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ABSTRACT:

Deforestation is one of the main causes of biodiversity reduction, climate change among other destructive phenomena. Thus, early 
detection of deforestation processes is of paramount importance. Motivated by this scenario, this work presents an evaluation 
of methods for automatic deforestation detection, specifically Early Fusion (EF) Convolutional Network, Siamese Convolutional 
Network (S-CNN) and the well-known Support Vector Machine (SVM), taken as the baseline. These methods were evaluated in a 
region of the Brazilian Legal Amazon (BLA). Two Landsat 8 images acquired in 2016 and 2017 were used in our experiments. The 
impact of training set size was also investigated. The Deep Learning-based approaches clearly outperformed the SVM baseline in 
our approaches, both in terms of F1-score and Overall Accuracy, with a superiority of S-CNN over EF.

1. INTRODUCTION

The Amazon Rainforest accommodates a large biodiversity. It
is home to a large number of species, including endemic and
endangered flora and fauna. It contains 20% of the fresh water
of the planet (Assunção , Rocha, 2019) and produces more than
20% of the world oxygen (Butler, 2008). Therefore, Amazon
provides essential resources for the maintenance of our planet
(De Souza et al., 2013), (De Souza , Junior, 2018) and its
preservation is of paramount importance.

For many years, the Amazon region has faced several threats
as a result of unsustainable economic development, such
as the extension of agricultural activities at industrial scale
(e.g., soybeans, cattle), slash-and-burn land grabbing by
underprivileged rural communities, forest fires, illegal gold
mining and logging, expansion of informal settlements, and
infrastructure construction (roads and train tracks) (Goodman
et al., 2019), (Malingreau et al., 2012), (Barreto et al., 2006).
Therefore, it is imperative to promote sustainable development
to achieve an ecological balance and to contribute to the
mitigation of climate change (Sathler et al., 2018). Controlling
and monitoring this ecosystem is fundamental to enforce public
policies and to avoid illegal activities in the region. Remote
sensing has proven to be a cost-effective information source to
attain such objectives.

Given the dynamics and complexity of the Amazon
region, there have been large government investments
aimed at controlling, preventing and combating illegal
deforestation (Diniz et al., 2015). The Brazilian National
Institute for Space Research (INPE) has developed and
maintained a number of projects to provide surveillance
reports over the Brazilian Legal Amazon (BLA). The best
known-action is the Amazon Deforestation Monitoring
Project (PRODES) (Valeriano et al., 2004), which supervises
the deforestation in areas with native vegetation of BLA
since 1988. The near real-time deforestation detection

(DETER) (Shimabukuro et al., 2007) project, was developed
to support land use policies in BLA and controls the illegal
deforestation and forest degradation. The Brazilian Amazon
Forest Degradation Project (DEGRAD) (Shimabukuro et
al., 2015) measures areas in the process of deforestation
where the forest cover has not yet been completely removed.
Finally, the Land Use and Land Cover Mapping of Amazon
Deforested Areas (TerraClass) project (De Almeida et al.,
2016) is responsible for qualifying deforestation in BLA and
investigating the possible causes of logging. These projects,
however, adopt methodologies that involve a lot of manual
operations. There is, therefore, a demand for automatic
procedures that can improve accuracy and alleviate the human
work process, as well as reduce the time needed to generate
results.

Numerous change detection techniques have been proposed
thus far. Some of the traditional no supervised methods are
based on image algebra such as Image Differencing (Jensen
, Toll, 1982), Image Ratioing (Howarth , Wickware, 1981),
Regression Analysis (Ludeke et al., 1990) and Change
Vector Analysis (CVA) (Nackaerts et al., 2005). In
addition, techniques based on transformations such as Principal
Component Analysis (PCA) (Deng et al., 2008) and Tasselled
cap (KT) (Han et al., 2007) have been also used for this purpose.
However, these methods require the selection of a proper
threshold to identify the changed regions and the features
adopted by these conventional algorithms are hand-crafted,
which may lead to poor image representations (Zhan et al.,
2017).

