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ABSTRACT:

We propose a feature-based approach for semantic mesh segmentation in an urban scenario using real-world training data. There 
are only few works that deal with semantic interpretation of urban triangle meshes so far. Most 3D classifications operate on point 
clouds. However, we claim that point clouds are an intermediate product in the photogrammetric pipeline. For this reason, we 
explore the capabilities of a Convolutional Neural Network (CNN) based approach to semantically enrich textured urban triangle 
meshes as generated from LiDAR or Multi-View Stereo (MVS). For each face within a mesh, a feature vector is computed and fed 
into a multi-branch 1D CNN. Ordinarily, CNNs are an end-to-end learning approach operating on regularly structured input data. 
Meshes, however, are not regularly structured. By calculating feature vectors, we enable the CNN to process mesh data. By these 
means, we combine explicit feature calculation and feature learning (hybrid model). Our model achieves close to 80 % Overall 
Accuracy (OA) on dedicated test meshes. Additionally, we compare our results with a default Random Forest (RF) classifier that
performs slightly worse. In addition to slightly better performance, the 1D CNN trains faster and is faster at inference.

1. INTRODUCTION

Virtual City Models are an integral part of our daily lives.
Applications like navigation, urban planning, and computer
games are based on 2D and 3D geodata. Map applications -
no matter if they are crowd-sourced like Open Street Map
or governmental - contain geometric information organized in
several layers. Each layer corresponds to a specific object
category like e.g. building, road, waterbody. For this reason,
map applications contain semantic information to some extent
in an implicit manner. Additional and explicit semantic
information, on the other hand, is often still lacking.
Colored triangle meshes have become one of the standard
representations of virtual city models for 2.5D and 3D
geodata (Boussaha et al., 2018). In contrast to point
clouds, meshes provide high-resolution textural information
and explicit adjacency information. Meshes are the de-facto
standard/deliverable in photogrammetric product pipelines
since they require less storage than point clouds while providing
more information like explicit topology of points. Recent work
was concerned with image-based classification of building
facades into different categories (Laupheimer et al., 2018). This
serves as a tool to semantically enrich map data. In order to
classify individual buildings in a mesh in more detail, however,
it is necessary to locate potential buildings first.
Deep Learning (DL) methods are the standard tool for semantic
segmentation in image space nowadays (Zhao et al., 2017,
Chen et al., 2018). Point-based classifiers like PointNet++
(Qi et al., 2017) achieve good results on 3D point clouds.
However, to the best of our knowledge, little work focuses on
a DL framework that directly operates on meshes so far. In
particular, the field of urban meshes has hardly been explored.
Therefore, we address the task of semantic mesh segmentation -
attaching semantic classes such as building mass/facade, roof,
impervious surface, green space, mid and high vegetation,
vehicle, chimney/antenna and clutter to each face. For this
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Figure 1. Subset of the urban mesh (Hessigheim,
Germany). The blue bounding boxes depict tiles A, B, C,
and D that are used for validation and testing (mutually
exclusive), represented semantically labeled here. The

following class color code and enumeration is used
throughout the paper: 1. building mass/facade (yellow),
2. roof (red), 3. impervious surface (magenta), 4. green

space (light green), 5. mid and high vegetation (dark
green), 6. vehicle (cyan), 7. chimney/antenna (orange) and

8. clutter (gray). Remaining tiles are used for training.
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purpose we train a 1D multi-branch CNN. Ordinarily, CNNs
are an end-to-end learning approach operating on regularly
structured input data. Meshes, however, are not necessarily
regularly structured. In order to make CNNs accessible to
meshes, we calculate a multi-scale feature vector for each face
in first place. Consequently, we artificially achieve regularly
structured input data: each face is represented by a normalized
feature vector. By these means, we end up with a hybrid model
that combines explicit feature calculation and convolutional
feature learning. Each branch of the 1D CNN is fed with the
feature vector of corresponding scale (cf. section 4).
Labeled ground truth data is stringently required for supervised
learning. Therefore, we manually attach a semantic label
to each face of an urban mesh. Nevertheless, since
generating training data is time-consuming and expensive,
especially for semantic segmentation tasks, we explored the
use of synthetically generated urban meshes to support the
limited availability of real-world data. The big advantage of
synthetically generated urban meshes is that the label is already
explicitly attached to each face.
We describe data preparation including labeling and feature
calculation in section 3. In section 5 we evaluate our
segmentation algorithm on real-world data and compare results
to a semantic segmentation achieved by a default RF. Moreover,
we compare the two classifiers’ results after being smoothed by
a Markov Random Field (MRF). In summary, our contributions
are: (1) We provide ground truth data by manually labeling
a 2.5D mesh of a real-world urban area (cf. section 3).
(2) We calculate a multi-scale feature vector for each face
of the large-scale urban mesh (cf. subsection 3.2). Thereby,
the subsequent semantic segmentation can be achieved by
state-of-the-art classifiers. Furthermore, the approach is
independent of the geometric structure of the mesh: 2.5D
or 3D meshes can be processed. (3) We perform semantic
mesh segmentation by training a tailored multi-branch 1D CNN
(cf. section 4). We compare results to a RF baseline before
and after MRF-smoothing. (4) We perform an extensive
ablation study in order to determine most influential features
(cf. subsection 5.1).

