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ABSTRACT:

Semantic segmentation of point clouds is one of the main steps in automated processing of data from Airborne Laser Scanning (ALS).
Established methods usually require expensive calculation of handcrafted, point-wise features. In contrast, Convolutional Neural
Networks (CNNs) have been established as powerful classifiers, which at the same time also learn a set of features by themselves.
However, their application to ALS data is not trivial. Pure 3D CNNs require a lot of memory and computing time, therefore most
related approaches project ALS point clouds into two-dimensional images. Sparse Submanifold Convolutional Networks (SSCNs)
address this issue by exploiting the sparsity often inherent in 3D data. In this work, we propose the application of SSCNs for efficient
semantic segmentation of voxelized ALS point clouds in an end-to-end encoder-decoder architecture. We evaluate this method on the
ISPRS Vaihingen 3D Semantic Labeling benchmark and achieve state-of-the-art 85.0% overall accuracy. Furthermore, we demonstrate
its capabilities regarding large-scale ALS data by classifying a 2.5 km2 subset containing 41 M points from the Actueel Hoogtebestand
Nederland (AHN3) with 95% overall accuracy in just 48 s inference time or with 96% in 108 s.

1. INTRODUCTION

Airborne laser scanning (ALS) delivers mass data in the form of
3D point clouds. In order to obtain semantic information about
objects from this data, a class from a given catalog of object cate-
gories is often assigned to each 3D point as an intermediate step.
However, such a classification cannot be carried out in isolation
for single points. Rather necessary is the inclusion of spatial con-
text resulting from the distribution of points in a local neighbor-
hood. Usually, geometric features are derived from the surround-
ings of each point. In the classical approach the definition of
these features and neighborhoods takes place a priori by experts.
Point classification in the feature space is then carried out using
standard methods such as Random Forests.

Convolutional Neural Networks (CNNs) have been established
in recent years as the state of the art in image analysis. In order
to process three-dimensional data with this method, 3D data is
often mapped into a set of 2D projections. However, this can
be accompanied by loss of information and cannot be applied
to data whose three-dimensionality needs to be preserved during
processing.

Since convolution operations on raster data are mathematically
unrestricted by the dimension of space, CNNs can theoretically
process raster data with any number of dimensions and naturally
any size. In practice, however, the high memory and comput-
ing requirements of CNNs limit the amount of data and thus the
resolution of 3D inputs.

3D data is usually characterized by a strongly inhomogeneous
spatial distribution density, large parts of the (voxel) space not be-
ing occupied at all. In this work, we therefore adapt Submanifold
Sparse Convolutional Networks (SSCN) (Graham et al., 2018)
for semantic segmentation of ALS point clouds.
∗Corresponding author

After shortly discussing related works and presenting the basic
idea behind Submanifold Sparse Convolutional Networks, we
will study the performance of SSCNs using the ISPRS Vaihin-
gen 3D Semantic Labeling Benchmark (V3D). Finally, we will
demonstrate it capabilities on the large-scale Actueel Hoogtebe-
stand Nederland AHN3 data set.
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Figure 1. Diagram of the processing pipeline. A point cloud sam-
ple is voxelized and then semantically segmented by an SSCN in
the form of a U-Net. Afterwards, the voxel labels are transferred
back to the original points. The spatial resolution of the sample
is indicated as it passes through the network: the deeper the level,
the lower the resolution.

2. RELATED WORK

The usual procedure for semantic segmentation of point clouds,
also known as point cloud classification, consists of two-steps.
First, hand-crafted features are calculated for each point or seg-
ment. Besides echo-based properties and normalized heights, a
range of neighborhood related features can be derived, for ex-
ample calculated from the eigenvalues of the structure tensor.
In the second step, points are classified according to these fea-
tures. Typical classifiers are Support Vector Machines (SVM) or
Random Forests (RF) (Chehata et al., 2009; Blomley and Wein-
mann, 2017; Hackel et al., 2016). Such classifiers handle each
point individually, without considering semantic interactions be-
tween classes of adjacent points, leading to fine-grained noisy
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results. In order to include spatial context, Niemeyer et al. (2014,
2016) classify all points simultaneously in a Conditional Random
Field (CRF). The feature calculation necessary for this general
approach requires to a large extent time-consuming neighborhood
inquiries. Moreover, a set of features has to be chosen manually
for each application.

