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ABSTRACT: 

In this paper, we investigate the usage of unmanned aerial vehicles (UAV) to assess the crop geometry with special focus on the crop 

height extraction. Crop height is classified as a reliable trait in crop phenotyping and recognized as a good indicator for biomass, 

expected yield, lodging or crop stress. The current industrial standard for crop height measurement is a manual procedure using a 

ruler, but this method is considered as time consuming, labour intensive and subjective. This study investigates methods for reliable 

and rapid deriving of the crop height from high spatial, spectral and time resolution UAV data considering the influences of the 

reference surface and the selected crop height generation method to the final calculation. To do this, we performed UAV missions 

during two winter wheat growing seasons and generate point clouds from areal images using photogrammetric methods. For the 

accuracy assessment we compare UAV based crop height with ruler based crop height as current industrial standard and terrestrial 

laser scanner (TLS) based crop height as a reliable validation method. The high correlation between UAV based and ruler based crop 

height and especially the correlation with TLS data shows that the UAV based crop height extraction method can provide reliable 

winter wheat height information in a non-invasive and rapid way. Along with crop height as a single value per area of interest, 3D 

UAV crop data should provide some additional information like lodging area, which can also be of interest in the plant breeding 

community. 

1. INTRODUCTION

1.1 Challenges of sustainable crop production 

It became more and more obvious, sustainable crop production 

is one of the key challenges for our and upcoming generations. 

Current crop production cannot support future yield demands 

which are predicted to increase by 2.40% annually (Ray et al., 

2013). Rapid population growth, limited arable land, negative 

environmental footprint in combination with climate changes 

give us enough reasons for a change. Producing more with 

fewer resources, with less negative impact on the environment 

and in a sustainable manner is a huge challenge in the future. 

Better understanding of the connection between a crop genetic 

mark up (genotype) and its observable characteristics 

(phenotype) in a real world growing system should allow the 

selection of a high-yield stress and tolerant crop and improve 

current agriculture production.  

The possibility of observing crop characteristics, i.e. crop traits, 

should be reliable, efficient and multifunctional. A novel 

technology should support this. Creating autonomous or semi-

autonomous, affordable phenotyping platforms on the one hand 

and developing reliable and effective workflows for crop 

phenotyping on the other hand should allow plant scientist to 

understand plants better and to create new standards for crop 

phenotyping. 

Unmanned Arial Vehicles (UAV) as versatile and affordable 

phenotyping platforms fit to this paradigm. Using different 

sensors like RGB, multispectral or thermal cameras or even a 

LIDAR mounted to UAV can provide lots of useful crop related 

data, which can be further transferred into useful crop traits. 

1.2 UAV field based phenotyping 

Crop phenotyping in controlled environments like greenhouses 

using fully automated platforms became a standard in the recent 

years. Phenotyping platforms used in greenhouses are able to 

collect crop related data in a non-invasive way during the whole 

crop development cycle (Yang et al., 2017).  

The crop traits from controlled systems are different than the 

ones from real growing systems with location specific 

environmental influences (Poorter, H. at all., 2016) .Field based 

phenotyping is increasingly recognized as the only approach 

capable to deliver crop traits from real-world growing system. 

The performance of breeding programs should be evaluated 

under natural conditions (Gonzalez-Dugo et al., 2014). 

Looking from a field perspective, there is still a lot of space for 

developing ground wheeled field – based phenotyping 

platforms deployed with different sensors. Thus far field 

phenotyping is still time – consuming on the big field scale. 

(Yang et al., 2017) give an example, more than 40 hours were 

required to cover the 20,000 plots with a single vehicle 

traveling at 2 km/h to measure traits on single row. Using more 

vehicles could increase the performance, but the cost as well. 