Support Vector Machine (SVM) is one of the most
popular supervised algorithms used in satellite image
classification (Dhingra , Kumar, 2019), (Kranjčić et al.,
2019) due to its good performance and robustness when
labeled samples are scarse. Additionally, random forest (Pal,
2005) and methods based on artificial neural networks (ANN)
are also widely used (Maxwell et al., 2018). Recently, Deep
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Learning (DL) techniques have been successfully applied to
Remote Sensing (RS) image analysis. Using Deep Neural
Networks (DNNs), it is possible to learn multiple levels of
data representation and to extract more robust and abstract
features (Zhan et al., 2017), which usually provide more
meaningful information than hand-crafted ones. In this sense,
DNNs variants, such as Convolutional Neural Networks
(CNNs) and Siamese Networks, are potential candidates for
automatic deforestation detection.

In (Zagoruyko , Komodakis, 2015), the authors proposed
and explored different CNN architectures to learn similarity
functions between images pairs that implicitly suffered some
transformations and other kinds of effects (due to e.g., rotation,
translation, illumination, etc.). These algorithms presented
good performances in comparison to methods based on
hand-crafted feature descriptors. Examples of such algorithms
are the Early Fusion and the Siamese CNN approaches, which
were also used by (Daudt et al., 2018) to detect changes in urban
areas. Similarly, (Zhang et al., 2018) successfully applied a
Siamese CNN to identify building and tree changes, and also
to distinguish between real changes from false ones caused by
misregistration errors or false matches.

Moved by the success of DL methods for change detection
applications, in this work, we adapt and evaluate Early
Fusion and Siamese networks for deforestation detection in the
Amazon rainforest. We take as baseline a binary SVM classifier
for comparison purposes.

The remainder of this paper is organized as follows. Section 2
presents the change detection methods considered in this work.
Section 3 describes the dataset and the adopted experimental
protocols. The experimental results are presented in section 4
and some concluding remarks, which also point to future works
are included in section 5.

2. CHANGE DETECTION METHODS

In this section, we shortly describe the methods evaluated in
this work for deforestation detection: Early Fusion (EF) and
Siamese Convolutional Network (S-CNN).

2.1 Early Fusion (EF)

The EF method is inspired by the CNN model proposed
in (Daudt et al., 2018), which demonstrated good performance
for change detection in urban areas. It is composed of
several convolutions and pooling layers, followed by a fully
connected (FC) layer, and a softmax layer to carry out the final
classification.

The name Early Fusion is related to the concatenation of the
images from two different dates, before applying the CNN
model. The images are stacked along their spectral dimension
to generate a unique input image for patch extraction. These
patches are extracted in a sliding windows procedure.Then, the
class label is assigned to the central pixel of each patch. The
procedure is illustrated in (Figure 1).

2.2 Siamese Network (S-CNN)

The Siamese CNN is an adaptation of a traditional CNN,
which comprises two identical branches that share the same
hyperparameters and weights values (Zhang et al., 2018).

The architecture adopted in this work is inspired by (Daudt
et al., 2018), which was also used for urban changing
detection. Both input images are treated independently. Each
branch of the Siamese network receives as input one patch
cropped from corregistered image pair. The two outputs are
concatenated producing the final feature vector (Zhang et al.,
2018), (Zagoruyko , Komodakis, 2015). Such vector is the
input to a classifier that assigns it to a class: deforestation and
no-deforestation. Similar to EF, the class label is assigned to
the central pixel of each patch. This process is summarized in
Figure 2.

3. EXPERIMENTS

3.1 Data Set Description

The study area is located in BLA, more specifically
in Pará State, Brazil, centered on coordinates of 03◦

17’ 23” S and 050◦ 55’ 08” W. This area has facing
a significant deforestation process that has been tracked
and monitored by PRODES (Valeriano et al., 2004).
Figure 3(c) shows the reference change map of deforestation
occurred between December 2016 and December 2017.
This data is freely available at the PRODES database
(http://terrabrasilis.dpi.inpe.br/map/deforestation). However,
some polygons of the reference were unconsidered because they
had been deforested in the previous years.

The dataset comprises a pair of Landsat 8-OLI images, with
30m spatial resolution. We applied an atmospheric correction
to each scene, and then, clipped them to the target area. The
final images have 1100 × 2600 pixels and seven spectral
bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR-1,
and SWIR-2). The first image is from August 2nd, 2016
(Figure 3(a)) and the second one from July 20th, 2017
(Figure 3(b)). These dates were chosen due to the lower
presence of clouds, a common problem over all BLA region.

3.2 Experimental Setup

Our experiments relied on a pair of optical images acquired
approximately one year apart from each other.

