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ABSTRACT:

Cloud coverage is one of the biggest concerns in spaceborne optical remote sensing, because it hampers a continuous monitoring of

the Earth’s surface. Based on Google Earth Engine, a web- and cloud-based platform for the analysis and visualization of large-scale

geospatial data, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for user-defined areas of interest

and time periods, which can be significantly shorter than the one-year time frames that are commonly used in other multi-temporal

image aggregation approaches. We demonstrate the feasibility of our workflow for several cities spread around the globe and affected

by different amounts of average cloud cover. The experimental results confirm that our results are better than the results achieved by

standard approaches for cloud-free image aggregation.

1. INTRODUCTION

As determined by the MODIS mission, on average, about 67%

of the Earth’s surface are covered by clouds (King et al., 2013)

(cf. Figure 1), posing a well-known drawback for any remote

sensing endeavours aiming at a monitoring of the Earth’s sur-

face and relying on sensors operating in the optical domain. In

order to avoid the information gaps caused by clouds, Earth ob-

servation traditionally either resorts to sensors operating in the

microwave domain or to algorithmic cloud removal strategies.

These are usually based on interpolation methods (Cihlar and

Howarth, 1994, Zhu et al., 2012), machine-learning-based void

filling approaches (Cheng et al., 2014, Chang et al., 2015, Huang

et al., 2015, Xu et al., 2016), exploiting multi-sensor data fu-

sion (Huang et al., 2015) or multi-temporal image sets (Lin et

al., 2013, Cheng et al., 2014, Xu et al., 2016, Candra et al.,

2017). However, all these approaches have different drawbacks:

In the case of data fusion, the joint availability of complemen-

tary data sources (e.g. a synthetic aperture radar (SAR) image

to fill in missing information in a cloud-affected optical image)

needs to be ensured, while void filling approaches make up data

based on constraints learned from the internal data structure. Fi-

nally, most methods exploiting multi-temporal imagery usually

rely on rather long time series, e.g. about 1 year for a global

cloud-free Sentinel-2 mosaic (May 2016 to April 2017) (Sentinel-

2 cloudless, 2017) or a cloud-free Sentinel-2 mosaic of the south-

ern extent of the African continent (January 2016 to December

2016) (Ramoino et al., 2017). In these cases, temporal stability of

the land cover cannot be ensured, which renders multi-temporal

cloud-free mosaics an inadequate resource for fine-grained mon-

itoring or change detection approaches.

With this paper, we propose a cloud-based engineering approach

that allows to aggregate – and export – (mostly) cloud-free Sen-

tinel-2 multi-spectral images for rather concise time windows us-

ing Google Earth Engine (GEE). The method relies both on pixel-

wise cloud detection as well as the combination of multi-temporal

information of comparably short time periods – we have chosen

the meteorological seasons as time frames in order to be able to

Figure 1. Mean annual cloud coveras observed by the Envisat

mission in the years 2007-2009. Image: ESA/Cloud-CCI.

produce multi-seasonal images for arbitrary regions of interest.

The strengths of the approach are manifold:

• It does not infer pixels based on statistical or machine learn-

ing models but makes use of posteriori information which

was actually measured by Sentinel-2.

• While being able to generate mostly cloud-free images even

for severely cloud-affected regions of interest (ROIs), the

method always strives to create images that are as clean and

artifact-free as possible.

• Using GEE’s cloud computation infrastructure, it can ef-

ficiently produce cloud-free images for large numbers of

ROIs and time frames in a parallel manner.

In order to document the methodology and prove its usefulness,

the remainder of this paper is structured as follows: Section 2 de-

scribes our workflow implemented in form of individual process-

ing modules in Google Earth Engine. Section 3 illustrates several

example cases for cloud-free image production for areas with dif-

ferent amount of cloud coverage. Finally, Section 4 discusses the

achieved results as well as the advantages and drawbacks of the
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proposed method, before Section 5 summarizes and concludes

our work.