2. RELATED WORK

For most tasks in the 2D domain, CNNs are state-of-the-art
classifiers that outperform all other approaches. Several
architectures have been proposed that are tailored (and thus
directly applicable) to semantic segmentation in image space
(Zhao et al., 2017, Chen et al., 2018). Ideally, DL frameworks
for 3D semantic segmentation would directly use 3D data (point
clouds or meshes) as input. However, CNNs require Euclidean
or grid-like structures. Hence, they cannot be applied to 3D data
like point clouds or meshes. In case of point clouds, a natural
solution is to migrate to voxel space (Landrieu , Simonovsky,
2017, Hackel et al., 2016, Huang , You, 2016). This comes
along with memory overhead. Therefore, much effort is put into
networks that use sparse 3D convolutions (Graham et al., 2018).
This approach has been successfully applied to urban 3D point
clouds (Schmohl , Sörgel, 2019). Another common approach
is to make use of well-performing semantic segmentation in
image space and back-project the results to 3D space again
(Boulch et al., 2017, Lawin et al., 2017, He , Upcroft,
2013). Due to the non-grid like structure of point clouds,
classical machine learning approaches still compete with DL
approaches. (Blomley , Weinmann, 2017) compute contextual
features on multi-scale and multi-type neighborhoods and feed

a RF for supervised point-based classification. Basically, we
take the same steps, but we work with meshes. Furthermore,
we leverage a DL approach. Recently, several works deal with
classification of point clouds using a DL approach like (Qi et
al., 2017, Su et al., 2018). PointNet++ is a hierarchical neural
network that directly operates on the point cloud using different
abstraction levels of the point cloud for feature learning (Qi et
al., 2017).
Similar to semantic point cloud segmentation, approaches that
aim to segment meshes semantically usually do not operate on
the mesh directly (PointNet++ is an exception here). Common
approaches make a circuit to 2D image space to take advantage
of aforementioned image segmentation. Instead of directly
operating on the mesh, those approaches rather render 2D views
of the 3D scene, learn the segmentation for different views
and finally, back-project the segmented 2D images onto the
3D surface (Kalogerakis et al., 2017). Main drawback of
such approaches is that they do not make use of geometric
information. Moreover, they suffer from occlusions in 2D
space. On the contrary, the few existing approaches working on
meshes directly, however, often do not use textural information
and merely perform mesh segmentation. Therefore, (Valentin
et al., 2013) train a cascaded boosting classifier using both
geometric features (extracted from the mesh) and textural
features (extracted from imagery). The classifier’s output is
used as unary term for a sub-sequential MRF.
To the best of our knowledge, there are little or no applications
of 3D DL to urban meshes yet. Almost all approaches known
to us that directly operate on meshes are merely dealing
with small-scale toy data sets such as the Princeton Shape
Benchmark (PSB) (Shilane et al., 2004). (Theologou et al.,
2015) list several methodologies for mesh segmentation in the
domain of computer vision. Most of the presented methods
are unsupervised methods applied to small-scale toy data sets
focusing on the detection of coherent parts. Without exception,
commonly used features are purely geometric.
Recently, Graph Convolutional Neural Networks (GCNNs)
have been introduced for classification purposes (Bronstein
et al., 2016). (Yi et al., 2017, Te et al., 2018) use
GCNNs for (semantic) 3D shape segmentation. However,
these approaches also operate on point clouds only. A joint
approach to refine geometry and semantic segmentation of
meshes is presented by (Blaha et al., 2017). The mesh shape is
deformed with variational energy minimization, while semantic
labels are updated with MRF inference. Initial semantic
segmentation maps are obtained from a MultiBoost classifier.
Most similar to our work is the semantic mesh segmentation
proposed by (Rouhani et al., 2017). They gather faces of
a 3D textured mesh into so-called superfacets to reduce the
calculation effort. In other words, they use segmentation as
preprocessing before performing the semantic segmentation
on the superfacets. The prediction is done via a RF using
geometric and photometric features. In contrast to the work
of (Rouhani et al., 2017), we do inference on each face instead
of superfacets. However, our features are multi-scale features
considering several Spherical Neighborhoods (SPNHs) and
thus, the achieved labeling is smoothed implicitly. We refer
to this as implicitly smoothed per-face classification through
a larger support region. Using this implicit smoothing we
avoid treating each face as independent of all others. We
assume that this implicit smoothing reduces the need for an
explicit smoothing via a MRF as done in their approach.
Nonetheless, we perform explicit MRF smoothing and evaluate
the performance (cf. section 5). Our presented work adapts the
approach of (George et al., 2017), which uses a multi-branch
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1D CNN for 3D mesh segmentation of the PSB. Their proposed
network aims to extract coherent parts of a 3D mesh. They
do not provide explicit semantic information. On the contrary,
we leverage this network in order to achieve a semantic
segmentation of urban meshes. For each triangle, a multi-scale
feature vector is computed and serves as input for the CNN.
Different scales are fed to respective branches.
The negligence of semantic mesh segmentation in the domain
of urban scenes may be due to the absence of labeled
benchmarks. Several mesh benchmarks or public data sets exist
for indoor scenes (Armeni et al., 2017, Hua et al., 2016, Dai
et al., 2017) or for single objects (Shilane et al., 2004).
Available labeled urban data sets, however, are 3D point clouds
(Wichmann et al., 2018, Hackel et al., 2017, Niemeyer et al.,
2014) wherefore research focuses on semantic segmentation of
3D point clouds.
The work presented in (Rouhani et al., 2017) bases on an
unpublished labeled mesh. Therefore, we create our own
labeled ground truth data (cf. section 3).