In addition, the Normalized Difference Vegetation Index (NDVI)
was calculated for every pixel as in Equation 1. This index
quantifies the presence and quality of vegetation and it is
calculated using bands 5 and 4 for Landsat 8, corresponding
to the spectral reflectance measurements acquired in the
near-infrared and red regions.

NDV I =
NIR−Red

NIR+Red
(1)

The NDVI was stacked along the spectral dimension of the
corresponding images, resulting in images with eight bands.
The spectral bands of each image were normalized to zero
mean and unit variance. The input to EF was a tensor of
a size of 15-by-15-by-16 and to S-CNN a tensor of a size
of 15-by-15-by-8 in each branch and the input. We used
as baseline a SVM classifier, whose input was a vector of
dimension 15×15×16. In all cases, the patches were extracted
using a sliding window procedure with stride equal to three.
The window size for each method and the stride size were
chosen empirically.
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Figure 1. EF approach. Images at different dates (T1 and T2) are concatenated to produce an image pair; then, patches
are extracted and fed to the CNN model.
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Figure 2. Siamese network. Patches of each image (T1 and T2) are extracted and fed to the CNN model independently.
The two branches in the network share exactly the same architecture and parameter values.

(a) T1: August, 2016 (b) T2: July, 2017

1 32 4 5

6 7 8 9 10

11 12 13 14 15

Deforestation No-Deforestation

(c) Reference change map: from December 2017 to December 2018.

Figure 3. RGB composition of the selected Amazon Forest region at dates T1 (a) and T2 (b); and the deforestation
reference set (c). The study area is divided into 15 tiles.

Similar to (Zhang et al., 2018), we divided the input images into
tiles. We obtained 15 tiles as shown in Figures 3(a) and 3(b).
Tiles 1, 7, 9 and 13 were used for training, tiles 5 and 12 for

validation, and tiles 2, 3, 4, 6, 8, 10, 11, 14 and 15 for testing.

The number of available samples of class no-deforestation was
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much higher than that of class deforestation. So, we performed
data augmentation on samples of deforestation class. Each
training pair was rotated by 90◦, flipped in the horizontal
and vertical axis. In addition, we applied an under-sampling
technique on the majority class (no-deforestation) to balance
the number of training pairs for both classes. This way, we
obtained 8,118 training pairs for each class. The validation
set had 40,642 pairs, 963 of the deforestation class and
39,679 of no-deforestation class. This corresponded to the
class distribution in the test set, which comprised 1.716,000
pairs, of which 40,392 were deforestation pairs and 1.675,608
no-deforestation pairs.

To assess the influence of the number of training samples, we
also considered three different scenarios: using only training
samples from a single tile (13), from two tiles (1, 13) and from
three tiles (1, 7, 13), yielding 717, 2,127 and 5,421 samples per
class, respectively.

We selected the Radial Basis Function (RBF) as SVM kernel
with the γ parameter set to 0.00027 based on following
relationships: γ = 1

d
, being d the number of features, as

proposed in (Gola et al., 2019).The parameter C was set to 10.
This choice was based on a k-fold cross-validation procedure,
where k was set to five. The experiments were implemented
and carried out in the Python environment using the SVM
implementation of the Scikit-Learn (Pedregosa et al., 2011)
library.

The CNN architecture used for EF approach is illustrated in
Figure 4. It was composed of three Convolutional layers (Conv)
with ReLU as activation function, two Max-pooling (MaxPool)
layers and two Fully Connected layers (FC) at the end, where
the last one is a softmax with two outputs, one associated
to deforestation and the other one to no-deforestation class.
Regarding the S-CNN model, the two branches comprises the
same network architecture Figure 4, but it this case, the network
has only a fully connected layer at the end, then, the vectors at
the output of each CNN branch were concatenated to compose
a new feature vector, which represented the image pair.

The parameter setup of the CNN was: batch size was set
to 32 and the number of epochs was set to 100. To avoid
over-fitting, we used early stopping to break after 10 epochs
without improvement and dropout with rate set to 0.2 in the
last fully connected layer. In contrast to (Daudt et al., 2018),
where Average Stochastic Gradient Descent (ASGD) was used,
we employed the Adam optimizer, which presented a better
performance in our preliminary experiments with learning rate
of 10−3 and weight decay of 0.9.