Some of these limitations can be addressed using satellite or 

plane based remote sensing techniques. However, their major 

limitations are usually a lower spatial and temporal resolution, 

and weather influences, such as clouds.  
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Automated aerial and close-range photogrammetry has become 

a powerful and widely used tool for three-dimensional 

modelling. ‘Structure-from-Motion’ (SfM) photogrammetry is 

often described as a revolutionary, low-cost and user-friendly 

photogrammetric technique for obtaining high-resolution data 

sets (Westoby et al., 2012). Furthermore, UAVs become 

flexible and affordable therefore important crop phenotyping 

tools (Berni et al., 2008). UAVs can meet the requirements on 

spatial, spectral and temporal level. On a spatial level, sub 

centimetre resolution is achievable and with deploying 

multispectral, hyperspectral or thermal sensors many relevant 

traits can be derived. Above all, it is possible to use UAVs 

almost any time and exactly within a specific time interval 

during the crop growing season. 

 

1.3 Multi-temporal crop height measurements 

Crop height is defined as shortest distance between ground level 

and the upper boundary of the main photosynthetic tissues on a 

plant (Perez-Harguindeguy et al., 2013). It is classified as a 

reliable trait in crop phenotyping and recognized as a good 

indicator for biomass, expected yield, lodging or crop stress 

(Madec et al., 2017). 

 

The current industrial standard for crop height measurement is a 

manual measurement using a ruler. This data sampling method 

is time consuming, labour intensive and subjective due to 

specific approaches of the observer in the field. Looking back 

into the challenges of sustainable crop production, replacing 

manual field work with technology-supported methods is 

necessary to reach the demanded reliability and effectivity of 

the phenotyping process. 

 

When multi-temporal data are used, crop height time series and 

growth rate curves can be calculated. In this way monitoring of 

the plants growth over the whole growing season can become a 

reliable source of location specific information to the breeders.  

 

The generation of high resolution 3D crop models offers more 

potentially useful information than a simple plant height per 

plot. 

 

1.4 Contribution of this paper  

The derivation of the crop height from multitemporal UAV 

based images has been presented in several publications 

(Bendig et al., 2014; Holman et al., 2016). The workflow 

usually consists of (a) the generation of reference surface, 

representing the zero values of plant height, (b) the derivation 

of the 3D model at later growth stages in the same coordinate 

system, (c) the distance calculation between the models at later 

stages and the reference model to get absolute plant heights and 

finally (d) the extraction of a useful height value for a certain 

area of interest, such as a plot. Mostly, the reference and crop 

surface models are represented as Digital Elevation Models 

(DEM), which are directly provided by the Structure from 

motion software packages like Agisoft PhotoScan (Agisoft 

LLC, Russia). However, it is also possible to represent the 

models as 3D point clouds and derive heights from comparing 

these clouds. Although this method seems to be 

computationally more demanding, it does not apply any 

unknown assumptions or models as in the DEM generation step 

of the commercial software. In this contribution, we compare 

different ways of representing the reference and crop surfaces 

and of building differences between them. We also compare 

different points in time for performing the reference surface 

measurement, that are (i) shortly after seeding, (ii) shortly after 

plant emergence, where still a sufficient amount of soil is 

visible in the images and (iii) shortly after harvest. We 

investigate the general quality of the UAV derived point cloud 

in the context of height estimation by comparing it with a 

terrestrial laser scan (TLS) and we compare the derived heights 

with manual measurements, representing the industry standard. 

Finally, we present results from a winter wheat breeding 

experiment with 12 genotypes, two management systems at two 

locations. As additional information from crop height data we 

identify lodging areas within a part of breeding experiment. 

Lodging has been a problem in cereal production with whole 

fields often flattened after summer storm (Crook and Ennos, 

1994) and its rapid identification is also important for breeding 

community. 

 

2. MATERIALS AND METHODS 

2.1 Field experiments 

Most of the data in this study have been taken in a winter wheat 

breeding experiment, which was set up for the research project 

CropWatch (Honecker et all., 2018). The comparison between 

UAV, Laser Scanning and ruler measurement have been 

performed in a FACE experiment (Free-Air Carbon Dioxide 

Enrichment – FACE), called BeedFACE. 