3. DATA PREPARATION

Our real-world data set is obtained by fusing Airborne Laser
Scanning (ALS) data and aerial oblique imagery. Both are
captured simultaneously for the purpose of monitoring the lock
in Hessigheim (Cramer et al., 2018). The capturing Unmanned
Airborne Vehicle (UAV) is a RiCopter multi-copter platform
equipped with a Riegl VUX-1LR LiDAR and two Sony Alpha
6000 oblique cameras. The LiDAR point cloud is used for
creating a 2.5D mesh (also known as DSM mesh). The resulting
mesh is textured with images captured by the two cameras. The
triangle mesh is generated and textured with software SURE
from nFrames (Rothermel et al., 2012). Although we use a
2.5D mesh, the applicability of the pipeline to a 3D mesh is
exactly the same. A Ground Sampling Distance (GSD) of
5 cm is used for meshing. SURE provides a Level Of Detail
(LOD) mesh model. We use the second most detailed level in
order to retain a good trade-off between computation effort and
preserving details in the mesh. The achieved mesh consists of
∼3 million faces. In a first step, we split the available mesh
into 24 tiles with dimensions of approximately 100 × 100m
each (cf. Figure 1). In a second step, we fuse some of the tiles
for validation and testing. In total, four tiles with varying spatial
extents are held out of this training set - one serves as validation
and three as test tiles. We chose the splits in such a way that the
label distribution is similar in each data split (except for tile D).
Figure 1 outlines the splitting of our real-world mesh into train
set, validation set, and test set.
Labeling is done manually. Students are given explicit
instructions on how to label the mesh and distinguish between
different semantic classes. For the labeling process itself, the
students use Autodesk 3ds Max 2019. Each semantic class is
defined by a specific material with a corresponding RGB triple
that represents the class. The labeling process is defined as
assigning a semantic material to each face of the textured
input mesh. We are aware of the fact that manual labeling
is an error-prone endeavor and that operators might miss or
misclassify some faces during labeling due to occlusions and
finely triangulated areas. Missed faces receive the label -1
(Invalid) and are filtered before classifier training. Although
the manually attached labels are counter-checked by a different
group of students, errors cannot be avoided (cf. Figure 4).
This label noise might complicate the training procedure and
certainly affects performance evaluation. In total, the manual
labeling needed approximately 300 man-hours.

3.1 Semantic Classes

Our considered classes are inspired by the ISPRS 3D semantic
labeling contest (Niemeyer et al., 2014). Their relative
frequency is given in parentheses: building mass/facade
(9.28%), roof (6.34%), impervious surface (5.67%), green
space (5.97%), mid and high vegetation (63.38%), vehicle
(0.83%), chimney/antenna (0.31%) and clutter (8.22%).
Building mass and roof are mutually exclusive, since roof
extraction is a quite common task. Impervious surface
includes rocky areas, streets, sidewalks, parking lots and other
man-made surfaces. In accordance with the closed world
assumption, class clutter gathers all faces that do not match the
other class labels.

