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ABSTRACT:

Analyzing optical remote sensing imagery depends heavily on their spatial resolution. At the same time, this data is adversely 
affected by fixed sensor parameters and environmental influences. Methods for increasing the quality of such data and concomitantly 
optimizing its information content are, thus, in high demand. In particular, single-image super-resolution (SISR) approaches aim to 
achieve this goal solely by observing the individual images.
We propose to adapt a generic deep residual neural network architecture for SISR to deal with the special properties of remote 
sensing satellite imagery, especially taking into account the different spatial resolutions of individual Sentinel-2 bands, i.e., ground 
sampling distances of 20 m and 10 m. As a result, this method is able to increase the perceived resolution of the 20 m channels and 
mesh all spectral bands. Experimental evaluation and ablation studies on large datasets have shown superior performance compared 
to the state-of-the-art and that the model is not bound by its capacity.

1. INTRODUCTION

Single-image super-resolution (SISR) is a promising technique
for various fields and applications. It allows enhancing the
spatial resolution of a single image without having access to
additional information, such as its acquisition properties or
other images from the same sequence. By taking into account
learned features from a training phase, the information content
of the source image is increased. Many applications which
suffer from a limited image size can benefit greatly from these
methods. Possible causes for low resolution (LR) imagery can
be restrictions in space if the sensor is too far away or the
object to be observed is too small. Furthermore, high-quality
sensors may be too costly for certain purposes or may not have
been available at all when dealing with historic images. Hence,
SISR has benefits for fields from medical or security imaging
to remote sensing, which is the application we selected for our
experiments. In remote sensing, images are usually acquired
from large distances which is why achieving a high spatial
resolution is often not feasible. However, high image quality
is crucial for many specific applications where fine details are
required, such as land cover classification, target detection, or
the determination of object dimensions.

Very basic approaches to SISR are interpolation methods. An
LR image is transformed to a high resolution (HR) grid and
the intermediate pixels are estimated using a specific function,
e.g., bilinear interpolation. Aliasing effects are reduced but
no high-frequency components are predicted. Super-resolution
based on machine learning provides a better solution, as the
relationship between LR and HR images is explicitly learned.
Figure 1 exemplarily shows the improvement of image quality
using our approach compared to bilinear interpolation. A
promising deep learning approach for SISR which uses a
convolutional neural network (CNN) is the so-called very
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Figure 1. RGB composites with a spatial resolution of
10 m, up-sampled by a factor of two using bilinear

interpolation (left) and our deep residual learning SISR
approach (right).

deep super-resolution (VDSR) network (Kim et al., 2016).
It has shown remarkable performance compared to other
state-of-the-art methods. Its depth of 20 layers proofed to
be very effective as it considers the neighboring contextual
information utilizing a large receptive field. Furthermore, by
making use of residual learning and a high learning rate, they
achieve fast convergence.

Originally, the VDSR network was trained and tested on
conventional 8 bit/px RGB images. In this paper, we present
our approach to adapt the VDSR network to multi-spectral
satellite imagery. We have to consider the different radiometric
and spectral resolution, the varying topography of the
Earth’s surface that leads to texture changes, the acquisition
circumstances like the distance of the sensor to the ground,
and weather conditions like cloud coverage or snow. For our
experiments, we used satellite imagery from the Sentinel-2
mission with a spectral resolution of 13 channels (Figure 2).
Four of them have a spatial resolution of 10 m, which we
use as ground truth data. As LR input data for training,
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Figure 2. Spectral and spatial resolution of the Sentinel-2
bands with a GSD of 10 m and 20 m which we used in our

experiments.

we down-sample them to 20 m. After training our network
with these input ground-truth pairs, it is able to enhance
images from 20 m to 10 m spatial resolution. We show that it
also achieves good results for images from regions that were
not used for training, as well as for images from different
spectral bands. A quantitative comparison to a state-of-the-art
method, the multi-spectral satellite image super-resolution
(msiSRCNN) (Liebel and Körner, 2016), demonstrates the
superior performance of our network.