Convolutional Neural Networks (CNNs) are state-of-the-art in
many disciplines such as computer vision, especially in image
classification. In addition to classifying inputs, they implicitly
also learn how to extract features from the input simultaneously
in an end-to-end manner. Ordinary CNNs require rasterized, two-
dimensional input data. 3D point clouds, however, are usually un-
ordered, non-regular and have highly inhomogeneous point den-
sities. The application to ALS data is therefore nontrivial.

Most comparable work concentrates on converting ALS point
clouds into meaningful 2D or 2.5D raster data suitable for pro-
cessing with CNNs. Hu and Yuan (2016) classify ALS points by
describing each point by a vertical projection of their surround-
ings. Each pixel consists of three values: Zmin, Zaverage and
Zmax. The object category predicted by the neural network for
such an image is then transferred to the original 3D point in the
center of the image. Yang et al. (2017) employ normalized height,
intensity and estimated roughness as well as the eigenvalue based
features planarity and sphericity for the pixel values. Zhao et al.
(2018) generate those images at multiple scales, but without the
eigenvalue features. After classification with a CNN, they com-
bine the results with those from a bagged decision tree classifier,
which also utilizes spectral RGB information. A disadvantage of
these methods is the expense precipitated by the many redundant
computations, because for close points the same features have
to be calculated and processed within the network several times.
Moreover, the result is prone to noise because the points are clas-
sified individually without taking into account the semantic rela-
tionships of neighboring points.

In contrast, encoder-decoder architectures allow simultaneous la-
beling of all input elements (pixels) (Long et al., 2015; Ron-
neberger et al., 2015). Those fully convolutional networks
(FCNs) can thus process larger scenes in one piece. Politz and
Sester (2018) as well as Rizaldy et al. (2018) rasterize input ALS
point clouds into a horizontal plain with 1 m or 0.5 m pixel size
and label each patch of size 100 × 100 m in a single step. How-
ever, the problem of information loss due to the projection into
a 2D image remains, especially when dealing with occlusions,
facades and multi-echo signals. In addition, the point-to-image
conversion together with the back projection may represent com-
putational overhead.

In principle, all operations within a CNN can be defined over
any number of dimensions (Maturana and Scherer, 2015). Ras-
tering point clouds is also possible in three-dimensional space.
However, the resulting dense voxel grids require a lot of memory
and computing time while being processed in a 3D CNN, espe-
cially for semantic segmentation (Song et al., 2017; Tchapmi et
al., 2017; Dai et al., 2018). This is particularly disproportionately
expensive because the majority of space usually contains empty
voxels, i.e., it is very sparse.

In order to overcome the issues of dense 3D CNNs, non-
convolutional neural networks were developed specifically for
unordered point clouds (Qi et al., 2017) and applied to ALS data
(Winiwarter et al., 2019). Similarly, Yousefhussien et al. (2018)
propose a 1D-FCN, which operates on each point individually.

The only cross-spatial operation is a point-spanning max-pooling.
Landrieu and Simonovsky (2018) classify pre-segmented point
clouds with graph convolutional networks.

To take advantage of the low density of 3D data, various ap-
proaches have been developed to apply 3D CNNs to data struc-
tures other than voxel grids, for example octrees (Wang et
al., 2017), Kd-trees (Klokov and Lempitsky, 2017) or coordi-
nate lists (Graham, 2015; Graham et al., 2018; Hackel et al.,
2018). Within their Submanifold Sparse Convolutional Networks
(SSCNs), Graham et al. (2018) exploit the implementation of
convolutional layers as matrix multiplications in order to con-
sider only occupied voxels. This method achieved the best re-
sults in segmenting object parts (Yi et al., 2017) and is the leading
method on the ScanNet 3D Semantic Labeling benchmark1 at the
time of this work.