3.2 Features

Prior to training the CNN, for each face of the mesh, a
multi-scale feature vector is calculated. To do so, we
implemented a pipeline that parses wavefront OBJ files with
their texture maps. There are two modes for parsing: texture
and label. The former is responsible for parsing the actual
textured mesh and generates features for each face. Features
can be distinguished into geometric and radiometric features
(cf. Table 1). To calculate either of them a local neighborhood
for each face has to be established. We do this by computing
the Center of Gravity (COG) for every triangle. Thus, we
essentially obtain a point cloud equal to the number of triangles
in the mesh. This point cloud serves as input for a k-d tree.
For each face, multiple SPNHs are queried in the k-d tree - in
our experiments we use SPNHs of radii 0.5m, 1.0m and 1.5m.
All COGs within the respective neighborhood are selected. If
the number of selected candidates is below a threshold (e.g.
five faces), the selection is extended to the required minimum
number of COGs, regardless of their distance to the query
point, i.e. the COG of the considered face. Figure 2 gives an
impression of the SPNHs. Table 1 lists the features we calculate
for every face. Features are calculated by means of (Zhou,
2018). We will briefly introduce some of the features and
would like to refer the reader to the reference for further details.
Since we work with triangle meshes, vertex features account
for 3 or 9 components in the feature vector each, depending
on whether the feature is scalar or vectorial, respectively. We
obtain the Laplacian for each vertex i within the current face f .
Mean Curvature H is the mean of the maximum and minimum
principal curvature κ1 and κ2, respectively:H = 0.5(κ1 + κ2).
Accordingly, Gauß Curvature K is defined as: K = κ1κ2.
Valance defines the number of edges incident to the current
vertex, hence its degree of connectivity. Dihedral Angle of
vertex i represents the maximum dihedral angle of vertex i. A
dihedral angle of vertex i is the angle between two faces that
are adjacent to an edge that incidents at vertex i.
Face features are straight-forward. Area is the area spanned
by the triangle. Normal depicts the normal vector n computed
from the cross-product of the triangle edges. The Voronoi
area of each corner of the face is encoded in Voronoi.
Verticality, Horizontality and Inclination are computed for
the face itself, as well as for each SPNH. For the latter
case, we extract mean, median and standard deviation.
Inclination ι is defined as the angle between the face normal n
and vertical/up vector v =

[
0 0 1

]T . Horizontality is
simply |nZ |, i.e. the absolute vertical component of the
face normal n. Correspondingly, Verticality is defined as
1− |nZ |. The difference in Z between lowest and highest
vertex within the triangle is described by Vertical Difference.
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Figure 2. SPNHs (radius 1.5m, green) and corresponding
COGs (pink) for which the feature vectors are generated.

To obtain terrain-specific features, we incorporate DTM
information for the geolocated mesh area. Hence, nDSM
describes the height above ground terrain for all 3 vertices
and the COG. (Kölle et al., 2019) showed that this feature is
essential in the case of point cloud classification. (Rouhani
et al., 2017) also encourage some kind of elevation feature,
which is no height above ground however and therefore less
expressive. For each SPNH, similarly to (Hackel et al.,
2016), covariance features are calculated: Linearity, Planarity,
Variation, Curvature, Omnivariance, Anisotropy, Eigenentropy
and Sum Of Eigenvalues. The Face Density