The remainder of this paper is structured as follows: In
Section 2, we explain how the problem of SISR is solved
in other approaches. Section 3 explains the VDSR network,
its architecture and features, and to what extent we build on
it. Furthermore, problems are specified that occur due to
the difference between satellite and conventional images. We
describe our conducted experiments in Section 4, including data
processing, training, and quantification metrics. Our results are
presented and discussed in Section 5, as well as compared to
another approach. In Section 6, we conduct an ablation study,
where the impact of the depth of the network as well as the
amount of input data is analyzed. The conclusion (Section 7)
summarizes our contribution and specifies possible future work.

2. RELATED WORK

With the emergence of machine learning, more sophisticated
solutions for SISR became possible. The review of Hayat
(2018) describes the recent developments for super-resolution
via deep learning and differentiates between two types of
algorithms, i.e., reconstruction and learning methods.

CNNs are designed to deal with image data. A SISR approach
using a CNN has been proposed (Dong et al., 2014, 2016)
which was a cornerstone for a lot of the following research. It
was later outperformed by a network called VDSR (Kim et al.,
2016) that was able to obtain considerable results with a very
deep architecture.

In remote sensing, SISR has a high significance as it tackles
problems that occur due to the exceptional sensor requirements
for satellite imagery. These are caused, e.g., by the large
acquisition distance which prohibits a small ground sampling
distance (GSD), i.e., distance between centers of the ground
area covered by neighboring image pixels. Fernandez-Beltran
et al. (2017) provide an overview of SISR methods for the
challenges of remote sensing. Their taxonomy differentiates
reconstruction-based, learning-based and hybrid methods. An

example of learning-based methods is utilizing CNNs, as in
state-of-the-art SISR approaches for conventional photographs.
The msiSRCNN (Liebel and Körner, 2016) adapts such a
CNN (Dong et al., 2014, 2016) for Sentinel-2 images. The
authors show the necessity of developing special networks
for remote sensing applications that have to be trained with
satellite imagery. Another approach in the field of remote
sensing was proposed by Mei et al. (2017). They developed the
so-called 3D-FCNN that exploits not only the spatial context
of the neighboring pixels but also the spectral correlation of
neighboring bands. Some work has been dedicated to the
development of unsupervised methods as well. Haut et al.
(2018) propose such an unsupervised deep generative network
for remote sensing.

Closely related to our approach is the work of Huang et al.
(2017), who build on the VDSR architecture and adapt it
to multi-spectral satellite imagery from Sentinel-2. Based
on first experiments, they conclude that this architecture is
not capable of scaling remote sensing imagery, as it was not
able to outperform the bicubic interpolation baseline. While
they proceeded with using a custom network architecture, we
analyze potential sources of errors and strategies to overcome
them. The outcome is presented in the following sections.

3. A SUPER-RESOLUTION CNN FOR
MULTI-SPECTRAL SATELLITE IMAGERY

As introduced before, SISR is a class of methods to improve
the spatial resolution of an image without using any additional
information. We propose to apply a deep learning approach,
in particular a deep CNN for which we chose the VDSR
architecture, presented by Kim et al. (2016).

This section describes the architecture, its characteristics
(Section 3.2), and how to adapt it to multi-spectral satellite
imagery (Section 3.1). As there are significant differences to
conventional images regarding the acquisition geometry and
sensor requirements, this poses a major challenge.

3.1 Problem

The VDSR network is designed to enhance the spatial
resolution of conventional images of arbitrary scenes taken by
consumer-grade handheld cameras. They usually only cover the
visible spectrum from around 400–700 nm with three spectral
bands (RGB). Most standard camera sensors and raster graphics
formats feature a radiometric resolution of 8 bit/px and, thus,
cover intensity values in the range of 0–255.

In comparison to handheld digital cameras, sensors of
Earth observation satellites have to cope with a challenging
acquisition scenario. Since images are expected to cover a
huge area of the Earth’s surface, they have to be taken from
a large distance. The Sentinel-2 satellites orbit the Earth at an
altitude of 786 km while acquiring images with a swath width
of 290 km. Thus, the GSD is high, even though HR scanning
sensors are utilized. For Sentinel-2, the GSDs are 10 m, 20 m,
and 60 m, depending on the spectral band (Figure 2). Hence, the
resulting satellite images do not cover structures with as much
detail as conventional images.