4. RESULTS

Figure 5 summarizes the results of our experiments in terms of
F1-score of class deforestation achieved by the three methods
described in Section 2. The figure shows the performance
obtained by each method for different number of tiles used for
training.

S-CNN achieved the best performance in terms of F1-score
in all experiments. As expected, the methods improved their
performance as the number of training samples increased.
When just one tile was used for training, we recorded F1-scores
equal to 46%, 44% and 48%, for SVM, EF and S-CNN
respectively. SVM outperformed EF but was still below

S-CNN. This was not unexpected because SVM tends to
generalize well under scarce labeled data. In contrast, when
two, three and four tiles were taken for training, the EF and
S-CNN presented better performance than SVM. With four
training tiles, EF and S-CNN outperformed SVM in 10% and
13%, respectively, in terms of F1-Score. Clearly, the DL
methods benefited from the increase of training samples than
SVM.

We should bear in mind that, in the target application,
the classes are highly unbalanced with a predominance of
no-deforestation class. Then, under these conditions, the
F1-score often tends to decrease for deforestation class.

The results in terms of Overall Accuracy (OA) are presented in
Figure 6. As in the F1-Score, the results were improved when
the number of training tiles increased. In all scenarios, scores
above 90% were achieved. The scores went from about 95%,
for one tile, to 97% when four tiles were used. In comparison to
the F1-score results, the higher values for OA are related to the
higher number of no-deforestation samples that were correctly
classified.

Figures 7, 8 and 9 show the RGB composition of tile
2, 6 and 14, respectively, using four tiles for training.
They show the tiles in both dates as well as the change
maps delivered by each method. The maps show that
S-CNN better identified deforested areas (Figures 7-e, 8-e,
9-e). It achieved the highest true deforestation rate, so it
presented a lower false deforestation rate than SVM and EF,
demonstrating a more accurate result in these three tiles. On
the other hand, EF produced the lowest number of false
detections, but it did not correctly identify many areas that
suffered deforestation as revealed in Figures 7-d, 8-d, 9-d.
Notably, much of the false deforestation (reddish) and false
no-deforestation (blueish) occurred at the borders of true
detected deforested areas (yellowish). This type of error
might have resulted from inaccuracies in the delimitation of
deforestation polygons. Figures 7-c, 8-c, 9-c shows that SVM
presented low performance for deforestation detection. The
false deforestation rate was relatively high in all the cases:
many pixels were incorrectly identified as deforested areas. We
can also observe a salt-and-pepper effect in the SVM outcomes.
The same aforementioned trends are presented in the rest of the
test area.

5. CONCLUSIONS

This work reported an evaluation of recently proposed deep
learning based methods for detection of deforestation in the
Amazon forest. Three methods were tested: Early Fusion
(EF), Siamese Convolutional Neural Network (S-CNN) and
the Support Vector Machine (SVM), the last one taken as
the baseline. We used as database a region of the Brazilian
Legal Amazon, which has suffered under intense attacks in the
last few years. In our experiments, S-CNN was consistently
superior to its counterparts in terms of F1-score and Overall
Accuracy. The difference to the second approach, EF, was
in the range of 3% in terms of F1-score. Actually, in just
one experimental setup SVM outperformed EF but not S-CNN
by a small margin. Yet, in this case, as in all other tested
configurations, S-CNN and EF were much superior to SVM in
terms of F1-score.

It is worth mentioning that the performance recorded in our
experiments was generally below what was reported in the
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Figure 4. Parameters of the EF and S-CNN architecture.

Figure 5. F1-Score from each method using 1, 2, 3 and 4
Tiles for training.

Figure 6. Overall Accuracy from each method using 1, 2,
3 and 4 Tiles for training.

literature for the same methods to detect changes in urban areas.
This indicates that deforestation detection is comparatively a
more challenging task and more research is required to obtain
viable operational automatic solutions.

Future works are intended to fine-tune the hyperparameters of

the tested methods in order to reduce the false deforestation
rate. Another investigation is related to the usage of a sequence
of images for change detection instead of only an image pair,
as well as the usage of Synthetic Aperture Radar (SAR) data.
Indeed, the Amazon region is covered by clouds most of the
year, which limits considerably the usage of optical data. Under
these conditions, SAR data becomes an attractive alternative.
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Figure 8. RGB composition and the change maps predicted by SVM, EF and S-CNN on the tile number six, which is
part of the test region.
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