2. GOOGLE EARTH ENGINE-BASED WORKFLOW

FOR CLOUD-FREE SENTINEL-2 IMAGE

GENERATION

Google Earth Engine (GEE) is a web- and cloud-based platform

for large-scale scientific analysis and visualization of geospatial

data. It provides an extensive catalogue of remote sensing im-

agery and other geodata, as well as an application programming

interface (API) with both JavaScript and Python front-ends al-

lowing for the analysis of the data available in the catalogue on

Google’s servers (Gorelick et al., 2017). The overall workflow,

which we implemented using the GEE Python API1, is depicted

in Figure 2. We also made a Javascript version available via the

GEE platform2. In essence, it consists of three main modules:

(1) The Query Module for loading images from the catalogue, (2)

the Quality Score Module for the calculation of a quality score for

each image, and (3) the Image Merging Module for mosaicking of

the selected images based on the meta-information generated in

the preceding modules. All these modules are described in detail

the following subsections.

ROI Season

Query Module

Fetch Images 
ee.ImageCollection() 

Clip Images to ROI 
ee.Image.clip() 

Quality Score Module

Cloud Score Submodule Shadow Score Submodule 

Threshold Quality Score to
get Cloud Mask 

Sort Images by Share of
Poor Pixels 

Image Merging Module

Cloud-free  
Image

Figure 2. Overall workflow of the GEE-based procedure for

cloud-free Sentinel-2 image generation presented in this paper.

During the process several sub-modules are called.

2.1 Query Module

Our data preparation workflow starts by reading in the list of

regions of interest (ROIs) from a Google fusion table into a

GEE feature collection using the command ee.FeatureCol-

lection(). In addition, the desired time frame for which a

cloud-free image is to be created, needs to be defined. While

extended time frames (say about a year, for example) will allow

us to produce cloud-free images by mosaicking multi-temporal

1https://github.com/google/earthengine-api
2http://bit.ly/Sen2CloudFree

data, the resulting image might contain observations from dif-

ferent seasons and thus contain inhomogeneous radiometric in-

formation. On the other hand, very narrow time frames (e.g. a

single day or week) will sometimes not contain any cloud-free

pixels for the ROI. Thus, a reasonable trade-off has to be found.

The image collection is then filtered for images acquired in the

defined time frame by ee.ImageCollection.filterDate()

and the images are clipped to the ROI to reduce storage require-

ments and processing time using ee.Image.clip(). The result-

ing image collection is then put into the actual workflow com-

prised of the remaining modules.

2.2 Quality Score Module

The second module aims at the calculation of a quality score (QS)

for each pixel in each image. This quality score is later used to

determine the image pixel selection in order to create the cloud

free image.

The QS is calculated from the cloud score (CS) and shadow score

(SS) layers. The negative of the maximum value of the CS and

SS is selected as the quality score, thus ensuring that both shadow

and cloud are treated equally when selecting the final image pix-

els. The negative is used as the score should measure the ’good-

ness’ of a pixel and thus needs to be inverted.

The submodules for CS and SS calculation are described in the

following.

2.2.1 Cloud Score Submodule The flowchart for the cloud

score computation is shown in Figure 3. We have basically adapted

the ee.Algorithms.Landsat.simpleCloudScore() routine

of the GEE API to the Sentinel-2 case (Candra et al., 2017). This

adaption is achieved by selecting the appropriate bands from Sen-

tinel 2 to align with the original Landsat bands, and adjusting the

classification thresholds are adjusted to account for theses differ-

ences. The principle of the algorithm is to recognize that clouds

are bright, moist and not the same as snow. In order to implement

this, each image starts with an initial cloud map where the cloud

score values of each pixel are set to 1, which indicates full cloud

coverage. Then, for each pixel the cloud score value is set to the

minimum of the previous cloud score and the following values in

a sequential manner:

• Blue (band 2), rescaled range [0.1; 0.5]

• Aerosol (band 1), rescaled range [0.1; 0.3]

• Cirrus+Aerosol (band 10), rescaled range [0.5; 0.7]

• Red+Green+Blue (bands 4,3,2) rescaled range [0.2; 0.8]

• NDMI = NIR(band8)−SWIR(band11)
NIR(band8)+SWIR(band11)