Besides this difference in spatial resolution, multi-spectral
satellite imagery differs from conventional images in its spectral
and radiometric resolution. As the name implies, multi-spectral
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Figure 3. Architecture of the VDSR network, consisting of alternating convolutional layers and ReLU activations in n
blocks. The output of the final convolutional layer is a residual image, which is added to the interpolated LR input to

obtain the desired HR output.

imagery consists of several spectral channels that are acquired
simultaneously. The 13 spectral channels of Sentinel-2 have
a sampling depth of 12 bit/px, which is further specified in
Section 4.1.

The goal of our approach is to enhance the quality of Sentinel-2
images. However, to train our network we need vast training
datasets, consisting of samples with high spatial resolution as
ground-truth and lower resolution as input images. Such image
pairs are not directly available since Sentinel-2 acquires only
one image with a fixed resolution per band. A workaround is to
down-sample the original HR images and use these simulated
LR images as input data (Dong et al., 2014, 2016; Liebel
and Körner, 2016). Hence, we use the images of the four
bands with a spatial resolution of 10 m as ground truth and
down-sample them to a spatial resolution of 20 m to get the
corresponding input data. After optimizing our network with
these input/ground-truth pairs, it can be used to up-sample
images of spectral bands with 20 m resolution to enhance the
image quality.

3.2 Network

In this section, we describe the VDSR network (Kim et al.,
2016), used in our SISR approach. The first part of its name
originated from the relatively large number of 20 layers, as
shown in Figure 3.

Prior to feeding images through the network, they are
interpolated to the desired output size. As the network is
expected to enhance the quality of this interpolated image, we
use basic bilinear interpolation here. To speed up training,
several images are concatenated to a batch. This batch of
input images is then processed through the network that consists
of 20 alternating convolutional layers and non-linear ReLU
activation functions. Each convolutional layer is composed of
64 filters with a kernel size of 3 × 3. A specific feature of the
VDSR approach is to learn a residual image that is added to
the LR input to get the final HR result. Therefore, the sizes
of input and output images are required to match. In order to
preserve the image size, zero padding is applied before each
convolution. A major advantage of residual learning is that
the network only has to predict the high-frequency components
of the image, while low-frequency components are directly
transferred from input to output. According to Kim et al.

(2016), faster convergence and superior performance can be
achieved by exploiting the high correlation of input and output.
Figure 4(b) shows the residual image along with the bicubic
interpolated LR input and HR output. The high-frequency
components are clearly visible.

In order to optimize the network, the deviation between the
ground-truth and HR output image has to be minimized. The
mean squared error

MSE(IA, IB) =
1

N

N∑
n=1

(IA,n − IB,n)
2 (1)

with N = number of pixels per image
IA,n, IB,n = corresponding pixels in images IA and IB

between both images, IA and IB serves as an easy tool to
evaluate similarity metric and loss function for our approach.
The loss is minimized by back-propagation using stochastic
gradient descent.

The authors of the VDSR suggested further measures for
improving the performance during training and inference that
we adopt. A relatively high initial learning rate of α =
0.1 is used to efficiently train the deep network quickly. In
order to ensure convergence, a multi-step schedule is applied
that decreases the α after a certain number of iterations.
Prominent problems that occur when training with high α
include vanishing or exploding gradients. In order to avoid this,
gradient clipping is applied. If the absolute value of gradients
gets larger than a certain threshold value θ, they are clipped to
the range [−θ, θ]. This technique helps to achieve convergence
faster and more reliably.

4. EXPERIMENTS

In this section, we present the experiments that have been
conducted. Section 4.1 describes the data acquisition and
its pre-processing. In Section 4.2, we specify the training
procedure, while Section 4.3 explains the used validation
metrics.
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(a) Bilinearly interpolated LR input (b) Residual

(c) HR output: input + residual (d) HR ground-truth

Figure 4. Qualitative comparison of results. The bilinear
interpolation (a) is used as input for our network that

predicts a residual image (b). By adding (b) to (a), the HR
output (c) is generated. In comparison to the interpolation
result, our method produces much clearer images that are

more similar to the ground-truth (d).