 

CropWatch Breeding Experiment. The main goal of the 

project Crop Watch is to develop an information system for 

seamless process control and analysis in crop production, 

testing the impact of different location and fertilization related 

influents to different winter wheat genotypes. Various crop 

phenotyping data for winter wheat were collected during a two 

growing seasons at two different locations near Bonn. Location 

of the first experimental field was in University Bonn Campus 

Klein Altendorf and the second in Bornheim near the river 

Rhine. The two different locations a have different soil structure 

and different weather conditions but the same experiment set 

up. Figure 1 shows part of an experimental field structure in 

Klein Altendorf, consisting of 96 plots, 10 m x 1.5 m in size, 

with 12 winter wheat genotypes in two management treatments 

with four repetitions per system. The intensive management 

treatment consists of 300 seeds/m² and 200 kg/ha N. On the 

other hand, extensive management treatment consists of 165 

seeds/m² and 100 kg/ha N. Bolded numbers represent 12 

different genotypes codes explained in  Table 1. 

 

 
Figure 1. Experimental field set up in Klein Altendorf 
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Genotype Code Genotype Name 

1 Julius 

2 Dichter 

3 Tobak 

4 KWS Ferrum 

5 Erixer 

6 Hyvento 

7 Hyfi 

8 LG Alpha 

9 Midas 

10 RGT Reform 

11 Diplomat 

12 Caribo 

Table 1. Genotypes within Experiment field 

 

BreedFACE Experiment. The experiment represents the 

infrastructure to phenotype novel varieties under free air CO2 

enrichment (Kimball, 2016).BreedFAce consists of three rings 

with 59 plots in each ring (plot size 1.5 x 3 m) under elevated 

CO2 treatment and the same set-up in the three control rings of 

the experiment. We use a breeder’s panel of several barley 

varieties, organised by the Plant Science Group from 

Forschungszentrum Jülich, for a quality analysis using different 

types of crop height measurements: TLS, UAV and a ruler.  

 

2.2 Data Capturing 

Within the CropWatch project the UAV flights were performed 

every two weeks from March to July 2017 and 2018 plus two 

additional reference flights shortly after seeding. 

Terrestrial laser scanning of the crop surface combined with 

field ruler crop height measurement and UAV measurements 

were performed at the 15 of May 2018 in the Breed FACE 

experiment. 

 

UAV images. During the whole CropWatch experiment two 

different UAVs were used. During the first season a DJI 

Matrice 100, equipped with DJI Zenmuse X5 camera with 3-

Axis Gimbal and 15 mm f/1.7 lens was used. During the second 

season a DJI Phantom 4 Pro with integrated 20MP camera, 

FOV 84˚, 24 mm f/2.8 - f/11 lens was used. In both seasons the 

same flight plan settings were deployed (Table 2) to minimize 

flight planning influence on the end result. Flight missions were 

performed during eleven dates in 2016/2017 season with two 

unsuccessful missions and during ten dates in 2017/2018 with 

all successful missions. It is worth to mention, that each mission 

was realized using a cross flight pattern at two different heights 

and flight directions, to achieve a better 3D data quality. The 

UAV flight in the Breed FACE experiment, was done with the 

DJI Phantom 4 Pro and the same settings as above. 

 

Flight planning parameters 

Flight height 1 30 m 

Flight height 2 25 m 

Forward overlap 80 % 

Side overlap 75 % 

Camera Angle  90˚ 
Ground Sample Distance 0.8 - 1 cm 

ISO 100 

White Balance auto 

Shutter Speed auto 

Table 2. Flight planning parameters 

 

Each of the flights in the CropWatch experiment took around 

ten minutes covering approximately 0.35 hectare. For the 

accuracy assessment within the BreedFACE project a flight 

took less than five minutes. 

 

Georeferencing. The data georeferencing was realized with 

ground control points (GCPs) which have been previously 

deployed and measured with a Leica GNSS receiver (11 GCPs 

for each of CropWatch fields and 5 for BreedFACE 

experiment). Homogeneous distribution of GCPs over the area 

and their stability over the growing season is strongly important 

for the geometrical accuracy of the data reconstruction. In 

addition, having accurately georeferenced data is a crucial 

argument for further multi-temporal analysis and data 

comparisons. RMSE of GCPs used for georeferencing UAV 

data during the all the flight used in this study is in the range of 

0.007 m to 0.020 m.  

 

Manual height measurements. The ruler based measurement 

process was performed in a standardised way, measuring five 

randomly selected samples per plot (1.5 x 3 m) using 2 m ruler. 