[ faces
m

]
is defined

as the total number of faces within the neighborhood, divided
by the distance to the farthest face in the SPNH. The higher the
face density, the more triangles are agglomerated in this area.
Similarly to the face feature Vertical Difference, the maximum
vertical range for the complete neighborhood is captured by
Max Vertical Difference. This feature gives information about
the vertical extent of the current neighborhood. To inject
additional terrain information, we calculate σnDSM - a measure
for the vertical geometry variation within the neighborhood. To
obtain radiometric features, we extract texture patches for each
triangle. The predominant color information for each face is
captured by its median value. We use RGB color information,
as well as its HSV color space transformed pendant, in order
to ensure lighting independent features. We capture these
medians for each SPNH, too. However, to obtain more color
feature expressiveness, we calculate several histograms. The
histograms are depicted by different levels in Table 1. Each
level depicts a different histogram bin discretization, with
9, 20, 64 bins for level 0, 1 and 2 respectively. We use these
three discretization steps in order to obtain different levels of
radiometric information granularity while reducing memory
footprint with respect to vanilla 256-binning. However, the
more bins, the sparser the histograms and thus the less
meaningful information within the feature vector. Calculating
three different histograms gives us more flexibility in crafting
the feature vector, since all of them can be omitted easily in the
final feature vector composition. In general, we expect from the
radiometric features that they are beneficial in distinguishing
classes that are geometrically similar. In particular in the case
of green space and impervious surface.
The features of all data splits (train, validation and test set) are
normalized according to statistics of the train set. All features
are zero-centered and the standard deviation is normalized
to one. Formally speaking, by calculating feature vectors,
the mesh segmentation basically turns into a data-point-based
classification task. In total, we calculate 749 features for each
SPNH and each face. However, only a subset of the feature
vector is affected by the chosen neighborhood. Vertex and
face features as given in Table 1 only refer to the current face
of interest and thus are independent of their neighbors. Our
training set consists of 1.74 million (valid) faces. By calculating
many features initially, we are able to make an ablation study
and investigate on which features are important (cf. section 5).

per Vertex per Face per SPNH

ge
om

et
ri

c

Laplacian Area Covariance Features
Mean Curvature Normal Verticality
Gauß Curvature Voronoi Horizontality

Valance Verticality Inclination
Dihedral Angle Horizontality Face Density

Inclination Max Vertical Difference
Vertical Difference σnDSM

nDSM

ra
di

om
et

ri
c - Median RGB/HSV Median RGB/HSV

- RGB/HSV Hist RGB/HSV Hist
Level 1 Level [0,1,2]

Table 1. Calculated features for each face. SPNH-based
features are computed for SPNHs of radii 0.5m, 1.0m, 1.5m.
Histogram levels 0, 1, and 2 use 9, 20 and 64 bins respectively

to map color values originally discretized in 256 steps.

Processing data in label mode handles the semantically labeled
mesh as input. In this case, the OBJ file is parsed to extract just
one RGB triplet for each face, since the labeled mesh only uses
materials instead of texture patches to encode semantic classes.
Using a data set specific Lookup Table (LUT), the semantic
label for each face can be retrieved from the RGB triplet.
The 1-to-1 correspondence for faces between the textured and
labeled mesh is accomplished via identical COGs. To give
an impression of the actual values within the feature vector
we report them here briefly. For the roof example on the
left of Figure 2, Face Area is 0.395m2, Median Inclination
of the complete neighborhood is 45◦ and Face Density in the
SPNH is 20.2 faces

m
. For the vegetation example on the right

on the other hand, Face Area is 0.004m2, Median Inclination
of the neighborhood 90◦ and the Face Density is at 68.7 faces

m
.

It is clearly conceivable through the Inclination that the main
direction of the faces for the vegetation example is vertical.

4. FEATURE BASED SEMANTIC MESH
SEGMENTATION

Given a textured triangle mesh M = (V, E ,F), with V, E ,F
its vertices, edges and faces respectively, our goal is to process
M in a way that every face f ∈ F = {1, . . . , Nf} is assigned
to a semantic label lc ∈ L = {l1, . . . , lNc}. Here, Nf is
the total number of faces within the mesh of interest and
Nc is the number of semantic target classes. In our most
fine-grained case, Nc equals 8. To do so, we pursue a
supervised learning scheme. As described in the previous
section, we set up a training data set, which contains multi-scale
feature vectors Xmulti

f ∀f ∈ F and an associated label for
each face lfc . For many Photogrammetry and Remote Sensing
related classification and regression tasks, RFs are still state
of the art and on par with DL approaches (Weinmann et al.,
2015, Kölle et al., 2019). Thus, we use the concatenated
multi-scale feature vectors XRF