,

rescaled range [−0.1; 0.1]

• NDSI = Green(band3)−SWIR(band11)
Green(band3)+SWIR(band11)

,

rescaled range [0.8; 0.6]

NDMI refers to the normalized difference moisture index (Gao,

1996), NDSI to the normalized difference snow index (Hall and

Riggs, 2011), and the rescale operation remaps the pixels in the

specified range to [0.0, 1.0] in a linear manner, effectively stretch-

ing the boundaries of the image to allow more fine grained se-

lectivity. The cloud scoring and rescaling function is defined in

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-145-2019 | © Authors 2019. CC BY 4.0 License.

 
146



Scaled  
Sentinel-2  
TOA Image

Initial  
Cloud Score = 1

Cloud Score based on Brightness Assumption

min (Blue rescaled to [0.1; 0.5]; Cloud Score) 
min(Aerosol rescaled to [0.1; 0.3]; Cloud Score) 

min(Cirrus+Aerosol rescaled to [0.5; 0.7]; Cloud Score) 
min(R+G+B rescaled to [0.2; 0.8]; Cloud Score)

Cloud Score based on Moisture Assumption

min (NDMI rescaled to [-0.1; 0.1]; Cloud Score) 

Cloud Score based on Not-Snow Assumption

min (NDSI rescaled to [0.8; 0.6]; Cloud Score) 

Cloud Score Image

Morphological Opening

Erosion (1.5px) 
Dilation (3px)

Value Clipping

Clip Cloud Score Interval to [0; 1]

Max Pooling

 ee.Image.ReduceNeighborhood 
with max kernel 

Cloud Score

Figure 3. Flowchart of the Cloud Score module, which produces

both a cloud score image containing pixel-wise cloud scores, as

well as a scalar cloud score characterizing the whole image.

Equ. 1, where S represents the current cloud score image and the

rescaling range is defined as [a, b].

S = min
(

max
(

S− a

b− a
, 0
)

,S

)

(1)

The result is a Cloud Score Image, which contains a cloud score

per pixel. The higher the score, the more likely it is that a pixel is

containing only cloud information.

Then, morphological opening and closing is applied to the Cloud

Score Image. The opening operation is applied first in order to

remove single pixels with a high cloud score, which are in the

neighborhood of pixels with low cloud scores. These single pixel

clouds are often correlated with building rooftops which have a

high reflectance. The closing operation is then used to fill any

holes which occur in areas with a high cloud score and to ensure

edge regions of clouds are correctly scored.

Subsequently, all cloud score pixel values are clipped to the inter-

val [0; 1] before a maximum kernel filter is applied (implemented

as ee.Image.ReduceNeighborhood in GEE) to create the fi-

nal, smoothed, pixel-wise Cloud Score Image. An example of

this image can be seen in Figure 7b.

Possible  
Cloud Heights 
200...10,000m 

Sun Azimuth Sun Zenith

Calculate Shadow Shifts for each Cloud Height

Shift Cloud Score Image Cloud Score  
Image

Average over Shifted Cloud Score Images

Mask by Dark Pixels Plausible  
Shadow Mask

Morphological Opening

Erosion (1.5px) 
Dilation (3px)

Kernel Filtering

Max Kernel (3px)

Shadow Score

Figure 4. Flowchart of the Shadow Score module, which

produces a scalar cloud score characterizing the whole image

regarding the amount of pixels affected by cloud shadows.

2.2.2 Shadow Score Submodule The flowchart for the com-

putation of the shadow score is shown in Figure 4. It uses im-

age metadata (sun azimuth and zenith), the previously computed

Cloud Score Image, and a range of possible shadow heights as in-

put in order to calculate the expected positions of cloud shadow

on the ground. To avoid confusion between pixels appearing dark

because of dark materials with shadow pixels, only image regions

contained in a corresponding plausible shadow mask are consid-

ered in the shadow pixel detection. The workflow for the gener-

ation of this Plausible Shadow Mask is illustrated in Figure 5. In

order to calculate the Plausible Shadow Mask, the sum of bands

1 (aerosoles), 11, and 12 (both short-wave infrared) are summed

and thresholded to select pixels with low reflectance. These pix-

els, which also have a low normalized difference vegetation in-

dex NDV I = NIR−R

NIR+R
, are then discarded in order to remove

dark pixels which are likely due to water bodies. Finally the set

of plausible shadow pixels is masked to exclude any pixels which

coincide with cloud pixels, determined by thresholding the Cloud

Score Image, in order to create the Plausible Shadow Mask.