We measured up to the highest point of the selected plant as it 

was suggested from plant breeders. 

 

Terrestrial Laser Scans: Along with the ruler measurements, a 

terrestrial laser scanner (TLS) (Leica ScanStation P20) was 

used to collect crop surface data for the same 40 plots. The 

scanner measures 3D crop data from five different stations. The 

stations have been equipped with tilt & turn targets and 

georeferenced using RTK GNSS. The point clouds from the five 

stations were then registered and georeferenced using the 

software Leica Cyclone (Leica Geosystems Holdings AG, 

Switzerland). In this way, we created a single absolutely 

georeferenced 3D point cloud, with a resolution of about 5 mm 

and an accuracy in the order of a few mm. We consider this 3D 

information as more accurate than the 3D information generated 

from the images, as it does not need any reconstruction 

algorithm, which usually needs assumptions and 

approximations. Each point is a truly measured point, calculated 

from two angles and an electronic distance measurement. We 

therefor expect the TLS to provide accurate samples of the 

canopy structure, measuring points from between the plants and 

on their tips.  

 

2.3 Data Processing 

Point cloud and DEM generation: Unlike the TLS 

measurement, the image - based point cloud is not the result of 

direct 3D measurements, but the result of data reconstruction 

based on overlapping 2D images. The Structure from Motion 

(SfM) algorithm uses multiple overlapping images of an object 

or feature to create a three-dimensional set of points 

corresponding to the surface of the feature. Images are taken 

from numerous positions focusing on the same object. The 

overlap ensures finding matching points in multiple images that 

belong to the same spot on the ground but from a different 

perspective. Then these matched features from multiple images 

are used to estimate relative camera positions, which are 

extrapolated to create a 3D point cloud of the scene. 

 

For creating 3D point clouds from overlapping images, 

collected during two flying patterns, Agisoft PhotoScan was 

used with ‘high’ Alignment Accuracy, ‘medium’ Dense Point 

Quality and ‘moderate’ Depth Filtering. 

 

We assume that ‘medium’ dense point cloud quality with 

‘moderate’ depth filtering mode should provide a reasonable 

point cloud representation of the crop surface. ‘Aggressive’ 
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Depth Filtering could probably cut some upper crop parts and 

contrarily ‘mild’ filtering mode could give rise to data noise.  

Figure 2 shows crop development stages observing 3D point 

clouds from different epochs. A side cut of four plots, each 

around 1.2 m wide, is visible here. Each layer represents UAV 

point cloud data for a specific flight date. 

 
Figure 2. Multi temporal UAV point cloud. Side view 

 

Although SfM software packages provide height raster data as 

Digital Elevation Models (DEM) very easily it is not specified 

by the authors of the software how it works. Using a self-

created Matlab (MathWorks, USA) script for point cloud 

rasterization we could understand what is happening with the 

data and define most suitable parameters for point cloud 

rasterization. We select 3 cm cell size as a suitable size for the 

crop point cloud rasterization with maximum cell value and N8 

neighbourhood interpolation to fill the empty cells within the 

area of interest.  

 

2.4 Reference surface generation 

In order to extract the crop heights from 3D data it is necessary 

to calculate the difference between crop surface and reference 

surface, which is usually the bare soil without any plants. The 

reference surface can be reconstructed the same way as the 

actual crop surface. For our investigation, we used UAV 

missions at three different points in time and created three 

different reference surfaces. 

 

After seeding reference surface. From our perspective, the 

reference surface should be created shortly before the plants 

emerge and then assume that the surface does not significantly 

change during the growing season. It is recommended here to 

choose ‘aggressive’ Depth Filtering mode instead of ‘moderate’ 

filtering, as this smooths the soil surface which can have bigger 

soil chunks after plugging and seeding. 

 

Early season reference surface. However, it may be the case 

that a flight before plant emergence is not possible and therefore 

an alternative has to be found. One alternative option is to use 

an early season flight with sufficiently visible ground segments 

between the plants. Then, the plant points can be automatically 

removed from the resulting point cloud, while the remaining 

ground points are used to create a 3D representation of the 

reference surface, e.g. by interpolation. For the classification 

into the two classes, soil and plants, we used a threshold on the 

Excess Green Index (ExG, Meyer & Neto, 2008), which can be 

calculated from standard RGB images. A detailed description of 

this method is beyond the scope of this paper. 