f to train a default RF classifier
as a baseline. The concatenation of all SPNHs (level 0, 1
and 2) considers the fact that some features do not depend on
the SPNHs (cf. Table 1). Therefore, the concatenated feature
vectors have a length of 1901 (instead of 2247 when stacking
naively). We perform a grid search for parameters number
of trees and depth of trees to obtain the optimal parameter
configuration for the RF. Details can be found in section 5.
To explore the potential of CNNs for semantic mesh
segmentation, we adapt the architecture of (George et al., 2017).
The gist is described in section 2. This network consists of three
input branches. Each branch is fed with the respective feature
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vector of the SPNH, depicted on the left in Figure 3. Our feature
vectors Xf per SPNH have a dimension of 749× 1 (with the
first dimension denoted as Nx), whereas the feature vectors
of (George et al., 2017) are slightly larger with dimensions of
800× 1. Although using more features their implementation
only considers geometric features. The first convolutional layer
conv0 of the original model has a filter size F of 15× 1.
However, our implementation differs here. In our opinion, the
filter size should be as large as Xf itself in order to capture
context within the whole feature vector. To highlight the
difference to common CNNs, spatial/contextual information is
provided via SPNH-dependent features and not gathered by the
convolutional kernels themselves. The convolutional kernels
are used as cheap feature embedders. If filter size of conv0 is
very small, only local correlations within the feature vector Xf
can be captured. For image processing tasks, where pixels are
the features, this is not a problem. Adjacent pixels can be
considered semantically correlated. In our approach, however,
this does not hold true since we construct the feature vector
ourselves. The initial arrangement of single features within
Xf is de facto random but fixed after initialization. In order
to decouple the feature correlation from the feature ordering,
we use a kernel with the same dimensions as Xf (i.e. Nx)
with a stride S = 1 and padding P = dNx

2
e. In addition, we

define an unnormalized Gaussian weighting function WG with
µ = 0 and σ = 0.4 in the range [−2, 2], discretized in Nx
steps. Using the mentioned σ results in weights very close
to 1 near the maximum. This normal distribution is centered
at dNx

2
e. The output of conv0 is element-wise multiplied

by WG. The Gaussian Weighting enforces the importance of
activations generated by incorporating the majority of features.
In other words, central parts of the feature map are multiplied
with values close to 1, whereas the tails of the feature map are
less important since increasingly less features contributed to the
convolution and hence are multiplied by values closer to 0. The
padded convolution is needed as otherwise feature maps would
consist of merely one value (for each kernel). This would be a
massive feature embedding. Here, we use padded convolution
instead of fully connected layers as parameter sharing is only
possible for convolutional layers. We use leaky ReLU as
activation function and incorporate batch normalization. After
each convolutional layer, we perform max pooling with F = 2,
S = 1 and P = 0. The three scale branches are merged
using depth concatenation, resulting in a dimension of 17856
(output dimensions of each branch: [93, 64]). Subsequently,
the feature maps are passed through two dense layers with
a dropout layer in-between, with the output size of the last
dense layer being Nc. Finally, the output is passed through the
softmax layer and delivers class probabilities in the range [0, 1].
To deal with the imbalanced classes in the training set, we
incorporate Focal Loss (FL) (Lin et al., 2017). This loss was
originally introduced for object detectors to tackle the extreme
foreground-background class imbalance. FL is defined as:

FL (pt) = − (1− pt)γ log (pt) (1)

where pt is the predicted probability of the ground truth label.
γ is a non-trainable hyperparameter and was empirically found
to work best for γ = 2 in the original paper. Intuitively,
if γ = 0, FL degenerates to the cross-entropy loss. Initially, we
used a weight-scaled cross-entropy loss with weights obtained
from the class distribution of the training samples. However,
FL consistently produced better results. With the network
architecture depicted in Figure 3, we perform several runs with
different hyperparameter settings for learning rate, batch size,

L2 regularization, and optimizers.
Generally, our real world is spatially smooth, i.e. adjacent
faces are more likely to belong to the same semantic class than
to others. This observation can be used as prior knowledge
in order to spatially smooth the semantically enriched mesh.
With increasing LOD the importance of smoothness increases
because of higher intra-class variability. To give an example,
more details will be visible and there will be higher spectral
variability in high-resolution imagery when LOD increases.
Due to the SPNH dependence of our feature vectors we already
implicitly introduced the smoothness assumption to some
extent. In order to explicitly smooth the achieved labeling, we
employ a MRF. For each face, a label smoothing is performed.
This smoothing is based on the local neighborhood defined
by the value of feature Face Density. We report our results
in section 5.

