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ABSTRACT:

This work aims at investigating unsupervised and semi-supervised representation learning methods based on generative adversarial 
networks for remote sensing scene classification. The work introduces a novel approach, which consists in a semi-supervised 
extension of a prior unsupervised method, known as MARTA-GAN. The proposed approach was compared experimentally with 
two baselines upon two public datasets, UC-MERCED and NWPU-RESISC45. The experiments assessed the performance of each 
approach under different amounts of labeled data. The impact of fine-tuning was also investigated. The proposed method delivered 
in our analysis the best overall accuracy under scarce labeled samples, both in terms of absolute value and in terms of variability 
across multiple runs.

1. INTRODUCTION

Over the last decades, much of the effort involved in deploying
automatic image classification algorithms has been invested in
designing and manually selecting custom features for a target
application. In this sense, the use of Bag-of-Visual-Words
(BoVW) was one of the first attempts in the field (Yang
, Newsam, 2010), followed later by different classifiers like
Random Forest (RF) and Support Vector Machines (SVM)
(Helber et al., 2017). Recently, Deep Learning (DL) techniques
have become the dominant trend in image classification
(Simonyan , Zisserman, 2014, Szegedy et al., 2015, Cheng
et al., 2018), mainly due to their ability to automatic learn
discriminative features directly from data (LeCun et al., 2015,
Krizhevsky et al., 2012, Penatti et al., 2015, Nogueira et al.,
2017), when labeled samples are abundant.

Although recent years have witnessed an increase of Earth
observation data, remote sensing labeled data still falls short of
the demands imposed by DL-based techniques. Mainly because
of the high costs involved in field survey and the required
labor-intensive visual interpretation.

In this sense, transfer learning (Pan , Yang, 2010, Weiss et
al., 2016) and unsupervised deep learning techniques, such as
Stacked Denoising Autoencoders, Convolutional Autoencoders
and Deep Belief Networks (Liang et al., 2017, Romero et al.,
2016, Zou et al., 2015), emerged as attractive alternatives. In
transfer learning, networks already trained using huge data-sets
are reused in problems where the labeled data is limited by
performing a fine tuning (Nogueira et al., 2017) of certain
layers. On the other hand, unsupervised methods do not require
any labeled data for the learning process.

In the last few years, Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) have been catching the
community attention due to their ability to learn data
distributions through an unsupervised two-player min-max
game performed by two different networks: a generator and a
discriminator.

Considering the power of GANs for unsupervised learning,
Lin et al (Lin et al., 2017) proposed a Multiple-Layer
Feature-Matching GANs architecture (MARTA-GANs) for
feature learning. In short, MARTA-GANs capture latent
features from the discriminator network, which can be later
used as input to a classifier. This method presented substantial
improvements in comparison with others unsupervised feature
learning models.

Aiming to exploit cases where few labeled samples are
available, (Springenberg, 2015) proposed to work with
semi-supervised GAN (SS-GAN) algorithms. More
specifically, they introduced the categorical generative
adversarial networks (CatGANs) for image classification. This
model was extended in (Salimans et al., 2016) to improve
its convergence. Specifically, they proposed the feature
matching term and the mini-batch discrimination concept
among others modifications. Later, the SS-GAN approach
was adapted to remote sensing data applications, such as
object detection (Chen et al., 2018) and pixel-wise PolSAR
(Liu et al., 2018) and hyperspectral (He et al., 2017, Zhan
et al., 2018) image classification. However, despite the
efforts of (Salimans et al., 2016), SS-GANs still present some
convergence problems, mostly when the number of unlabeled
samples is much larger than the labeled ones.

Motivated by this scenario, we introduce in this paper a
Semi-Supervised Representation Learning GAN (SSRL-GAN),
which, although conceptually similar to SS-GANs, presents
a different training strategy and adaptations in architecture.
In short, SSRL-GANs present an external classifier allowing
the use of binary cross-entropy cost functions for supervised
and unsupervised stages. With these changes, we observed
an improvement in the convergence of the model and in the
classification performance, mainly when less labeled samples
were used to train the model.