 

Post-harvest reference surface. Another alternative is to use a 

flight after harvesting. This option may be useful in specific 

cases, where a flight was not possible at all before canopy 

closure. However, we expect leftover materials from straws to 

add some bias to the soil surface estimation. Also, an automatic 

segmentation of this material, as described in the option before, 

is more challenging, as it is not green anymore.  

 

The reference surface may be also derived from a dense GNSS 

point survey with an additional surface estimation step or an 

official DEM could be used. However, we do not consider these 

options in this study.  

 

2.5 Distance calculation 

Point cloud based methods: In this section, we briefly describe 

three possibilities of calculating distance directly using the 

point clouds, often used for deformation analysis. The Cloud to 

cloud distance (C2C) is based on the distance between two 

point clouds using a 'nearest neighbourhood’ approach. For 

each point of the compared cloud, the algorithm searches the 

nearest point in the reference cloud and computes their 

Euclidean distance. If the reference point cloud is dense 

enough, approximating the distance from the compared cloud to 

the underlying surface, represented by the reference cloud, is 

acceptable. If the reference cloud is not dense enough, the 

nearest neighbour distance is not precise enough (Figure 3a, 

left). Often, a local model is fitted to the reference surface close 

to the point of interest in order to reduce this error (Figure 3a, 

right). The Cloud to mesh distance (C2M) calculates the 

distance between the point cloud and a reference surface 

represented as a mesh. If the reference point cloud is 

triangulated to a mesh, then the C2M algorithm calculates the 

distance of a point to the closest triangle of the mesh. In 

Multiscale model to model cloud (M3C2) comparisons, the 

number of points of one epoch is reduced by building core 

points that should represent the geometry of their 

neighbourhood of size D (Figure 3b). These core points are 

gained by filtering. The difference to the other point cloud is 

calculated along each core point’s normal vector regarding its 

neighbourhood D. Hence, two neighbourhoods of size D and d 

need to be specified for this point cloud comparison. For a more 

detailed explanation, see Barnhart and Crosby (2013). All the 

calculations using point cloud methods were done using an 

open source software called ‘CloudCompare v.2.9.1.’ (Daniel 

Girardeau-Montaut, 2003). 

 
Figure 3. a) Cloud to cloud distance concept and b) M3C2 

distance concept 

 

Raster based methods: Since crop surfaces are mainly 

horizontal structures and the parameter of interest is the vertical 

distance between these surfaces, the rasterization of the surfaces 

and a simple distance calculation between the raster data is also 

a possibility to calculate plant height values. The processing 

steps are (a) calculate heights raster from reference surface point 

cloud, (b) calculate heights raster from crop surface point cloud, 

(c) subtract the reference surface raster from the crop surface 

raster. As we present in chapter 2.3 for the heights raster the 

exported digital surface model from PhotoScan of own created 

heights raster can be used. 

 

2.6 Plot height calculation 

As written before, the crop height is defined as the shortest 

distance between ground level and upper boundary of the main 

photosynthetic tissues of a plant. In the contest of crop height 

extraction from 3D data, it can be defined as a vertical distance 

between crop surface and reference surface. In order to derive 
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the crop height in a certain plot at a certain time (which is in 

most cases the actual phenotypic trait of interest), we first 

calculate this distance using one of the methods described in 

section 2.5, and then rasterize the results using a grid size of 3 

cm. For each epoch and each location, we generate a plant 

height raster file for further statistical processing using own 

created Matlab script.  

 

Plots in each field experiment were created manually within 

QGIS (Open source Geographic Information System) as 

polygonal vector layer with a unique plot IDs, genotype and 

management system. As a base map for creating plots layer 

georeferenced Digital Ortomosaic from UAV flight in April was 

used (as shown in Figure 1 and Figure 6). Based on previously 

created plot layer, we are now able to derive statistical values 

about the plant height for each plot and then filter it by 

genotype and management system. 