Using the Plausible Shadow Mask as additional input, the pos-

sible shadows cast by the clouds represented in the cloud score

image are projected to the ground level, averaged, and then inter-

sected with the plausible shadow locations. Then, morphological

erosion and dilation is applied to the resulting intermediate map

and kernel filtering is applied in order to retrieve the shadow score

for the respective image.

2.3 Image Merging Module

After the Quality Score has been calculated, by selecting the max-

imum value between the Cloud Score and Shadow Score for each

pixel, we threshold the score in order to create a binary classi-

fication of bad pixels (i.e. pixels affected by shadow or cloud)

and good pixels. This classification layer is used to determine the
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Scaled  
Sentinel-2  
TOA Image

Cloud Score  
Image

Masking based on
Darkness Assumption
sum(B1,B11,B12) < 0.3 

Masking based on Non-
Vegetation Assumption

NDVI < -0.1 

AND Combination

Plausible Shadow
Mask

Masking based on No-
Cloud Assumption
Cloud Score < 0.2 

Figure 5. Flowchart of the Plausible Shadow Mask submodule,

which is needed to provide input to the Shadow Score

submodule.

percentage of bad pixels in each image. Using this bad pixel per-

centage the image collection is sorted in descending order such

that the image with the worst score is on top. In Figure 7c we can

see an example of the result of thresholding the Quality Score

layer in the form of a bad pixel mask.

Sorted Sentinel-2 Images 
+ Cloud/Shadow Scores 

Cloud Cover
< 5%?

Concatenate Images Quality Mosaic on Bottom

Mosaic Images Quality Mosaicking

ee.ImageCollection.qualityMosaic() 
with Quality Score Map as Selector

Cloud-Free Image

yes no

Mosaic Images

Figure 6. Flowchart of the Image Merging module, which finally

creates the cloud-free Sentinel-2 image from the pre-processed

image collection.

Finally, image merging takes place in order to produce the final

cloud free image. The main concept behind the Image Merging

Module is depicted in Figure 6: If images with less than 5% of

bad pixels are available in the collection, we simply use these

images to produce the final image using the ee.ImageCollec-

tion.mosaic() function. If, however, no image with less than

5% of bad pixels is found, we apply the ee.ImageCollection

.qualityMosaic() function with the Quality Score Image as

the quality indicator.

While ee.ImageCollection.mosaic() just composes all im-

ages in an image collection following a last-on-top fashion, ee

.ImageCollection.qualityMosaic() uses a quality indica-

tor, in our case the Quality Score, to select which image to use for

as the pixel source for each pixel in the final mosaic. Should the

area of interest, for which a cloud-free image is to be produced

contain more than one Sentinel-2 granule, it can happen that not

the entire region of interest (ROI) is covered by cloud free gran-

ules. In this case we concatenate the partial cloud free image with

the quality mosaic image and mosaic these two images together in

order to fill in any gaps and ensure the entire ROI is covered. This

image can then be exported to Google Cloud Storage using the

API function ee.batch.Export.image.toCloudStorage(),

the final result of which is depicted in Figure 7d.

In the context of the Image Merging Module, it has to be noted

that a precise co-registration of the utilized multi-temporal im-

ages is of crucial importance. As confirmed by the Sentinel-2

L1C Data Quality Report (European Space Agency, 2019), 98%
of all Sentinel-2 products show a multi-temporal registration ac-

curacy better than 1.5 10m-pixels, which is likely to improve in

the future.