We further analyze and compare different alternatives for
remote sensing image categorization when a limited number
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of labeled samples is available. First, we take the
MARTA-GAN (Lin et al., 2017) as baseline, which is
an unsupervised learning method. Then, we compare it
with two semi-supervised approaches: the Semi-Supervised
GANs, as presented in (Salimans et al., 2016), and the
Semi-Supervised Representation Learning GAN proposed in
this work. Additionally, we evaluate how these methods behave
when more labeled samples are added in the training set. And
finally, we adopt a classic fine tuning approach, using only
labeled data, to investigate if their performance can still be
enhanced.

The rest of this paper is organized as follows. Section 2
briefly describes the fundamentals underlying GANs. A
detailed description of each assessed method is the subject of
Section 3. The experimental protocol is reported in Section 4,
while Section 5 shows the results obtained by the experiments.
Finally, Section 6 summarizes the main conclusions and
indicates future directions.

2. GENERATIVE ADVERSARIAL NETWORKS
(GANS)

GANs, introduced by (Goodfellow et al., 2014), constitute a
class of unsupervised machine learning models composed by
two neural networks: the generator, which synthesizes realistic
images and the discriminator, which tries to correctly discern
between synthesized and real images.

A min-max game procedure is used to train these neural
networks. The Generator learns a function G that maps
samples of a known random distribution p(z) into samples of
a distribution pmodel(x), which the Discriminator D can hardly
distinguish from a sample of a given data distribution pdata(x).
The Discriminator, in turn, is trained to learn a function D
that distinguishes whether a sample comes from pdata(x) or
pmodel(x). The optimal mapping function G∗ can be found by
solving the following equation:

G∗ = arg minG maxD L(G,D), (1)

where L(G,D) is the GAN loss function defined by,

L(G,D) = Ex∼pdata(x)[log(D(x))]
+ Ez∼p(z) [log(1−D(G(z)))],

(2)

where E and log are the expectation and logarithmic operators,
respectively, and z is a random noise vector, which follows a
known noise distribution p(z), typically uniform or Gaussian.

3. EVALUATED METHODS

This section presents the four methods assessed in this
paper for remote sensing image categorization with few
labeled samples available. In the following, we describe the
unsupervised MARTA-GAN, the Semi-Supervised GAN, the
Semi-Supervised Representation Learning GAN, and the Fine
Tuning applied in the Discriminator of all methods.

3.1 Multiple-Layer Feature Matching GANs
(MARTA-GANs)

MARTA-GAN (Lin et al., 2017) is an unsupervised
representation learning algorithm that relies on the same GAN’s

min-max game to learn discriminative features f(x). Like Deep
Convolutional GANs (Radford et al., 2015), the Generator and
the Discriminator are convolution networks trained to minimize
a modified loss function L(G,D) given by the equation:

L(G,D) = Ex∼pdata(x)[log(D(x))]
+ Ez∼p(z) [log(1−D(G(z)))]

+ ||Ex∼pdata(x)[f(x)]− Ez∼p(z) [f(G(z))]||
2
2

(3)

The third term, called feature matching loss, is added to the
GAN loss function to favor similarity between the generated
and real images. The learned features f(x), named in (Lin et al.,
2017) multi-feature layer, result from concatenating the outputs
of the three last convolutional layers of the discriminator
network.

3.2 Semi-Supervised GANs (SS-GANs)

SS-GANs (Salimans et al., 2016) exploit the available
labeled data together with the unlabeled data to perform a
semi-supervised learning. The Discriminator output is changed
from 1 neuron to K + 1 neurons, where the first K neurons
are used to classify the real labeled samples into one out of the
K classes present in the data-set and the (K + 1)−th neuron
computes the probability that the input sample is real or fake,
i.e. synthesized by the GAN. The training function for the
SS-GANs becomes:

L(G,D) = Lsupervised + Lunsupervised, (4)

where:

Lsupervised = −Ex∼pdata(x)[log(D(x, y|y < K + 1))] (5)

and

Lunsupervised = −{Ex∼pdata(x)[log(1−D(x, y|y = K + 1))]

+ Ez∼p(z) [log(D(G(z, y|y = K + 1)))]}

+ ||Ex∼pdata(x)[f(x)]− Ez∼p(z) [f(G(z))]||
2
2

(6)

Observe that, L(G,D) is a composition of the standard
supervised loss function Lsupervised with the unsupervised loss
Lunsupervised, which actually represents the standard GAN
min-max game, including the well known feature matching
loss. The optimal solution can be found by minimizing these
two losses jointly.