 

Nevertheless, for crop height calculation we decided to use the 

mean of the 90th percentile of the height values within one plot 

rather than the whole mean. This takes into account, that the 3D 

reconstruction also shows lower canopy points or even soil, 

especially during the early season, which are not necessarily 

plant parts. We also removed a buffer zone of 25 cm to avoid 

boarder effects.  

 

3. RESULTS AND DISCUSSION 

3.1 UAV Point Cloud Quality and Rasterization 

To evaluate the general quality of the point clouds generated 

from UAV imagery we compared them with point clouds from a 

TLS. We performed UAV and TLS data acquisition at the same 

day (15ᵗʱ of May 2018) within the FACE experiment as 

described in section 2.6. For this experiment RMSE of 

georeferencing TLS data, using four targets mounted on tripods, 

is 0.0026 m. On the other hand, RMSE of georeferencing UAV 

data using ground control points (GCPs) is here 0.0152 m.  

 
Figure 4. Example of a cross section of canopy height measures 

derived from UAV and TLS point clouds. The orange points 

represent TLS measurements, green points show SfM results 

from UAV and the brown points are reference soil points 

(dereived from SfM from UAV images) 

 

It is apparent that the UAV point cloud is systematically lower 

than the TLS point cloud (Figure 4). This is in agreement with 

our expectations, since SfM algorithm tend to smooth the data 

by considering smaller structures (e.g. plant tips or ears) as 

noise, while the TLS is able to capture them due to its 

measurement principle. The generated raster values (maximum 

cell size in this case) in the plot show this bias even more 

clearly.  

 

The effect of the rasterization process, which extracts a single 

height value from the number of points laying within the cell 

boundaries (we chose a cell size of 3 cm here to ensure a 

minimum number of 1-2 points per cell). In this cross section, 

we compare the result of using mean, maximum or median as 

cell statistic with the PhotoScan DEM (Figure 5). It is obvious, 

that the maximum values within a cell seem to be the best 

representation of the actual plant height. The reconstruction 

algorithm of SfM software tends to smooth the surface and the 

building of a mean of heights within one cell would even 

increase this effect, leading to an underestimation of the plant 

height. It is necessary to remove outliers in the point cloud, as 

they appear directly in the cell, if they show higher height 

values. The DEM from PhotoScan seems to be based on the 

mean or median statistic, sacrificing some crop surface points to 

remove outliers. 

 
Figure 5. Rasterization of the crop surface. Cross section 

 

Based on these results we recommend using the maximum 

height value within one cell, assuming no significant outliers in 

the point cloud. In the case of the rasterization of the reference 

surface, we recommend to use the median. 

 

3.2 Difference calculation 

For the comparison of the difference calculation methods, we 

used an area of around 60 m2 from the CropWatch experiment 

in Klein Altendorf on 8ᵗʱ of June 2017 to calculated plant 

heights (Figure 6) .   

 

 
Figure 6. Field experiment. Test area in green 

 

The point cloud has been calculated with Agisoft PhotoScan 

using a previously defined processing parameters. Based on 

these point clouds we calculated the crop heights using the 

methods described in 2.5. In order to compare the results, we 

show the histogram of heights (Figure 7) for each of the 

methods, but limited to the test area.  

 

 
Figure 7. Crop height of test area calculated from different 

methods 
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It can be seen that all methods have almost the same behaviour 

and crop heights have the same distribution with three peaks. 

The Agisoft DEM (Ag DEM) based results seem to have a 

tendency towards lower values, which confirms our conclusion 

about smoothing the surface and building of a mean of heights 

sacrificing some crop surface points. However, it can be 

concluded, that the distribution of measured heights using the 

different methods do not differ more than a few centimetres. 

Therefore, we suggest the most efficient method, which is based 

on a rasterization of the point cloud described in section 2.5 to 

be used in the future. As demonstrated in section 3.1, we also 

suggest to use the maximum height value within this 

rasterization routine, as it represents a more realistic estimation 

of the plant height than the standard mean or median operation.  

 

3.3 Reference surface generation 

The generation of a reference surface marking the plants zero 

height is a crucial part of the height estimation procedure. 

