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ABSTRACT: 

 

Domain adaptation (DA) can drastically decrease the amount of training data needed to obtain good classification models by leveraging 

available data from a source domain for the classification of a new (target) domains. In this paper, we address deep DA, i.e. DA with 

deep convolutional neural networks (CNN), a problem that has not been addressed frequently in remote sensing. We present a new 

method for semi-supervised DA for the task of pixel-based classification by a CNN. After proposing an encoder-decoder-based fully 

convolutional neural network (FCN), we adapt a method for adversarial discriminative DA to be applicable to the pixel-based 

classification of remotely sensed data based on this network. It tries to learn a feature representation that is domain invariant; domain-

invariance is measured by a classifier’s incapability of predicting from which domain a sample was generated. We evaluate our FCN 

on the ISPRS labelling challenge, showing that it is close to the best-performing models. DA is evaluated on the basis of three domains. 

We compare different network configurations and perform the representation transfer at different layers of the network. We show that 

when using a proper layer for adaptation, our method achieves a positive transfer and thus an improved classification accuracy in the 

target domain for all evaluated combinations of source and target domains. 

 

 

1. INTRODUCTION 

The first step to generate maps from remotely sensed data is 

pixel-wise classification (or semantic segmentation) of these 

data. Deep learning based on convolutional neural networks 

(CNN) or, in the context of pixel-wise classification, fully 

convolutional neural networks (FCN) (Long et al., 2015a) is 

surpassing classical machine learning approaches. One of the 

keys to the success of CNN was the availability of large 

collections of annotated images (Krizhevsky et al., 2012). In 

remote sensing, there is only a limited amount of freely available 

data with annotations; see (Zhu et al., 2017) for a recent over-

view. The large variations of the appearance of objects, for 

instance due to seasonal effects, lighting conditions, geographical 

variability of objects and sensor properties, makes it impossible 

to apply classifiers trained on such existing data directly to new 

data without a significant drop of classification accuracy. Conse-

quently, ground truth labels are usually generated by manual 

pixel-wise annotation based on subsets of the images to be 

classified, a very tedious and time-consuming task.  

 

One strategy to mitigate or even avoid the efforts required for 

manual annotation of new training samples is transfer learning 

(TL) (Pan & Yang, 2010). In TL, one tries to use information 

from a source domain, in which training samples are supposed to 

be abundant, to solve a learning problem in a target domain, 

where only limited or no training data are available, in a better 

way. The data and the learning problems may differ between 

domains, but they must be related. TL is habitually applied in 

deep learning when networks that are pre-trained on a source 

domain dataset are re-trained to be applied to a target domain 

using a limited amount of new training samples (Yosinski et al., 

2014). A specific setting of TL is Domain Adaptation (DA), 

where the domains only differ by the joint distribution of the 
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features and the class labels. This corresponds to a situation 

where we have a set of training images labelled in the past (source 

domain) that we want to use to train a classifier for a new set of 

images (target domain) acquired with a sensor of the same type 

and with similar ground resolution. While the class structure 

remains unchanged, the objects may have a different appearance. 

We are mainly interested in methods for adapting the classifier to 

the target domain without any new training samples. Following 

(Tuia et al., 2016) we refer to this setting as semi-supervised DA. 

Deep DA, i.e. DA for deep learning, is a well-studied problem for 

tasks such as the prediction of a single label per image. However, 

there is much less work on pixel-wise classification (Wang & 

Deng, 2018), and there is hardly any work transferring these 

principles to remote sensing.  

 

In this paper, we describe a new approach for DA for the pixel-

wise classification of aerial imagery and derived data. First, we 

present an encoder-decoder FCN with skip connections based on 

U-Net (Ronneberger et al., 2015) and adapted to remote sensing 

data similarly to (Yang et al., 2019). We use separated encoder 

branches for the multispectral image and a digital surface model 

(DSM) to apply late fusion (Audeberg, 2018) and design the 

network so that removing the skip connections results only in a 

minor drop of quality. Using the Vaihingen dataset of (Wegner 

et al., 2017), we show that our FCN achieves results close to the 

state of the art. The main focus of the paper is on DA based on 

this FCN. We expand adversarial discriminative DA (ADDA) 

(Tzeng et al., 2017) for representation transfer to be applicable to 

pixel-wise classification. As it is unclear which layer of the 

network is optimal for representation transfer, we compare 

different variants, trying to achieve a domain-invariant feature 

representation at different layers of the network. Our DA method 

is evaluated using a dataset consisting of three domains. Our 
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experiments show that our FCN model achieves results close to 

the state of the art and that our DA approach achieves a positive 

transfer in all cases if an appropriate layer for representation 

transfer is used. We show that representation transfer before data 

fusion and removing the skip connections yield the best results. 