3.3 Semi-Supervised Representation Learning GANs
(SSRL-GANs)

The proposed SSRL-GANs differs from the SS-GANs by
an auxiliary classifier not embedded in the Discriminator.
Thus, the Discriminator is responsible for verifying if the
input sample is real or fake, whereas the Classifier evaluates
how good are the features at the multi-feature layer for the
classification of the available labeled samples. The architecture
of the SSLR-GAN is shown in Figure 1 and involves three
networks: Generator, Discriminator and Classifier.

The training process is divided into two consecutive stages,
unsupervised and supervised, depending on whether the
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Figure 1. Overview of the SSRL-GAN method. The Generator (G) learns to synthesize images to fool the Discriminator
(D), which learns to distinguish between real and synthesized images. The semi-supervised procedure is performed by
switching between unlabeled and labeled real images. When labeled images are used, features f(x) are extracted from

the multi-feature layer and used as input to the Classifier (C) which will influence the GAN objective function.

training data is labeled or not. In the first, pure unlabeled data
is used in each mini-batch while in the second only labeled
samples are employed. The Generator is trained in the same
way for both stages, since it does not rely on labels. Thus, while
the parameters of the Discriminator are fixed, the parameters of
the Generator are updated to synthesize images realistic enough
to fool the Discriminator. Formally, it is about minimizing
the following cost function which also includes the feature
matching loss term:

LG = Ez∼p(z) [log(1−D(G(z)))]

+ ||Ex∼pdata(x)[f(x)]− Ez∼p(z) [f(G(z))]||
2
2

(7)

Analogously, while the Discriminator is being trained, the
Generator parameters are kept fixed. Thus, in the unsupervised
stage, the Discriminator parameters are updated so that the
function LD is maximized for real samples and minimized for
synthetic ones, as stated below:

LD = Ex∼pdata(x)[log(D(x))]
+ Ez∼p(z) [log(1−D(G(z)))]

(8)

In the supervised stage, the function LD is modified to include
a new term that tries to maximize the probabilities C(f(x), y)
assigned by the Classifier to the real class y of each sample x,
as shown in Equation 9.

LD = Ex∼pdata(x)[log(D(x))]
+ Ez∼p(z) [log(1−D(G(z)))]

+ Ex∼pdata(x)[log(C(f(x), y))]
(9)

Aiming to minimize this expression, the Discriminator will
tend to produce more discriminative and representative features.
Since the Classifier network requires label information for
training, it is not used in the unsupervised stage. In the
supervised stage, it is trained using the features f(x) learned
by the Discriminator considering only the real labeled data. In

summary, the whole method can be mathematically described
as:

G∗ = arg minG maxD maxC L(G,D, C) (10)

where L(G,D, C) is the GAN objective function defined by,

L(G,D, C) = Ex∼pdata(x)[log(D(x))]
+ Ez∼p(z) [log(1−D(G(z)))]

+ ||Ex∼pdata(x)[f(x)]− Ez∼p(z) [f(G(z))]||
2
2

+ Ex∼pdata(x)[log(C(f(x), y))]
(11)

3.4 Fine Tuning

We further tested if the features learned by the aforementioned
methods could be improved by a subsequent fine-tuning step.
For MARTA-GAN and SSRL-GAN the original classification
layer was replaced by a softmax multiclass classification layer.
For SS-GAN, we kept the first K neurons of the Discriminator
output layer. Then, a new supervised training was carried out
using the available labelled samples.

4. EXPERIMENTAL ANALYSIS

The experiments performed in this work aimed to evaluate
the representations learned by the methods described above,
specifically: MARTA-GAN, SS-GAN, SSRL-GAN and the fine
tuned version of these algorithms.

Once the methods were trained, we took the features
extracted from their respective multi-feature layers for image
categorization. As in (Lin et al., 2017), we used a Support
Vector Machine (SVM) (Hearst et al., 1998) for this purpose.
The SVM was trained on the same labeled samples available on
the training set.

4.1 Datasets

We assessed the methods using two public datasets for remote
sensing image categorization.
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Figure 2. Examples of images taken randomly from both datasets. (a) UC-MERCED and (b) NWPU-RESISC45.