4.1 Dataset

As Sentinel-2 is part of the Copernicus program, its images
are freely available and can easily be downloaded from the
Copernicus Open Access Hub1. We use Level 1C processing
products that are already geometrically and radiometrically
corrected as well as georeferenced. The multi-spectral
instrument (MSI) aboard both Sentinel-2A and Sentinel-2B
features 13 spectral bands, whereof four—the blue (B2,
490 nm), green (B3, 560 nm), red (B4, 665 nm) and near
infra-red (B8, 842 nm) channels—have a spatial resolution of
10 m. These are used as ground truth data. Every image covers
an area of 100 km2, with a size of 10 980 × 10 980 px. The
radiometric resolution of the MSI is 12 bit/px, but the images
are encoded in 16 bit/px JPEG2000 format (Sentinel-2 User
Handbook, 2013).

In total, ten images were downloaded. All of them are showing
areas from central Europe, mainly Germany, as to be seen in
Figure 5. Topography variations from the Alps to the Baltic
and Northern Sea are covered. The images were taken from
April 2018 to October 2018 to consider temporal variations in
vegetation. Furthermore, we only selected images with cloud
coverage of less than 1%.

We extracted each of the four 10 m bands to get a total of 40
single-band images and proceeded to cut them into small tiles
of 60 × 60 px as the ground-truth patches. In order to obtain
corresponding input patches, the tiles were down-sampled to
30 × 30 px, simulating a GSD of 20 m. The resulting dataset

1https://scihub.copernicus.eu

Figure 5. Footprints of the Sentinel-2 images used in our
experiments. The distribution considers the varying

topography of Germany from North to South, as well as
temporal variations of the vegetation throughout the year.

Cloud coverage in all used images is less than 1%.
Background map: c© OpenStreetMap contributors.

containing approximately 13.5 · 106 samples was partitioned
9:1 into training and test data. The test samples were extracted
from the very right border of each of the 40 images in the
dataset, thus representing the whole study area from North to
South and all utilized spectral bands.

Since the image size is preserved during a forward pass through
our network by design, the input patches need to be up-sampled
to the desired output size prior to inference. As the network
is expected to learn how to enhance the quality of these
input patches, basic bilinear interpolation is expected to suffice
here. Using such pairs of input and ground-truth samples the
network can be optimized. No further data augmentation or
pre-processing measures, such as normalization or color space
conversion, have been implemented. Note that our dataset
contains image patches of four different bands and mini-batches
were randomly drawn from the whole dataset during training.
We, thus, expect the network to learn weights that focus on
spatial rather than spectral features, and hence also be able to
process data from bands that have not been seen during training,
in particular, the 20 m bands (cf. Figure 2: B05-B07, B8B, B11,
B12).

4.2 Training Procedure

We re-implemented the VDSR in Pytorch, a scientific deep
learning framework. This allowed us to train our model on
GPUs fast and efficiently.

Like the original VDSR approach, we used 20 blocks, each
consisting of a convolutional layer with 64 filters and a kernel
size of 3 × 3 px, and non-linear ReLU activation. The final
layer is a single convolutional layer that predicts the residual
image. The learning rate was initially set to α = 0.1 and
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decreased by a factor of 10 every 2000 iterations. This was done
five times until α = 10−7 was reached that was maintained for
the remaining training time. Input parameters for the stochastic
gradient descent optimizer are the momentum and a weight
decay settings for which we chose 0.9 and 0.0001. For training,
mini-batches with a size of 128 were used, which occupied
8 GB of GPU memory. We used θ = 0.4 for gradient clipping.

Training the network to full convergence on an NVIDIA
GeForce RTX 2070 took approximately four days. Only one
epoch of training was necessary to obtain the best results,
presented in the following.