So far those sparse 3D CNNs developed in the computer vision
community have mostly been used for small synthetic data sets,
spatially limited terrestrial scans or interior scenes. To our knowl-
edge, the application to large-scale topographic point clouds of
real objects produced by ALS has not yet been investigated. In
this paper we show the suitability of SSCNs for the semantic seg-
mentation of ALS point clouds.

3. METHODOLOGY

3.1 Submanifold Sparse Convolutional Networks

The main components of convolutional neural networks are the
convolutional layers. In these layers, several kernels with learned
weights are convolved with the results (activation maps) from
the previous layer. In the 2D case, activation maps and kernels
are three-dimensional, the length of the third dimension being
the number of input channels or filters of the previous layer. The
convolution is expressed by

Y l
f = Xl ∗W l

f (1)

where W l
f describes the f th 3D convolution kernel in the current

layer l andXl = h(Y l−1) denotes the result of the previous layer
after the activation function h(·).

In order to efficiently compute convolutions on GPUs, this opera-
tion can be rewritten as a matrix multiplication (Chellapilla et al.,
2006; Chetlur et al., 2014):

Yl = Xl ·Wl (2)

The matrix Wl ∈ Rk2c×|f | contains all |f | kernels of the current
layer, each of size k×k×c, where c is the number of input chan-
nels. For the input Xl ∈ R|n|×k2c and output Yl ∈ R|n|×|f |
the number of rows |n| stands for the amount of kernel positions.
For images, this corresponds to the image width multiplied by the
image height, assuming stride = 1 and appropriate padding. The
basic principle of Submanifold Sparse Convolution (SSC) is to
use only those rows n, whose corresponding locations in the orig-
inal input are not empty. Therefore it is sufficient to only store the
non-empty locations in form of a list, for example a voxel cloud.
For further details see (Graham, 2015) and (Graham et al., 2018).

1http://www.scan-net.org
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(a) Training split (b) Validation split (c) Test set

Figure 2. ISPRS Vaihingen 3D Semantic Labeling data set. The point clouds are colored based on a CIR orthophoto.

3.2 Network Architecture

We adapt the U-Net architecture (Ronneberger et al., 2015) from
Graham et al. (2018) for semantic segmentation of voxelated ALS
point clouds (Figure 1). This encoder-decoder style architec-
ture allows end-to-end processing of voxel clouds. A level in
the encoder consists of three blocks, each containing a batch-
normalization layer, a convolutional layer and a ReLU layer. The
encoder halves resolution in the first conv-layer of each level ex-
cept the first one by setting stride = 2. The network is made out
of 7 levels for the ISPRS dataset. For AHN3, we only used 6 lay-
ers to speed up training and to the diminish memory footprint due
to the higher point density and therefore bigger samples. It could
also be argued that five instead of nine classes need less network
complexity. Conv-layers in the first level have 32 3 × 3 × 3 fil-
ter kernels. 32 further filters are added in each lower level. The
decoder is symmetrical to the encoder and uses “deconvolution”
layers to restore the resolution level by level. The resulting acti-
vation maps are concatenated with those from the corresponding
encoder stage. After the decoder, two 1×1×1 convolutional lay-
ers, with dropout in between (p = 0.5), predict class probabilities
for every individual non-empty voxel. Outside of the network, the
class with the highest probability is chosen per voxel and finally
transferred to the inlying points during inference.

3.3 Loss Function

A major problem with semantic segmentation using CNNs is
training data with highly inhomogeneous class distributions. Dur-
ing inference, neural nets tend to favor those classes seen more
frequently during training. In contrast to regular classification
tasks, simple under- or oversampling is not practicable here, since
class instances occur not on their own, but only as parts of big-
ger samples, e.g. as pixels in an image or voxels in a (sparse)
3D grid. As an alternative to adjusting sampling, the objective
function can also be modified. We use a weighted element-wise
cross-entropy loss (Long et al., 2015; Ronneberger et al., 2015;
Eigen and Fergus, 2015):

E = − 1

Z

N∑
n=1

∑
x∈Ωn

C∑
c=1

w(x) yc(x) log(ŷc(x)) (3)