Layer Out shape
Input (14336,1)

FcA1(.) (512,1)
Fc(.) (N. Classes,1)

softmax(.) (N. Classes,1)

Table 1. Architecture of the SSRL-GAN Classifier.

The first dataset was the UC MERCED Land Use Dataset1

(Yang , Newsam, 2010). It comprises 21 land-use classes. Each
256×256 pixel image has a spatial resolution of 0.3 m per pixel.
For each class, 100 images were manually extracted from large
images downloaded from the USGS National Map of different
urban areas around the United States. Some image samples of
this data-set are shown in Figure 2(a).

The second dataset used in our experiments was the
NWPU-RESISC45 (Cheng et al., 2017). This dataset2 contains
31500 remote sensing images of size 256×256 pixels and
spatial resolution from about 30 m to 0.2 m per pixel for most
classes. A total of 45 scene classes are represented in the
dataset. For each class, 700 images were extracted from Google
Earth by experts in the remote sensing field. Figure 2(b) shows
samples of these images.

4.2 Network Architectures

The architecture of the Generator and Discriminator networks
were essentially the same as that of the MARTA-GAN (Lin et
al., 2017). The Classifier, used only in the SSRL-GANs, was
a Multi-Layer Perceptron (MLP) network, which took as input
the feature vector at the multi-feature layer of the Discriminator
and propagated it into a hidden layer with 512 units empirically
chosen and using a rectified linear unit (ReLU) as activation

1http://weegee.vision.ucmerced.edu/datasets/landuse.html
2http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html

Layer Out shape
Input (100,1)
Fc(.) (8192,1)

Reshape(.) (4,4,512)
BA1(.) (4,4,512)

DBA1(256, 4, 2) (8,8,256)
DBA1(128, 4, 2) (16,16,128)
DBA1(64, 4, 2) (32,32,64)
DBA1(32, 4, 2) (64,64,32)
DBA1(16, 4, 2) (128,128,16)

D (3, 4 , 2) (256,256,3)
tanh(.) (256,256,3)

Table 2. Architecture of the Generator for the three
methods.

function. Its output layer implemented a softmax function and
had as many units as the number of classes in the dataset.

The three network architectures (Classifier, Generator, and
Discriminator) are described in more details in Tables 1, 2
and 3. The symbols denote for each layer, convolution
(C), deconvolution (D), batch normalization (B), ReLU (A1),
Leaky ReLU (A2), MaxPooling (P), Flatten (F) and Fully
Connected (Fc). The number of filters, filter’s dimension
and the convolution stride are indicated in parenthesis. All
filters were square and the stride was equal in horizontal and
vertical directions. The multi-feature layer resulted from the
concatenation of F1, F2 and F3 which were the product of a
flattening operation over feature maps at different scales in the
network.

4.3 Experimental Protocol

We assessed the methods using different amounts of available
labeled samples. To this end, we used two public datasets for
remote sensing image categorization.
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Layer Out shape
Input (256,256,3)

CA2(16, 4, 2) (128,128,16)
CBA2(32, 4, 2) (64,64,32)
CBA2(64, 4, 2) (32,32,64)

CBA2(128, 4, 2) (16,16,128)
PF1(4, 4) (2048,1)

CBA2(256, 4, 2) (8,8,256)
PF2(2, 2) (4096,1)

CBA2(512, 4, 2) (4,4,512)
F3(.) (8192,1)

Feature[F1, F2, F3] (14336,1)
MARTA-GANs: sigmoid(.) (1,1)

SSRL-GANs: sigmoid(.) (1,1)
SS-GANs: softmax(.) (K + 1, 1)

Table 3. Architecture of the Discriminator for the three
methods.

Each database was divided into three sets: Train, Test
and Aux, corresponding to 76%, 5%, 19% of all samples
for UC-MERCED and of 70%, 20% and 10% for
NWPU-RESISC45, respectively.

All methods were trained with a batch size of 64 samples using
the Adam optimizer (Kingma , Ba, 2014), which parameters
learning rate and momentum β1 were set to 0.0002 and 0.5,
respectively. The α parameter in the Leaky ReLU activation
function was set to 0.2. The terms that make up the cost
functions of all methods had the same relevance, been setting
each importance coefficient to one. As in (Lin et al., 2017), we
scaled the input images in the range of [−1, 1] before training
and testing. Also, we applied the early stopping regularization
procedure to avoid overfitting. The patience parameter, which
controls the number of epochs without improvements in the
validation loss, was set to 10. Each experiment was executed
5 times in order to evaluate the sensitivity of the methods to the
initial solution of trainable parameters.