4.3 Quantification Metrics

For validation, we use two error metrics to quantify our results.
The peak signal to noise ratio (PSNR)

PSNR = 10 · log10
R

MSE
(2)

is usually used to compare the compression quality of images.
It depends on the gray value range of the images R, which is
the difference between the minimum and maximum of possible
values, and the MSE. For Level 1C Sentinel-2 imagery we set
R = 104. As the PSNR depends on the radiometric resolution
of the image, it has no specific range, but the higher, the better
accordance between both images. To still allow for a fair
comparison with other approaches that use the full range of
16 bit/px here, we also calculate the PSNR withR = 216. Since
the PSNR is directly derived from the MSE (cf. Equations (1)
and (2)), which we used as our loss function, the PSNR was
expected to converge with the MSE objective during training.

To get an additional quantitative evaluation of our results that
is independent of the loss function, we calculated the structural
similarity index (SSIM)

SSIM(IA, IB) =
(2µIAµIB + C1)(σIAIB + C2)

(µ2
IA
µ2
IB

+ C1)(σ2
IA

+ σ2
IB

+ C2)
(3)

with µIA , µIB = mean gray values
σIAIB = covariance of IA and IB
σIA , σIB = variance
C1, C2 = constants

which extracts structural information and represents the
similarity of images based on the human visual system (Wang
et al., 2004). The range of SSIM ranges from zero to one,
where SSIM = 0 corresponds to no similarity and SSIM =
1 indicates that original and reference images are identical.
During training, we calculated the PSNR and SSIM for our test
set every 500 iterations.

5. DISCUSSION

Figure 4 shows qualitative results for an image patch that was
used for validation. Compared to the bilinearly interpolated LR
input Figure 4(a), the HR output Figure 4(c), that was obtained
by adding the residual Figure 4(b) to the input, was clearly
improved. Its structures are more distinct and it looks very
similar to the ground-truth image Figure 4(d).

The quantitative results confirm this improvement (Figures 6
and 7). As the curves illustrate, the MSE-based loss converges
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Figure 6. Convergence of the training loss for networks
with different depths, i.e., number of convolution + ReLU

blocks. All three models converge to a very similar
solution.
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Figure 7. Convergence of the training loss for datasets of
different sizes, i.e., number of used Sentinel-2 granules.

Training with a bigger dataset yields better results.

after a few thousand iterations, indicating that the differences
in pixel intensity values between HR output and ground-truth
decrease. In both plots, the turquoise curves show the results of
a model utilizing a depth of 20 blocks and 10 Sentinel-2 images
for training.

Table 1 shows the obtained values for PSNR and SSIM,
compared to bilinear and bicubic interpolation. Our approach
outperforms both interpolations with a margin of 2.6212 dB for
the bicubic interpolation and even 3.8312 dB for the bilinear
one clearly in terms of PSNR. This shows that the prediction
result of our trained VDSR model is more similar to the
ground-truth than the interpolation results. However, the SSIM
is slightly higher for the interpolations than for the deep
learning method. Since the SSIM is already very close to
one for all methods, this raises the question of how suitable
SSIM is for the validation of SISR approaches. Technically,
the metric imitates the human visual system, but comparing
the interpolation and prediction results visually (Figure 4), we
actually find the output of our network to be more satisfying
and significantly better than the interpolated version, which was
also confirmed by the PSNR.

The PSNR obtained using the msiSRCNN by Liebel and Körner
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Table 1. Comparison of quantitative results for up-scaling
using different methods on an unseen test dataset (dataset

mean). Note that the msiSRCNN was scored on a
different test set.

Method PSNR (in dB) SSIM

msiSRCNN
(Liebel and Körner, 2016) 60.6527 0.9979

Bilinear Interpolation 61.3960 0.9993
Bicubic Interpolation 62.6060 0.9995
VDSR (ours) 65.2272 0.9989

(2016) is 60.6527 dB which is lower than our value. However,
it is important to stress that these values were obtained
using different test data which makes a direct comparison
less meaningful. Nevertheless, they report their method to
outperform bicubic interpolation by only 0.3680 dB on their test
set. This indicates the superior performance of our network.