 

 

2. STATE OF THE ART 

We start with a brief introduction to DA based on (Tuia et al., 

2016) to introduce our nomenclature. After that, we discuss the 

state of the art in semi-supervised DA in computer vision and 

remote sensing, focussing on the task of pixel-wise classification.  

 

Following Tuia et al. (2016), we consider a source domain 𝐷𝑆 

and a target domain DT, each associated with remotely sensed 

imagery. The domains are associated with the joint distributions 

PS(X,C) and PT(X,C), respectively, of the input variable X 

(associated with the image features) and the output variable C 

(associated with the class labels). In this paper, we assume the 

class structures (thus, C) and the feature space (X) to be identical. 

This setting is referred to as homogeneous DA in (Wang & Deng, 

2018). The basic assumption of DA is that the joint  

distributions differ between domains, thus PS(X,C) ≠ PT(X,C).  

As P(X,C) = P(C|X)⋅P(X), this may be due to differences in the 

marginal distributions of the features, i.e. PS(X) ≠ PT(X), or due 

to differences in the posteriors, i.e. PS(C|X) ≠ PT(C|X). In any 

case, the differences between the distributions must not be too 

large. In DS, we have a training data set TS of nS labelled training 

samples, each consisting of a tuple (xi
S, ci

S) with xi
S ∈ X and  

ci
S ∈ C (note that in our application, (xi

S, ci
S) corresponds to a 

labelled image patch, hence ci
S is a vector with one class label per 

pixel in xi
S). In semi-supervised DA, the information available in 

DT consists merely of a set UT of nT unlabelled samples (in our 

case: image patches) xi
T ∈ X. The task of DA is to use the data TS 

and UT to learn a classifier that predicts the unknown labels ci
T in 

the target domain.  

 

According to Tuia et al., (2016), DA can be based on instance 

transfer or on representation transfer. Instance transfer aims at 

adapting the classifier from the source to the target domain by 

using semi-labelled samples, i.e. target samples receiving their 

class labels from the current state of the classifier, e.g. (Bruzzone 

et al., 2008). On the other hand, representation transfer tries to 

find mappings from the feature spaces of both domains to a 

common representation space such that a shared classifier can be 

applied. In remote sensing, this is often done by finding a 

mapping that minimizes a statistical distance between the 

domains, e.g. the maximum-mean discrepancy (MMD) (Matasci 

et al., 2015). Although Tuia et al. (2016) list many DA methods 

for remote sensing, none of them is based on deep learning.   

 

In computer vision, DA based on CNN (deep visual DA) is a very 

active field of research; see (Wang & Deng, 2018) for a recent 

overview. In this context, representation transfer is the most 

relevant approach for DA. According to Wang and Deng (2018), 

the main groups are distance-based and adversarial approaches. 

An example for a distance-based approach is (Long et al., 2015b). 

The authors train two different networks for mapping the features 

of both domains to a joint representation, using a shared network 

for classification of source and target samples. In addition to a 

classification loss for the source training samples, they introduce 

a loss that minimizes the MMD distance between several 

activation maps of the feature mapping networks from both 

domains to achieve a representation that is independent from the 

domain. In contrast, adversarial methods measure similarity of 

distributions by the capability of a domain classifier (the 

discriminator) to predict whether a sample is from the source or 

the target domain. The first example of such an approach is 

(Ganin et al., 2016). The network is also split into a feature 

extractor and a classifier, but there is only one feature extraction 

network. Beyond the classification loss for source samples, 

additional loss functions are related to the discriminator, which 

is fed the features generated for samples from both domains. 

They are designed to train the discriminator to predict the domain 

of a feature vector while at the same time pushing the extractor 

to produce features that cannot be distinguished by the 

discriminator, achieving a domain invariant representation. An 

alternative that is easier to train is adversarial discriminative DA 

(ADDA) (Tzeng et al., 2017), where separate feature extractors 

are trained for source and target domains. The source feature 

extractor and the classifier are learned independently from the 

target domain. After that, the target feature extractor is trained to 

produce a representation that fools the discriminator.  