Errors in the reference surface generation directly influence the 

estimation of the plant height. We compared the three options, 

described in section 2.4, where the surface have been generated 

from flights directly after seeding, in an early growth stage and 

shortly after harvest.  

 
Figure 8: Example of a cross section of the reference surface 

rasterization. The points are point cloud data derived from after 

seeding (grey), early growth stage (green) and post-harvest 

(orange). The lines represent derived raster from each point 

cloud data using median value per cell with 3 cm size.   

 

While the surface after seeding (blue) and the surface from 

segmented soil patches in an early growth stage (red) show 

similar values, the surface after harvest is 5-10 cm higher than 

other two (Figure 8). This can be explained by the leftover 

materials from the harvest.  

 

Assuming that the after seeding flight to be the best option, as it 

resembles bare soil, we compared this option with the other two 

in the form of a distribution of height differences. Figure 9 

confirms, that a surface from interpolated bare soil patches is a 

valid option, if an after seeding flight is not possible. However, 

an after harvest flight leads to a negative plant height offset in 

the order of several centimetres, which needs to be considered 

in the analysis. 

 
Figure 9. Height differences between after seeding reference 

and two alternatives 

 

3.4 Accuracy evaluation 

In section 3.1 we showed the quality of the UAV imagery based 

point cloud by a visual comparison with the TLS point cloud in 

a close up area. The actual variable of interest is the plant height 

per plot, we calculate this as described before for 40 plots of the 

BreedFACE experiment, based on the TLS and the UAV data. 

We compared this with the ruler-based measurement, which 

have been performed at the same day. At Figure 10 the 

correlation between the UAV results and the ruler results and 

the correlation between the TLS measurement and the ruler is 

shown.  

 

 
Figure 10. Linear correlation between UAV, TLS and ruler crop 

height 

 

UAV heights and TLS show a good correlation with the ruler 

measurements, where the TLS seems to overestimate the height 

systematically by about 8cm. Since we consider the TLS as the 

most accurate method measuring the upper tip of the plants, we 

state, that the ruler and the UAV based method generally 

underestimate the real height values by a few centimetres. At 

least for the UAV method this is expected, as we discussed in 

section 3.1. The resulting noise (RMSE) is in the order of a few 

centimetres, although it is not possible to say, if it comes from 

the TLS, the UAV methods or the ruler measurements.  

 

3.5 Growth curves in the breeding experiment 

Taking all results described so far into account we generated 

plant height time series for each plot of the CropWatch breeding 

experiments in 2017 and 2018. As described in section 2.1, 12 

winter wheat genotypes have been planted at two different 

locations in two different years with 4 repetitions. We used a 

reference surface from an after seeding flight, represented as a 

raster with 3 cm cell size and the median value for cell 

calculation. From the crop surface point clouds, we generated 

raster data using the maximum value per cell. We calculated the 

plant height as the difference between the rasters and used the 

mean of the 90th percentile to generate one height value for each 

plot. The four plot repetitions per cultivar were simply 

averaged. 

 

Plant height serves plant breeders as an early-on selection 

criteria. Very short plants will be removed from the breeding 

process due to minor yield potential. Also, high growing plants 

will be dismissed from the breeding process due to the serious 

risk of buckling of the plants in later developmental stages 

(Whan et al., 1981). 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-95-2019 | © Authors 2019. CC BY 4.0 License.

 
100



 

Here, we selected two genotypes, KWS Ferrum (new cultivar, 

short, Figure 11 bottom) and Caribo (old cultivar, long, Figure 

11 top) to determine the influence of the location (BO = 

Bornheim and KA = Klein-Altendorf), the management system 

(int = intensive and ext = extensive) and the growing season (17 

= 2016/2017 and 18 = 2017/2018) on the height curve, derived 

automatically using the measurement and analysis pipeline 

described above, to demonstrate its general capability. 

Klein-Altendorf and Bornheim were selected as testing sites 

because of their differing potential of plant growth and yield 

production. Both cultivars show bigger heights in Klein-

Altendorf, supporting the assumption of a higher yield potential 

in KA due to the better soils. Due to the strong drought during 

2018 we expected an additional gap in height between both 

testing sites. Our data proves our hypothesis since we can 

observe considerably lower heights of both cultivars in BO 

2018.  