Z =

N∑
n=1

∑
x∈Ωn

w(x) (4)

where N is the number of samples n in the current mini-batch,
x ∈ Ωn are all non-empty voxel locations per sample, ŷc(x)
is the predicted probability of x belonging to class c, yc is the
given one-hot-encoded ground truth and C the number of classes
in the dataset. Higher weighting of rare class samples leads to a

higher impact to the loss and therefore a stronger gradient in that
direction. Hence one can achieve class balancing by weighting
the classes inversely to their frequency:

w(x) = w(y(x)) = wc =
1

fc
(5)

with fc as the relative frequency of the true label y(x) or class
c, respectively. Empirically, we found that this weighting leads
to good recall, but to the cost of lower precision in case of the
V3D dataset when having bigger voxels. Therefore, we use the
square root of the inverse frequency as better compromise be-
tween recall and precision for the ISPRS Vaihingen 3D Semantic
Labeling dataset, but keep the reciprocal frequency for AHN3,
since its class imbalance is much more pronounced.

4. DATA

4.1 ISPRS Vaihingen 3D Semantic Labeling (V3D)

We investigate the suitability of our method on the ISPRS 3D Se-
mantic Labeling Contest2 (Niemeyer et al., 2014). It consists of
two ALS point clouds, one for training and one for testing, cover-
ing Vaihingen an der Enz, Germany. Each echo of a LiDAR trans-
mission pulse had been recorded as a separate point with the at-
tributes intensity, echo number and number of echos. In addition,
the points have been labeled with the following 9 classes; Pow-
erline, Low vegetation, Impervious surfaces, Car, Fence/Hedge,
Roof, Facade, Shrub and Tree. The nominal point density per
strip is 4 pts/m2. Due to 30 % strip overlap the global point den-
sity is about 8 pts/m2. At the time of this work, the contest had
already been closed. However the ground truth labels of the test
set are now also available. In addition to the point cloud, a true
orthophoto (TOP) of the same area is provided by the correspond-
ing 2D contest (Cramer, 2010). This TOP has a ground sampling
distance (GSD) of 9 cm and contains the spectral channels near
infrared, red and green (CIR). In some of the experiments the
point cloud is colored using this TOP (Figure 2).

In order to monitor the learning progress, we separated the
training point cloud manually into fixed training and valida-
tion splits, respectively (Figure 2). The training split contains
659,428 points, the validation split contains 94,448 points, and
for testing 411,722 points are available.

4.2 Actueel Hoogtebestand Nederland (AHN3)

The afore-mentioned dataset is very small compared to those
datasets on which deep learning methods are usually trained. This

2http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-
labeling.html
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makes training unstable and generalization difficult. The point
cloud of the Actueel Hoogtebestand Nederland (AHN3)3 pro-
vides larger, more comprehensive training data. It will also allow
us to measure the inference time needed for a large-scale voxel
cloud.

AHN3 includes surface and terrain height information and will
cover the entire Netherlands by the middle of 2019. The under-
lying ALS point cloud has a nominal point density of 9 pts/m2.
The mean point density amounts to 16 pts/m2. Besides inten-
sity, echo number and number of echos, scan angle is also pro-
vided as an additional point attribute. The points are labeled
as either unassigned, which mostly includes vegetation, ground,
building, water or bridges including other similar structures. We
use three subsets from tile C 33 FN1, covering a residential area
of the city Deventer, Netherlands (Figure 3). The training set cov-
ers 1.2 km2 and contains 20 M points, the validation set covers
0.3 km2 and contains 4 M points, and finally the test set cover-
ing 2.5 km2 contains about 41 M points.

Figure 3. AHN3 point clouds used in this work. The upper left
part shows the training set, the upper right part shows the valida-
tion set and on the bottom is the testing area. Green: unassigned;
brown-gray: ground; white: buildings; blue: water; red: bridges.

