is below that of SGM and SGM-P, indicating that it clearly
outperforms the other two. Our proposed method performs vir-
tually never worse than SGM or SGM-P. It performs worst if no
dominant slanted planes are found. In this case, our approach just
returns the SGM disparity map. This happens several times for
image pairs around 150 in the slow setups. Since the fast and
slow setups come from the same trajectories, but with different
distances, the shape of the curves is similar (cf., e.g., Figures 3a
and 3b).
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Figure 4. Performance on the Driving dataset (15 mm setups).

Table 1 shows the mean disparity error reduction ranging from 23
to 35% over SGM and from 8 to 24% over SGM-P. It is evident
that the improvement decreases from the 15 mm (wide-baseline)
to the 35 mm (small-baseline) setups. This is in particular true for
SGM-P. The results prove what intuition tells us: Our approach
is particularly suitable for wide-baseline image pairs, whereas for
small-baseline image pairs, the improvement over SGM-P is sig-
nificantly smaller. This is the reason for us refraining from a
quantitative evaluation on well-known stereo benchmarks such as
KITTI or ETH3D (Schops et al., 2017) with small-baseline im-
age pairs. Instead, we focus on qualitative results demonstrating
the potential of our proposed method on meaningful examples.

Error reduction

over SGM [%]

Error reduction
over SGM-P [%]

(35 mm, slow) 23.03 8.31
(35 mm, fast) 25.40 11.45
(15 mm, slow) 35.04 20.25
(15 mm, fast) 34.35 24.90

Table 1. Mean disparity error reduction over SGM and SGM-P
on the Driving dataset.
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(a) Image pair 55 (b) Image pair 232
Figure 5. Qualitative results for two image pairs from the Driving
dataset, (15 mm, fast) setup. Top: Left image. Middle: Disparity
map (SGM). Bottom: Disparity map (our approach).

(a) CrusadeP

(b) Image pair 1

Figure 6. Qualitative results for two image pairs. CrusadeP is
from the Middlebury dataset, image pair 1 acquired by us. Top:
Left image. Middle: Disparity map (SGM). Bottom: Disparity
map (our approach).

4.3 Qualitative Results

Besides examples from the synthetic Driving dataset, we demon-
strate the potential of our approach on image pairs from the Mid-
dlebury dataset (Scharstein et al., 2014), from the multi-view
dataset of Strecha et al. (2008), and from own images. While for
the Driving and the Middlebury dataset, dominant slanted planes
are estimated in the disparity space, for the others these are esti-
mated in the sparse point cloud obtained using the wide-baseline
StM technique of Mayer et al. (2012) as well as Michelini and

Mayer (2016). The resolution is about six megapixels across all
image pairs.

Two examples from the Driving dataset are shown in Figure 5.
Due to the characteristics of the dataset, usually the ground and,
more rarely, facade planes are found as dominant slanted planes.
In particular, the strongly distorted image regions in the fore-
ground are completely reconstructed by our proposed method in
contrast to SGM. As the CrusadeP image pair from the Middle-
bury dataset and image pair 1 in Figure 6 prove, our approach
is not limited to synthetic KITTI-like data. Nevertheless, our
proposed method strongly relies on the scene structure, presum-
ing dominant slanted planes. We aim at reconstructing these im-
age regions, as they are potentially missing in the disparity map
due to the fronto-parallel bias. For most of the image pairs from
the Middlebury dataset, we did not succeed in finding dominant
slanted planes. Please note that, in this case, our approach still re-
turns the SGM disparity map. As use case we mainly concentrate
on scenes in urban environments, Figure 7 shows two examples
from the multi-view dataset of Strecha et al. (2008), more pre-
cisely the fountain-P11 (7,4) image pair and the Herz-Jesu-P25
(15,16) image pair, along with two more examples acquired by
us. Our approach significantly improves the disparity maps in
image regions belonging to the ground for all four image pairs.
In addition, the roof which is largely missing in the disparity map
of SGM is reconstructed for image pair 3.

5. CONCLUSION

We have proposed an extension of SGM that tackles the fronto-
parallel bias in both the data term and the smoothness term. It
utilizes image warping to reduce the fronto-parallel bias in the
data term. Hypotheses for dominant slanted planes are generated
either from the sparse SfM point cloud or from the SGM dispar-
ity map, being used as surface priors to improve the smoothness
term. Our approach calculates disparity maps for each dominant
slanted plane and fuses them to obtain the final disparity map.

Our proposed method has been quantitatively evaluated on syn-
thetic data, where it outperforms SGM and SGM-P, underscoring
the need to tackle the fronto-parallel bias in both the data term
and the smoothness term of SGM, in particular for wide-baseline
configurations. Qualitative results on real data demonstrate its
potential.

As our approach strongly relies on the robust detection of domi-
nant slanted planes, future work includes assisting their detection
by semantic image analysis.
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