 

Furthermore, we observed higher longitudinal growth with 

higher levels of nitrogen fertilization, proving the influence of 

nitrogen fertilization on plant growth  (Hussain et al., 2006). 

 

Between the two cultivars the expected clear differences in 

plant height could be detected, indicating the new height 

measuring system as useful for the selection / phenotyping 

procedure in the breeding process. Although statistical analysis 

or deep agronomical discussions are far beyond the scope of 

this paper, we can already state that in terms of plant breeding, 

automated measurement of plant heights could serve as a highly 

precise and objective phenotyping system for selecting potential 

new genotypes in a more cost and time effective manner than 

the manual system with rulers. 

 

 
Figure 11. Seasonal crop height for two selected genotypes at 

different location, different systems and different growing 

season 

3.6 Lodging of crop stands 

So far, we presented the crop height of a plot (or any other area 

of interest) and its evolution over time as the parameter of 

interest resulting from the processing pipeline. However, due to 

the high spatial resolution of the crop height raster data it is 

possible to derive other potentially useful other traits, such as 

crop surface variability or roughness. As an example, we 

present the possibility to detect lodging. The so called lodging 

is described as the permanent buckling of the plants stem, 

induced by environmental factors such as rain, hail or excessive 

fertilization (Pinthus, 1974). The quantification of lodging area 

within a field could serve farmers as a valuable information in 

terms of decision making and could therefore lead to a more 

sustainable agriculture. 

 

Figure 12 shows a section of the Orthophoto of the breeding 

experiment, overlapped with green or red colours. 

Automatically identified potential lodging areas in marked red. 

We only use a very simple approach here, where areas with a 

crop height of less than 1/3 of the expected crop height are 

classified. We did no effort here in separating lodging and inter-

plot areas and we did not use any advanced methods to 

automatically derive the thresholds. Both would be necessary in 

order to derived an automated process. However, we can clearly 

see the potential as the detected lodging area within the plot is 

visible also in the Orthophoto and its area can be calculated 

very accurately due to the high spatial resolution. More 

investigations regarding UAV based lodging detection on 

defining proper thresholds, which also allow the assessment of 

the lodging severity is subject of current research and will be 

published soon. 

 

 
Figure 12. Lodging area detection from the UAV height data 

 

4. CONCLUSION 

In this paper we presented a pipeline on deriving wheat crop 

heights from multi temporal imagery taken with a UAV. In 

contrast to previous publications, we started with the dense 

point clouds, generated from SfM and MVS, and focussed on 

the comparison of different processing options within this 

pipeline. The goal was to select a number of options and 

parameters, which allow an automatic extraction of crop height 

curves from areas of interests, such as plots in a breeding 

experiment, in an efficient way.  

 

We showed that the calculation of the crop height as the 

difference between crop surface and some reference surface, 

representing the soil (height = 0), can be efficiently realized by 

subtracting two rasters (‘elevation models’). The result is very 

similar to the computational more demanding options based on 

point clouds, which we have used for comparison. However, we 

recommend to use a custom rasterization routine, based on the 
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maximum values within one cell, rather than the standard DEM 

output provided by the SfM software.  

We recommend generating the reference surface from images at 

a point in time before any plants emerged. However, it is also 

possible to use later flights and filter out plant point, while 

interpolating remaining soil points. A flight after harvest will 

lead to an underestimation of the heights in the order of several 

centimetres, as leftover material from the crops will change the 

surface estimation. 

Comparison with a terrestrial laser scan, which is considered to 

be the geometrically most accurate 3D measurement method, 

the UAV based heights appears to be up to 10 cm lower due to 

a smoothing effect during the photogrammetric reconstruction 

of the point cloud. However, they are consistent with ruler 

based methods representing the industry standard.  

We applied the presented pipeline to a breeding experiment by 

calculating height values per plot and per measurement day by 

building the 90% percentile of all height values in the plot. In 

this way, we were able to generate growth curves for different 

winter wheat varieties and compare them in different 

conditions, which are the location, the management system and 

the season. Without any detailed statistical analysis, we showed 

visually that differences between the curves provide very useful 

information to breeders. 
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