3. VALIDATION OF THE METHOD

To evaluate and validate our image aggregation method, we aim

at generating cloud-free images for time spans which reflect the

meteorological seasons of the northern hemisphere. The corre-

sponding times are summarized in Table 1. We consider seasons

a reasonable trade-off between a time frame that is significantly

shorter than one year used in standard multi-temporal image ag-

gregation approaches (Sentinel-2 cloudless, 2017, Ramoino et

al., 2017), but still long enough to have the chance to gather at

least some cloud-free input information. Furthermore, for ar-

eas that are affected by seasonal land cover changes, we assume

intra-seasonal changes to be less significant than inter-seasonal

changes. Last, but not least, there have been first hints in the

literature that a fusion of multi-seasonal information can already

provide a useful information gain for land cover classification ap-

proaches (Qiu et al., 2019).

Table 1. Meteorological seasons as defined for the northern

hemisphere.

Season Time period

Spring 01 March till 31 May

Summer 01 June till 31 August

Autumn 01 September till 30 November

Winter 01 December till 28/29 February

For our experiments, we have chosen examples from four dif-

ferent categories: (1) areas that are rarely covered by clouds, (2)

areas that are moderately covered by clouds, (3) areas that are fre-

quently covered by clouds, and (4) areas that are almost always

covered by clouds. The results achieved for the examples from

those categories are described in the following sections. For all

examples, we compare the results achieved by our full framework

and by selecting only the least cloudy image based on the bad

pixel percentage to two standard procedures: calculation of a me-

dian image, where each pixel represents the median value of the
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(a) (b)

(c) (d)

Figure 7. The cloud-free image generation process. (a) The original image from the collection with the least cloud cover for

Jacksonville, Florida in winter, (b) computed cloud score for the image, with a color scale from blue (low cloud probability ) to red

(high cloud probability), (c) cloud and shadow mask computed by thresholding the Quality Score with green representing the cloud

contribution and blue the shadow, and (d) the final cloud-free image produced for the scene.
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multi-temporal samples per band, and a greenest pixel mosaic,

where the final pixel values are selected based on the temporal

sample with the highest NDVI value.

3.1 Rarely cloud-affected areas

Figure 8. Cloud-free image aggregation examples for areas

rarely affected by clouds.

Figure 8 compares the results achieved by our full approach and

the least cloudy image, based on the lowest bad pixel percent-

age (two leftmost columns) to the two standard approaches (two

rightmost columns) for individual, relatively cloud-free seasons

of the cities of Cairo, Santiago, Abuja, and Melbourne. It can

be seen that our full approach provides the overall best images

with the least cloudy image following closely behind. In contrast,

the simple median approach leaves some clouds in the Santiago,

Abuja and Melbourne cases, while the greenest pixel mosaic in-

troduces some artifacts mainly over water areas.

3.2 Moderately cloud-affected areas

Figure 9 compares the results achieved by our full approach and

the least cloudy image based on the lowest bad pixel percent-

age (two leftmost columns) to the two standard approaches (two

rightmost columns) for individual, moderately cloud-affected sea-

sons of the cities of Munich, Moscow, Nairobi, and Washington.

It becomes apparent that our approach always choses the least

cloudy image in order to avoid multi-temporal data aggregation

and the introduction of corresponding artifacts. While the green-

est pixel mosaic provides a useful solution for Nairobi, its results

for Munich, Moscow and Washington are not acceptable due to

artifacts for water and large road surfaces. The same holds for

all results provided by classical median-based image aggregation,

which is not capable of removing clouds anymore.

3.3 Frequently cloud-affected areas

Figure 10 compares the results achieved by our full approach

and the least cloudy image based on the lowest bad pixel per-

centage (two leftmost columns) to the two standard approaches

(two rightmost columns) for individual, often cloud-affected sea-

sons of the cities of Bogota, Jakarta, Singapore, and Mumbai.

While our full approach introduces some aggregation artifacts to

Figure 9. Cloud-free image aggregation examples for areas

moderately affected by clouds.

all cloud-free result images, and even leaves some small remain-

ing clouds for Jakarta, its results are significantly better than all

other approaches. Even the least cloudy image is not a viable

choice for such cases where the area of interest is almost always

covered by at least some clouds. Still, the least-cloudy image ap-

proach is already much better than the median-based approach.