Huang et al. (2017) also tested the VDSR network on Sentinel-2
images. They concluded that the network fails at this task
because in their experiments the bicubic interpolation result and
network output did not differ significantly in terms of PSNR. A
possible reason could be the very limited size of their training
dataset, which contains only half as many training images than
ours. Furthermore, they trained three models for the spectral
bands B02, B03 and B04 separately from each other and thus
had even less training data available per network. They also
used θ = 0.01 for gradient clipping, which is much smaller
than θ = 0.4 that achieved the best results in our experiments.
Considering the PSNR of our results, we claim that the VDSR
network does not fail in scaling multi-spectral satellite imagery.
Yet, apparently, the method depends on a sufficiently large
dataset for training. We did an in-depth analysis of this factor
and report results in Section 6.

For final testing, an unseen Sentinel-2 image was used. The
image was acquired over central Germany and, hence, does
not overlap with the training set (cf. Figure 5). The goal of
this final evaluation was to assess whether our trained model
could also enhance the spatial resolution of the 20 m bands that
were not used during training. We extracted the corresponding
channels B5, B6, B7, B8a, B11 and B12 from our test image,
used them as the LR input to our network, and calculated the
HR output with an up-sampled GSD of 10 m. Since there
is no ground-truth available for quantitative validation, results
are shown in Figure 8 for qualitative comparison. Compared
to the blurry bicubic interpolation, our super-resolution result
looks much sharper and shows more distinct structures. Even
though our network was not trained on samples from these
channels, the learned weights apparently generalize well to
unseen spectral bands. However, up-sampling bands that lie
within the range of the electromagnetic spectrum that was used
for training, i.e., bands B05 to B07 and B8B (cf. Figure 2),
yields the best results. For single-band images of B11 and B12
that feature longer wavelengths, the enhancement is less distinct
as for the other bands. A visually appealing improvement was
still achieved for all bands.

Additionally, we analyzed whether our network is able to
further improve images that already have a GSD of 10 m to
an up-sampled spatial resolution of 5 m, even though it was
not trained for this task. The results, shown in Figure 9, look
surprisingly good. Again, no quantitative evaluation is possible

(a) Bilinear interpolation (b) SISR Result

Figure 9. Enhancement of band 4 (red) with a native GSD
of 10 m (left) to 5 m (right).

due to a lack of ground-truth with higher-resolution. This still
shows that the network is able to generalize well by learning to
distinguish regions with sharp edges and smooth areas with a
constant texture and improve them accordingly.

A comparison of the quantitative results to other state-of-the-art
methods that did not make use Sentinel-2 imagery is not
possible, first of all, due to the dependence of the PSNR on the
radiometric resolution. Furthermore, the utilization of images
captured by other sensors, on different scales, and showing
different scenes will greatly influence the results. However,
judging from qualitative comparison to the results presented
by Mei et al. (2017); Haut et al. (2018), our method produces
images of similarly high quality.

6. ABLATION STUDIES

In additional ablation studies, we analyzed two aspects of our
method with a particular impact on the final performance. We
modified the depth of the network by adding or taking away
blocks in the network architecture (cf. Figure 3), as well as the
size of our training dataset.

The original VDSR network has a sizeable depth of 20
blocks, as the authors claim that deeper models show better
performance (Kim et al., 2016). By adding layers to a CNN,
the size of the receptive field, which is the region of pixels
that are taken into account for the calculation of a single
pixel in the output, increases. Hence, with more layers, more
contextual information is considered for the prediction, which
is expected to yield better results. To check if this assumption
holds for multi-spectral satellite images with a significantly
different ratio of GSD to object size, we re-trained our network
with 10 and 40 blocks. Contrary to our expectations, deeper
models did not perform better here. The results, thus, did not
correspond to the observations of Kim et al. (2016). All three
models converged to similar values after a few iterations, as
seen in Figure 6. Similarly, the evaluation of the final models
yielded comparable values for both PSNR and SSIM, listed in
Table 2. While the 20-block model achieved slightly better
results in terms of PSNR than the other models, the SSIM
was slightly lower, leading to the conclusion that the impact
of network depth is negligible here. Since optimizing very deep
networks is more expensive in terms of computation time and
memory demands, using deeper models is not preferable in this
case. We conclude that given the high GSD of multi-spectral
satellite imagery and, thus, the small size of objects in the
image considering contextual information at a large scale is
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Table 2. Quantitative results of our application studies
with varying network depth and dataset size.