5. EXPERIMENTS

5.1 Voxelation and Sampling

In contrast to classical methods, there is no need for a separate,
expensive feature calculation. The only necessary pre-processing
is to voxelize the point cloud (Figure 4). This step also homoge-
nizes the point density (Boulch et al., 2017; Hackel et al., 2016;
Yousefhussien et al., 2018). Instead of a dense voxel grid, we de-
termine a list of non-empty voxels (voxel cloud). Voxel attributes
like intensity are obtained by averaging over the included points
of each voxel. Ground truth class labels are determined by ma-
jority vote. As a by-product of the voxel filter, an index list is
generated by which the predicted labels can be easily transferred
from the voxels back to the original points.

We experimented with voxel sizes of 2 m, 1 m, 0.5 m, 0.25 m
and 0.125 m. In order to avoid overfitting, training data was aug-
mented by rotating twelve times around the Z-axis with 30◦ an-
gle increment before voxelization. Furthermore, we divided the
voxel clouds into smaller samples along a horizontal grid. The

3https://www.pdok.nl/nl/ahn3-downloads

samples, however, must be large enough to provide a meaning-
ful spatial context. For the V3D dataset we used samples of
16 × 16 × 64 m, 32 × 32 × 64 m and 64 × 64 × 64 m spa-
tial extent. Each sample thus covers the full vertical extent of the
data set. The overlap of the training samples is 30%.

For AHN3 we used 128 × 128 × 128 m samples with voxel
sizes of 0.5 m and 0.25 m. Altough this dataset provides enough
unique training points, we still follow best practices by augment-
ing the data, but reduce it to three 120◦ rotations and 10% over-
lap.

(a) (b)

Figure 4. Voxelized V3D training sample of size 32× 32× 64 m
with 1 m voxel size, colored by label. Light green: Low vegeta-
tion; gray: Impervious surface; red: Roof; white: Facade; yellow:
Shrub; medium green: Tree.

5.2 Training

The mini-batch size during training is 128 for 16 × 16 × 64 m
sized samples. Because larger sample extents only allow for
fewer samples given the same overlap, mini-batches contained
32 or 8 samples when having samples with 32 m or 64 m edge
length, respectively. This is supposed to keep the number of
weight updates per epoch constant. All networks were optimized
by stochastic gradient descent with momentum and weight decay.
For each configuration 10 identical nets were trained indepen-
dently. For AHN3, mini-batch size was set to 4 due to memory
constraints.

5.3 Inference

By default, the validation and test sets were sampled in the same
way as the respective training set, but without overlap. The fully
convolutional property of the network architecture (Long et al.,
2015) makes it possible to classify samples larger than the ones
used in training. This may be useful to overcome the possible lack
of valuable neighborhood information at the edges of small sam-
ples (see section 6.1). For better and more stable results we also
investigate ensembles of ten nets, whose predicted class proba-
bilities are averaged.

5.4 Implementation

Our implementation was realized using Python 3.5 and PyTorch4

0.4. The framework for Submanifold Sparse Convolutional Net-
works by Graham et al. (2018) is publicly available5. The V3D
point clouds were colored using OPALS6 (Pfeifer et al., 2014).

4https://pytorch.org
5https://github.com/facebookresearch/SparseConvNet
6https://geo.tuwien.ac.at/opals
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mean OA [%] ± σ voxel size [m]
ensemble OA [%] 2.0 1.0 0.5 0.25 0.125

(26k) (85k) (210k) (320k) (374k)

sa
m

pl
e

si
ze

[m
]

16× 16× 64
76.3± 0.4 80.2± 1.0 80.3± 1.5 80.7± 1.1 79.2± 1.3

78.3 81.2 82.3 82.9 82.0

32× 32× 64
76.7± 1.0 81.4± 0.5 81.6± 0.6 81.0± 0.7 78.8± 2.0

79.8 83.1 83.5 83.2 82.4

64× 64× 64
77.0± 0.8 81.4± 0.7 81.4± 0.7 81.5± 0.9 80.5± 1.4

79.1 83.2 83.4 83.4 83.7

Table 1. Results on the V3D test set, evaluated on the original point cloud. Shown are mean and standard deviation regarding the
overall accuracies from ten networks each, followed by the overall accuracy of their ensemble. Under the voxel sizes, the respective
number of resulting voxels is reported. The same sample size was used for training and testing.