5. RESULTS

In this section, we discuss the results obtained from the RF and
CNN-based semantic segmentation. Both, CNN and RF, are
trained on the training set partially shown in Figure 1. Tests are
performed on a machine with an NVIDIA GeForce GTX 1080
Ti GPU and 64GB RAM and a 12-core CPU.
Table 2 registers achieved accuracies and inference times for all
test tiles of both classifiers. The shown RF results correspond
to a RF consisting of 250 trees, each having a depth of 25.
These parameters have been picked by a grid search, as they
offer a good trade-off between accuracy and training time. To
give an example, increasing number of trees by 5 comes along
with an increased training time (inference time) of 68min (3 s)
while merely increasing accuracy by 0.016%. RF trains 6.6 h
(for best parameter configuration) and achieves an accuracy of
79.009% for Tile A. Subsequent MRF makes the result visually
more appealing but decreases accuracy to 78.578%. The best
performing 1D CNN configuration uses a feature vector that
is composed of all geometric features but only uses Median
HSV per face and Hue Hist Level 0 per SPNH as textural
features. We use SGD as optimizer, a batch size of 50, and
an initial learning rate of 0.001. Training time is less than
15min. Inference time for Tile A is 14.69 sec and the achieved
accuracy is 79.868%. Subsequent MRF smoothing slightly
decreases the result (79.732%). As expected, MRF does not
improve results as we smooth implicitly via contextual features.
It has to be noted, that running time of RF and CNN is not
fully comparable, since the scikit-learn implementation of
RFs is running on the CPU and the PyTorch implementation
of our 1D CNN is running on the GPU. (Liao et al., 2013)
report a RF GPU implementation that is ten times faster than
scikit-learn. However, even with such an improvement,
the CNN training currently is still three times faster. DL
frameworks are specifically relying on CUDA enabled GPUs
with cuDNN that use highly optimized implementations for
learning routines such as forward/backward convolutions and
pooling. Coupled with efficient CPU based batch handling, this
is expected to scale better on large data sets and models than
RFs, which is important when processing entire cities.
We are aware of the fact that OA is not as expressive as other
classification metrics such as per-class precision and recall
when dealing with highly imbalanced data sets. Since we
experienced similar behavior throughout all our experiments,
we therefore report per-class precision and recall in Table 3
once and limit ourselves to OA for the remaining tests. Using
OA still has its justification because usually train and test splits
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Figure 3. Architecture of the multi-branch 1D CNN. After
each convolutional layer (input dimensions denoted in

square brackets), a max pooling with F = 2 and S = 2 is
performed. 16, 32 and 64 denote the number of

used kernels. For better visibility, please refer to the
digital version.

Figure 4. From top to bottom: Textured, ground truth
labeled Tile A, RF prediction, 1D CNN prediction. In the

ground truth you can see label noise: a flat roof (black
circle) is labeled as green space and one face on the street
is labeled as building mass/facade (black ellipse). Please

note that the RF visually might indicate better
performance on green space. Refer to Table 3 for actual
results. Both classifiers consistently predict the actually
correct label for the flat roof and have problems on the

street.

RF 1D CNN

Tile RF RFMRF CNN CNNMRF

Tile A 79.009 78.578 79.868 79.732
295884 faces 45.83 – 14.69 –

Tile B 76.584 76.513 76.425 76.824
226168 faces 36.14 – 11.43 –

Tile C 72.366 72.270 74.761 74.929
133932 faces 23.50 – 6.83 –

Tile D 48.559 48.279 48.336 47.766
116883 faces 19.82 – 5.82 –

Weighted
Arithmetic Mean 72.543 72.298 73.209 73.213

Table 2. Achieved accuracies (in %, first row) and inference
times (in s, second row) per test tile. There is no time depicted
for the MRF smoothing as its processing time is independent

on provided predicted label distribution. The weighted
arithmetic mean is given for accuracies only. Best

performances are marked in bold. Please note, the class
distribution from Tile D differs significantly from the training

tiles leading to bad performance. Class distributions of
residual test tiles are similar to training distribution.

Class 1 2 3 4

Precision 62.237 77.110 66.418 40.997
64.613 77.933 71.213 43.622

Recall 63.600 78.206 36.756 14.446
58.767 78.063 30.433 12.740

Class 5 6 7 8

Precision 85.676 53.526 38.235 3.257
82.771 46.875 0.000 3.448

Recall 96.877 9.199 2.317 1.666
97.468 8.262 0.000 1.403

Table 3. Per-class precision and recall (in %) for predictions of
the 1D CNN (top row) and RF (bottom row) for Tile A with
best performing feature configuration (all geometric features

but only Median HSV per face and Hue Hist Level 0 per SPNH
as textural features). Class definitions are according

to Figure 1.

are chosen to represent similar class distributions. Both, RF
and CNN achieve recall values close to 80% for the roof class.
This result is encouraging, since roof and building extraction
is an important task in geospatial applications. Metrics for
building mass/facade are slightly worse even though visual
results imply that most building parts within the test areas are
actually covered. It is noteworthy that the union of classes
vehicle and chimney/antenna make up only approximately 1%
of the whole training set. Nevertheless, the 1D CNN is able to
detect those classes to some extent.