To verify the influence of the number of labeled samples in
the performance of each method, our experiments were carried
out in two different protocols. We used the same Train set
in both protocols in the unsupervised learning stage. The
protocols differed in the number of labeled samples used for
the supervised training stage of SS-GANs and SSRL-GANs,
and also for training the SVM.

In Protocol 1, we used for the supervised stage the Aux set,
as described before. In Protocol 2 we applied vertical and
horizontal flips, rotations and data replication to augment the
number of labeled samples. This way, the number of labeled
samples in Protocol 2 was about seven times larger than in
Protocol 1. The methods were implemented in TensorLayer3

on a NVIDIA Titan XP GPU.

5. RESULTS

Figure 3 summarizes the results for the UC-MERCED and
NWPU-RESISC45 datasets in terms of Overall Accuracy (OA).
The bar plots in Figure 3a to 3b refer to UC-MERCED, whereas
Figure 3c to 3d relates to NWPU-RESISC45.

The results for the fine tuned version of the evaluated methods
are presented in the Figure 3b and 3d for UC-MERCED and

3https://tensorlayer.readthedocs.io/en/stable/

NWPU-RESISC45, respectively. In these figures the suffix FT
denotes the results obtained after fine-tuning. Each bar group
indicates the median OA over all runs for each method and
protocol. The plots also show, in black, the highest and the
lowest OA value recorded in our experiments in each case.

As expected, the augmentation of labeled data improved
the accuracy, in some cases remarkably. This can be
seen by comparing corresponding bars within each plot.
Data augmentation affected favorably even the MARTA-GAN
results, an unsupervised representation learning method. The
improvement for this method came from the SVM classifier,
which profited from the extra labeled samples. The gain
brought by labeled data augmentation ranged from 4.6% for
MARTA-GAN on UC-MERCED, to 19.2% for SS-GAN FT on
NWPU-RESISC45.

A comparison of plots related to the same dataset reveals that
fine-tuning also improved the accuracy consistently. Also the
variability of the results across multiple runs reduced thanks
to fine-tuning. The improvement in terms of OA ranged from
0.3%, for SS-GAN in Protocol 1, to 4,8% for MARTA-GAN in
Protocol 2.

However, the key issue in this analysis is the comparison of
the three methods in each scenario. The proposed method,
SSRL-GAN, was consistently superior to MARTA-GAN in
all experiments. Data augmentation and fine-tuning affected
MARTA-GAN and SSRL-GAN performance similarly on both
datasets. Even so, the proposed method always outperformed
its unsupervised counterpart. Thus, the exploitation of labeled
samples in MARTA-GAN as proposed in SSRL-GAN, was
generally beneficial in all variants tested in our experiments.

SS-GAN presented a unique behavior. In all experiments
conducted under Protocol 1 it presented the worst results among
all methods, both in terms of absolute values and in terms of
variability. However, when we increased the number of labeled
samples, moving to Protocol 2, SS-GAN became consistently
the best performing method.

These results indicate that SS-GAN was among all tested
methods the most sensitive to the so-called, small sample size
problem. In other words, the experiments indicated that under
conditions of greater scarcity of labeled data the SSRL-GAN
presented the best results among all analyzed methods on both
databases. Additionally, in conditions of more abundance of
labeled data the proposed method was overcome by SS-GAN.

6. CONCLUSIONS

In this work, we performed a comparative analysis of
semi-supervised representation learning methods for remote
sensing scene classification. We further introduced a novel
semi-supervised approach based on Generative Adversarial
Networks (GANs).

The methods were evaluated on two public datasets. We took as
baseline an unsupervised and a semi-supervised method, both
based on GANs. The experimental analysis indicated that the
features learned by the proposed method allowed to achieve
better accuracy than the baselines when the amount of labeled
data was small.

The experimental analysis also revealed that a fine-tuning step
further improved results in all tested methods.
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Figure 3. Overall Accuracy results in (%): FT in the plots on the right indicates fine-tuning

As a continuation of the present research, we intend to explore
the conclusions drawn from this work for solutions based on
GANs for other applications.
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