(a) Without spectral information (b) With CIR point attributes

Figure 5. Detailed V3D test set segmentation results from two ensembles: (a) without spectral information (b) with CIR point attributes.
Best viewed digitally.

6. RESULTS

First, we will present detailed investigations on the ISPRS Vaihin-
gen 3D dataset before evaluating our method on the larger AHN3
data. Table 1 shows overall classification accuracies (OA) for the
V3D test set at different resolutions and sample sizes. Perfor-
mance improves for higher voxel resolutions until reaching the
mean point density of the point cloud. Similarly, the smallest
sample shape performs not quite as well as the two larger ones.
Moreover, the ensembles deliver significantly better results than
their separate components. The best result of 83.7% is delivered
by an ensemble with sample size 64×64×64 m and a voxel size
of 0.125 m. However, this is not significantly better than the more
efficient combination of 32 × 32 × 32 m with 0.5 m voxel size
and seems to be an outlier in view of the more extensive set of ex-
periments we had carried out. This second configuration achieves
83.5% and will serve as baseline for all following investigations
on the ISPRS dataset.

6.1 Fully Convolutional Inference

Since smaller samples may be lacking valuable neighborhood in-
formation at the edges, we also classified the V3D test set in one
piece, i.e. without sampling. The classification accuracy drops
by an average of 1.8% for nets trained on 16 × 16 × 64 m large

samples, but increases by 0.8% or 0.6% for networks trained on
samples with 32 m or 64 m edge length, respectively. The result-
ing best network has the same configuration as the baseline, but
achieves 84.2% (Figure 5(a)). On the other hand, inference time
slows down about 50%, presumably because the GPU can utilize
its parallelization capabilities less efficiently.

6.2 Geometry

In order to investigate the influence of pure geometry, we trained
and tested networks in the baseline configuration, but without
echo-based point attributes. Each element in the voxel cloud is
therefore only represented by a single value (‘1’). The overall ac-
curacy is 79.8% for a ten network ensemble, and about 75% for
single nets. The biggest issue in this setting is the differentiation
between Low vegetation and Impervious surfaces, both classes
with flat spatial distribution close to the ground.

6.3 Spectral Information

The leading method in the benchmark of the ISPRS 3D Seman-
tic Labeling Contest uses a point cloud enriched with spectral
information (Zhao et al., 2018). For comparison we repeated
the experiments with the sample size 32 × 32 × 64 m, but with
the CIR orthophoto mapped onto the points cloud for additional
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point attributes. A general problem thereby is the time delay be-
tween LiDAR scan and image acquisition, which is particularly
important in the case of vehicles and may lead to wrong coloring.
Furthermore, facades are partially colored identically to the roofs
above them.

The overall accuracy increases by an average of 1.9 percentage
points for the sample-based inference over all tested voxel sizes,
but in particular at a voxel size of 2 m. The baseline perfor-
mance increases from 83.5% to 84.6%. If the voxel cloud is
processed by the SSCN without sampling, the accuracy increases
by an average of 1.5 percentage points. The baseline configu-
ration improves by 0.8% to 85.0%. Results are shown in Fig-
ures 5(b) and 6. Although facades are interpreted as roofs some-
what more frequently, they are less often classified as vegetation.
The ambiguity between road and vehicles is even slightly better.
At the time of this work, the best method on the benchmark ac-
complishes 85.2% (Zhao et al., 2018).

(a) Ground truth

(b) Prediction

Figure 6. V3D test set. Color coding roughly following (Blom-
ley and Weinmann, 2017). Black: Powerline; light green: Low
vegetation; gray: Impervious surface; blue: Car; dark green:
Fence/Hedge; red: Roof; white: Facade; yellow: Shrub; medium
green: Tree.

6.4 Large Scale AHN3

voxel size [m]
0.5 0.25

number of voxels 22 M 37 M

ensemble OA [%] 95.4 96.4

mean OA [%] ± σ 95.1± 0.2 96.1± 0.07

Table 2. AHN3 test results.