 

The examples cited so far solve the problem of predicting a single 

class label for an image. As noted by Wang and Deng (2018), 

there are relatively few papers addressing the problem of DA for 

the pixel-wise classification of images. An example is (Hoffman 

et al., 2016), adapting (Ganin et al., 2016) to the semantic 

segmentation of street scenes. A shared FCN is trained for the 

segmentation while domain-adversarial training is used to 

generate domain invariant features in the last layer of the 

encoder. Huang et al. (2018) adapt ADDA to semantic 

segmentation. Separate networks are used for the segmentation 

of source and target domain data. Multiple domain discriminators 

are used to match activation distributions at different layers of the 

source and target networks. The authors propose to use a L2-

Distance based regularizer between source and target network to 

prevent a drift of the target networks parameters. Zhang et al. 

(2018) and Hoffman et al. (2017) expand domain adversarial 

representation transfer by adapting the visual appearance of 

images before passing them on to the feature extractor. This just 

compensates for differences in the marginal distributions 𝑃𝑆(𝑋) 

and 𝑃𝑇(𝑋) of the features.  

 

Despite the recent developments in computer vision, we found 

only few papers that address deep domain adaptation in remote 

sensing. Beshmal et al. (2018) propose a method close to (Ganin 

et al., 2016) to create domain invariant representations for the 

classification of patches from aerial images, predicting one label 

per patch. They expand (Ganin et al., 2016) by using the 

reconstruction loss as regularizer such that the latent features 

hold enough information to reconstruct the input, but do not 

apply pixel-wise classification. To the best of our knowledge, the 

only publication specifically addressing DA for pixel-wise 

classification with CNNs in remote sensing is (Postadjian et al., 

2018). However, the authors only address supervised DA and, 

thus, require annotated training samples in the target domain.  

 

Our approach follows the concepts of Tzeng et al. (2017) and 

Huang et al. (2018), because we use separate feature encoders for 

source and target domain. We believe that using a shared feature 

encoder and joint training may lead to a deterioration of the 

source classifier if the domains are very different. The method 

most closely related to ours is (Huang et al., 2018). However, we 

use only one discriminator network because we argue that an 

adaptation of features close to the output layer of the network 

leads to an alignment to the label distribution, which can be 

harmful if the actual label distributions between source and target 

domains are very different. We thus concentrate on using a single 

discriminator network to match features and evaluate the 

representation transfer based on different intermediate layers of 

the network. Apart from that, we use another base network than 
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Huang et al. (2018) that is designed for using image and height 

data. We also use another regularization technique. In contrast to 

Zhang et al. (2018) and Hoffmann et al. (2017), we do not 

perform appearance adaptation, because it only matches the 

marginal distributions of the features. The scientific contri-

butions of this paper are as follows: 

 

 We adapt the principles of ADDA (Tzeng et al., 2017) to the 

pixel-based classification of aerial imagery and height data. To 

the best of our knowledge, this is the first application of this 

DA principle in remote sensing. Our experiments show that 

using this method in an appropriate setting leads to an increased 

classification accuracy after DA in all cases without any 

annotated training data samples in the target domain. 

 We use a generalized formulation of representation transfer 

that allows us to carry out that transfer at arbitrary layers of the 

FCN. We compare different settings and show that transfer at 

the end of the decoder part of the network as in (Zhang et al., 

2018) leads to suboptimal results.  

 As a minor contribution, we propose an improved variant of the 

adapted U-Net structure of (Yang et al., 2019). This is mainly 

achieved by using zero-mean convolution for height data to 

make the model invariant to local terrain height changes and by 

changing the operations for down-sampling and up-sampling, 

which allows for creating a network without skip-connections 

that is better suited for DA while maintaining the classification 

accuracy of the original model. 

 

 

3. ARCHITECTURE OF THE BASE FCN  

In this section, we propose an FCN for the pixel-wise 

classification of multispectral orthophotos and DSMs. 

 

3.1 Network Architecture 

Like the U-Net (Ronneberger et al., 2015) variant in (Yang et al., 

2019), our network is based on a multi-encoder decoder FCN 

with skip-connections (Figure 1). An input sample xi ∈ X  consists 

of a multispectral (MS) orthophoto (𝑀𝑆𝐼𝑖) and a DSM (𝐷𝑆𝑀𝑖) in 

the form of a height grid, both consisting of 640 x 640 pixels. The 

number of bands of the orthophoto may depend on the 

application, but in DA (Section 4), the images from different 

domains must have the same band configurations. The CNN 

delivers a label map ci containing one class label ci,j ∈ C  for every 

pixel j of xi, where C is the label space. Both the image and height 

data are normalized as described in Section 5.1.  