PerformanceHyperparameter

SSIMPSNR (in dB)Dataset SizeNetwork Depth

0.999765.14931010
0.996565.0119520
0.998965.22721020
0.999765.10961040

neither necessary nor beneficial for our method. We continued
our experiments using the best performing network architecture
featuring 20 blocks of network layers.

Apart from the network architecture, we expected the size
of the utilized training dataset to have the biggest impact
on the results. In order to show this, we reduced the size
of our training set by removing all but the five westernmost
images from the original dataset (cf. Figure 5). This employed
procedure of selecting a subset of images maintains the
North/South distribution of samples over the study area, which
exhibits the biggest difference in topography. Re-training with
the compiled subset of images yielded significantly different
training results. Figure 7 shows a comparison of the training
process when utilizing the full set of images vs. a 50% smaller
subset. The latter quickly converged to an inferior solution,
meaning that the model will always perform worse than the
baseline—even given a large number of training iterations.
The evaluation results (contained in Table 2) confirm this
observation, although the difference is surprisingly small. A
smaller set of images naturally contains less variation and,
hence, does not fully exploit the capacity of a deep CNN. Our
experiment showed that the amount of training data limits the
performance of a network, which is an intuitive and well-known
observation. Considering that no manual annotations are
required for training using the suggested procedure, sometimes
referred to as self-supervised training, this outcome is still of
particular importance, as it impressively shows the importance
of carefully assessing the required amount of training data for
this application and approach.

7. CONCLUSION

We presented a learning-based method for improving the spatial
resolution of multi-spectral Sentinel-2 satellite imagery. The
deep CNN architecture VDSR (Kim et al., 2016) that we
utilized was shown to be well-suited for this task. Its design
is comparably simple as it consists of alternating convolutional
layers and ReLU activations, organized in blocks. In our
experiments, we were able to show that the depth of the network
is not a limiting factor for the performance of the network. The
size of the dataset, on the contrary, proved to be crucial.

Additional features of the network are residual learning, a very
high learning rate that was decreased in steps, and gradient
clipping, which led to fast and stable convergence. The final
model is able to produce impressive super-resolution results.
A comparison to the existing method msiSRCNN (Liebel
and Körner, 2016) showed the superiority of our approach
in terms of both employed metrics, i.e., PSNR and SSIM.
Furthermore, our model significantly outperformed the more
basic bilinear and bicubic interpolation methods in qualitative
and quantitative comparison. In this sense, our results did not

go in line with the observations of Huang et al. (2017) who 
stated that the used network architecture is not suitable for 
scaling Sentinel-2 imagery, as it was not able to outperform the 
interpolation baseline in their experiments.

As our study area in Central Europe only covers a comparably 
small area of the globe, it should be noted that, even though 
we considered a varying topography ranging from mountains to 
the sea, results may differ when applying pre-trained models to 
regions with a different appearance. Thus, for application on a 
global scale, training should be conducted on likewise datasets. 
This would enable enhancing arbitrary Sentinel-2 images from 
which many applications could benefit. One example where 
our SISR method could be used as a plug-in pre-processing 
step is land use and land cover classification. Increasing the 
spatial resolution reveals more detailed structures and surface 
textures that can, thus, be distinguished more easily and with 
higher spatial accuracy.

Our objective was up-sample the 20 m bands of Sentinel-2 to 
a GSD of 10 m which can be accomplished even for channels 
that feature a considerably larger wavelength than the channels 
used for training. In further evaluation experiments, we showed 
that our network is able to provide satisfying super-resolution 
results even when being applied to higher scales, such as scaling 
the 10 m bands to 5 m resolution. This demonstrates that our 
model is scale-independent, up to a certain degree.

We successfully adapted and re-trained the VDSR CNN 
architecture for enhancing the resolution of multi-spectral 
Sentinel-2 imagery. The proposed method outperformed 
existing methods in the conducted experiments, both 
quantitatively and qualitatively. In particular, the visual 
quality of up-sampled Sentinel-2 images can be significantly
improved as compared to interpolation methods.
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Figure 8. Super-resolution results with a GSD of 10 m for the six Sentinel-2 bands with a native GSD of 20 m.
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