5.1 Influence of Feature Vector Composition

As described in section 4, our full feature vector is
749-dimensional. In the following, we refer to this as Xi,full.
Training on Xi,full delivers good results in terms of the
predicted class coverage, however, suffers from smoothness.
Due to the sparseness of the histogram features, especially
for level 1 and 2, we examined different feature vector
compositions and their influence on predictions. Table 4 lists
training runs with different configurations of the feature vector.
Testing was performed on Tile B. Although both classification
metrics, OA and Weighted Precision (WP), deliver similar
results for all runs, the visualization of the results in Figure 5
depicts the impact of different compositions of the feature
vector. Please note, how config 2 (all textural features removed;
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on the lower left) can no longer distinguish between impervious
surface and green space and consequently only predicts the
former. Removing all geometric features (config 3, cf. Figure 5
in the middle on the bottom) results in failure of identifying
buildings (building mass and roof ) correctly.

OA/WP in [%]Features Dropped

74.9/71.4Config 1: None
75.4/71.8Config 2: All Textural Features
72.6/67.1Config 3: All Geometric Features

Config 4: All Textural Features except: 76.8/74.3
Median HSV, Hue Hist Level [0,1]

Table 4. Prediction results of Tile B for different compositions
of the feature vector. The first column denotes all features that
were removed with respect to Xi,full. OA - Overall Accuracy,

WP - Weighted Precision.

Figure 5. Impact of different feature vector compositions
with respect to Table 4. From left to right, top to bottom:
Textured Tile B, ground truth labeled mesh, predictions
for config 1, 2, 3 and 4, respectively. The figure is best

viewed digitally.

6. CONCLUSIONS AND OUTLOOK

Within this paper, we presented an approach that combines
feature engineering and feature learning for the semantic
segmentation of urban triangle meshes. For each face, a
multi-scale feature vector is computed and serves as input to
a 1D CNN. For the fine-grained distinction of 8 classes, we
achieve accuracies close to 80% for the used data set. This is
slightly better than a default RF. Moreover, training the CNN
is faster than training the RF. Inference is faster as well. This
is important when processing entire cities or even larger areas.
The detection of buildings is an important application-oriented
task in geodata processing. Both classifiers deliver encouraging
results for roof and building mass extraction although being
not explicitly trained for this task. Moreover, CNN detects
a fraction of class chimney/antenna whereas RF completely
fails. Applying a MRF further enforces smoothness, yet does
not consistently improve our results. This might be due to
contextual features that achieve implicit smoothing. The class
distribution of our data set is quite imbalanced - for example,
we currently have very few samples for the chimney/antenna
and vehicle classes. Normally, class imbalance is cured using
data augmentation, which is not trivial for our approach. In

general, there is a lack of large-scale labeled real-world data and 
benchmarks that represent well the complexity and variability 
of urban scenes. Thus, it is not possible to publicly evaluate 
mesh-based semantic segmentation approaches. As a first step, 
we labeled an urban scene manually on our own. With this 
in mind, one big challenge is to provide annotated data from 
a variety of scenes. Crowdsourcing seems to be a suitable 
approach to tackle this problem. We tested the incorporation of 
procedurally generated data by means of ESRI’s CityEngine. 
While exclusively training and testing on synthetic data works 
quite well, this does not transfer to the real word data. Potential 
reasons are: a strict Manhattan world assumption, geometric 
and textural simplifications of the synthetic data and LOD 
misalignment of the real world and synthetic mesh data. 
Currently, we do not exploit the full potential of texture 
information as we rely on 1D feature representation (i.e. 
histogram of colors). In the future, additional branches could be 
introduced for explicit texture processing. Hence, the number 
of features can be highly reduced when color histogram features 
are replaced by explicit 2D branches. These branches could 
either explicitly extract features from the texture patches or 
even perform a classification only based on the texture. The 
per-triangle classification could serve as input for a voting 
scheme for the final semantic class decision for each triangle. 
Additionally, random search or Bayesian optimization could be 
used for better performance of the feature vector composition. 
Using LiDAR as base for the mesh geometry preserves the 
option of using LiDAR features per point, additionally in future. 
We anticipate further improvement when ground truth does 
not suffer from label noise and/or using a 3D mesh instead of 
2.5D mesh. For example, the feature nDSM is more expressive 
in a 3D scenario (becoming Relative Height Above Ground
consequently). To further increase capacity, a CNN ensemble 
could be employed where each network within the ensemble 
processes a different composition of the feature vector. In the 
longer term, it is more desirable to avoid feature engineering
and to design an end-to-end (Graph-)CNN pipeline instead.
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