The greenest pixel mosaic provides reasonable results for both

Singapore and Mumbai, but fails both for Jakarta and Bogota.

3.4 Severely cloud-affected areas

Figure 11 compares the results achieved by our full approach

and the least cloudy image based on the lowest bad pixel per-

centage (two leftmost columns) to the two standard approaches

(two rightmost columns) for individual, often cloud-affected sea-

sons of the cities of Guangzhou, Vancouver, Shenzhen, and

Hongkong. Obviously, not even our approaches can deal with

such situations, as there is not sufficient cloud-free informa-

tion contained in the Sentinel-2 archive for the requested season.

However, Figure 12 gives an impression what happens if just one

extra month is added to the requested time period, thus giving the

algorithm more chances to identify cloud-free input information.

In this case, our full approach can make use of our least cloudy

image and thus provide a useful cloud-free solution, while the

median-based approach fails again. The greenest pixel mosaic

approach is able to generate cloud-free images, but again intro-

duces color artifacts for water surfaces and loses contrast in built

up areas.

4. DISCUSSION

The results displayed in the previous section illustrate the gen-

eral feasibility of the proposed approach for regions of interest,

which are affected by cloud cover less than about 75% of the

time. In these cases often already the least cloudy image pro-

vides a clean and artifact-free solution (cf. Figs. 8, 9, and 12). In

this regard, it has to be noted that our sorting by cloud cover per-

centage is much more sophisticated than a sorting and selecting

by the cloudcoverpercentage metadata tag provided with the

original Sentinel-2 products: Since the cloudcoverpercent-

age value is calculated for the whole granule, it does not provide
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Figure 10. Cloud-free image aggregation examples for areas

frequently affected by clouds.

Figure 11. Cloud-free image aggregation examples for areas

strongly affected by clouds.

useful information for the selection of images for specific regions

of interest, which are smaller than a granule or covering more

than one granule. Additionally, the cloudcoverpercentage is

not directly related to the human perception of cloud cover and

light cirrus clouds are counted towards the metric, even though

most parts in the image are still largely visible with only mild

haziness in some areas. As an example, the least cloudy image

for Abuja, in Figure 8, has a cloudcoverpercentage of over

80% although it still provides useful information.

Furthermore, the results showed that our full framework, which

aggregates an artificial image from multi-temporal data using the

previously calculated quality score as prior information, can sup-

port the cloud-free image generation especially in areas where

the cloud cover is so frequent that more than 5% of all pixels are

affected by clouds even for the least cloudy image (cf. Figure 10).

The only case, in which all approaches fail, is for areas (and time

Figure 12. Cloud-free image aggregation examples for areas

strongly affected by clouds, but with an extra month added to the

seasonal (three-month) aggregation period.

frames) in which the cloud cover is persistent (i.e. more than

about 75%). Then, there is simply not sufficient cloud-free in-

formation present in the multi-temporal data archive to recover

a reasonable cloud-free image. The only solution in this case

is to extend the time frame (cf. Figure 12), or to resort to data

fusion-based machine learning approaches such as proposed by

(Grohnfeldt et al., 2018).

5. SUMMARY AND CONCLUSION

With this paper, we have proposed an algorithm for the genera-

tion of cloud-free Sentinel-2 images for concise time periods and

user-defined areas of interest using Google Earth Engine. By cal-

culating a quality score, which is based on a pixel-wise analysis

of cloud and shadow cover, it chooses either the least cloudy im-

age as output or aggregates a cloud-free image from multiple in-

put images acquired in the specified time frame, considering the

individual pixel qualities. With experiments for areas of inter-

est situated in locations of different cloud cover, we were able to

confirm the feasibility of our approach. In all cases, it performs

better than two often-used standard approaches (median image

aggregation and greenest pixel mosaic). Implemented in Google

Earth Engine’s Python API, our approach can thus be used to

generate cloud-free images for arbitrary areas of interest and time

frames, which are much shorter than a year. The resulting images

can then be used for a temporally fine-grained monitoring of land

cover, which is not hampered by cloud-based information gaps.
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