The network ensembles trained on AHN3 achieve up to 96.4%
overall classification accuracy (Table 2, Figure 7). Small voxel
sizes gain better overall accuracies but perform slightly worse re-
garding rare classes. Individual networks do only little worse than

their ensemble and have a small standard deviation. Training on
this dataset results in more stable training and less variance in
testing.

Figure 8 displays some examples where the ensembles failed to
give correct predictions. A sloped dike resembling the shape of
a tiled roof gets interpreted as building (Figures 8(a) and (b)).
During training, dikes had mostly been covered with higher veg-
etation. The networks also struggle with large flat building roofs
(Figures 8(c), (d)). Further difficulties are caused by bridges and
other waterworks, which had not been well represented in the
training set due their scarce appearances and wide intra-class va-
riety, as well as low vegetation combined with lower voxel reso-
lution.

Figure 7. Detailed AHN3 test set results using 0.5 m voxel size.

6.5 Computing Time and Memory Consumption

Table 3 shows computational requirements for the V3D data set.
SSCNs outperform dense U-Nets in terms of speed and mem-
ory. However, we also observed increasing memory consumption
from SSCNs over the training progress, which might be a bug in
the framework we used.

Pure inference time of the best ensemble (voxel size 0.5 m) takes
11 s, plus additional 19 s for evaluation and I/O. Less than 0.1 s
are needed for voxelization (plus 4 s I/O) and, if necessary, 5 s for
sampling. Especially I/O is still leaving much room for optimiza-
tion due to our implementation.

Training time for AHN3 is about 1.5 or 3.5 hours, respectively.
Given 0.5 m voxel size, the AHN3 test set of 41 M points is
voxelized to 22 M voxels. It takes 48 s inference time per net-
work, the whole ensemble needs 488 s to process the test set. The
37 M voxels from 0.25 m resolution are labeled within 108 s per
network.

If minor losses in accuracy are acceptable, adjusting voxel size
and the number of nets in the ensemble is a simple way to balance
between computing time and accuracy.

The following hardware was used for all computations: Intel Core
i7-6800K @ 6/12x 3.40 GHz with 64 GB of RAM and a NVIDIA
Titan X Pascal with 12 GB of graphics memory.
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(a) Ground truth (b) Prediction

(c) Ground truth (d) Prediction

Figure 8. Examples of misclassified AHN3 points, predicted at 0.25 m voxel resolution. The large building is roughly 150 m wide.
Green: unassigned; brown-gray: ground; white: buildings; blue: water; red: bridges. Best viewed digitally.

voxel size [m]
2.0 1.0 0.5 0.25 0.125

Memory dense [GB] 1.5 7.7 - - -
Memory SSCN [GB] 0.9 1.5 2.2 4.9 7.9

TPE dense [sec] 15 84 - - -
TPE SSCN [sec] 11 23 45 72 98

Train SSCN [min] 6 14 30 63 107

Test SSCN [sec] 0.3 0.4 0.8 1.4 2.0

Table 3. Comparing computational parameters between SCCNs
and equivalent dense U-Nets for V3D 32×32×64 m. Shown are
GPU memory footprint during the first training epoch, time per
epoch (TPE) and training as well as testing times per network. At
voxel sizes < 1 m dense networks ran out of memory.

7. CONCLUSION

In this work we showed the suitability of Submanifold Sparse
Convolutional Networks for semantic segmentation of ALS point
clouds. The achieved overall accuracy on the ISPRS Vaihingen
3D Benchmark is the second best published result at the time of
this paper. Rare object categories can still be identified reason-
ably well when trained with a weighted loss function, given their
inner class variance is well represented in the training set. The
implicit geometry of the point cloud has proven to be the primary
feature. Difficult classes in the ISPRS Vaihingen 3D dataset are
in particular shrubs and hedges or fences, which are often inter-
preted as various types of vegetation. Low vegetation and imper-

vious surfaces are prone to confusion due to their similar geome-
try. Training on larger amounts of ALS data with less numerous
but more distinctive classes was more stable and achieved better
test results. However, these networks still requires a consider-
able amount of graphics memory, limiting resolution and sample
extent.
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