 

Like Yang et al. (2019), we have two separate encoder branches 

with different parameters, one for the MS image and one for the 

DSM. This differs from (Yang et al., 2019), where the second 

branch takes the DSM with two spectral bands as input. The 

encoder outputs of both branches are concatenated before the 

joint low-resolution representation is passed to the decoder part 

of the network. This corresponds to a late fusion of the MSI and 

the DSM. Yang et al. (2019) found this to achieve slightly better 

results than early fusion by applying a single encoder to a combi-

nation of the DSM and the MSI. It also allows for more flexibility 

in DA because we can choose to which branch of the network 

DA is applied. The decoder up-samples the low-resolution 

representation, resulting in a feature vector for each pixel to be 

classified. The last layer of the network is a softmax layer 

converting these feature vectors into class scores. Unlike Yang et 

al. (2019), we follow (Ronneberger et al., 2015) in using 

unpadded convolutions in all layers. Apart from the positive 

effect on accuracy (Ronneberger et al., 2015), we observe that 

unpadded convolutions decrease the required training time. In 

order to make the DSM encoder invariant to local terrain height 

changes, we apply zero-mean convolutions (Schlüter & Lehner, 

2018), where the learned filters of the convolutional layers are 

reduced by their mean after each weight update. The normali-

zation step for the n parameters p0, …, pn of filter f is 

𝑝𝑖
𝑓

= 𝑝𝑖
𝑓

−
1

𝑛
∑ 𝑝𝑗

𝑓
.

𝑛

𝑗=0

(1) 

In contrast to a normalization of the DSM based on the statistics 

of the dataset, zero-mean convolutions are also invariant to 

systematic terrain height changes inside one patch.  
 

 
Figure 1: Proposed FCN structure. A1 – A4: layers used for DA in 

our experiments (cf. Sections 4 and 5).  
 

Ronneberger et al. (2015) introduced skip connections between 

corresponding layers of the encoder and decoder, which was 

supposed to preserve object boundaries in a better way. Skip 

connections were also found to be beneficial for land cover 

classification in (Yang et al., 2019). Unlike Yang et al. (2019), 

we do not use skip connections from both encoders, but only from 

the colour band encoder to the decoder. This is motivated by the 

observation that DSMs, in particular if generated by image 

matching, are often inaccurate at the borders of elevated objects 

such as houses or trees. Preliminary experiments not reported in 

this paper have shown that an architecture with skip-connections 

only from the colour bands yields slightly better results than the 

same model with additional skip-connections from the height-

encoder.  

 

Our last modification compared to Ronneberger et al. (2015) and 

Yang et al. (2019) is related to the down-sampling and up-

sampling layers of the network. We replace the pooling layers in 

the encoder by applying 2 x 2 convolutions with a stride of 2 

along both spatial dimensions (Springenberg et al., 2015). 
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Similarly, the up-sampling operations in the decoder are replaced 

by 2 x 2 transposed convolutions (Noh et al., 2015) with a stride 

of 2. Preliminary experiments have shown that this strategy can 

preserve small details better than standard max-pooling and up-

sampling by bilinear interpolation used in (Ronneberger et al., 

2015) and (Yang et al., 2019). In our experiments, we investigate 

whether under these circumstances it is still required to use skip 

connections. This is relevant because we expect the skip 

connections to be detrimental to DA if representation transfer is 

applied in the decoder (cf. Section 4.1). We apply dropout 

(Srivastava, 2014) after each layer with a rate of 0.1 for 

regularization. We found this to yield better results than L1 or L2 

regularization of the network parameters. 

 

3.2 Training 

Training requires patches of size 640 x 640 pixels for which the 

orthophoto, the DSM and the reference label map are available. 

We apply data augmentation to make the classifier more robust 

with respect to rotations, radiometric changes, and varying 

building heights, as described in Section 5. In the training 

process, we minimize the classification loss of Yang et al. (2019), 

an extension of the focal loss for binary segmentation (Lin, 

2017), by stochastic gradient descent with a mini-batch size of 1. 

The ADAM optimizer (Kingma & Ba, 2015) is used with a 

learning rate of 0.0001 and parameters b1 = 0.95, b2 = 0.999. 

Training is stopped as soon as the training error has not decreased 

for 1000 iterations.  

 

 

4. DEEP ADVERSARIAL DOMAIN ADAPTATION 

In this section, we consider data from two domains, as described 

in Section 2. We follow the strategy of ADDA (Tzeng et al., 

2017), but adapt it to be applicable for pixel-wise classification. 

We start with a brief revision of ADDA before presenting our 

extensions that also allow the representation transfer to occur at 

different layers of the FCN. After that, we discuss the architecture 

of the discriminator network required for representation transfer 

before describing the adversarial training procedure.  

 

4.1 Review of ADDA 

ADDA was developed for CNN predicting a single class label for 

an image (Tzeng et al., 2017). Formally, the CNN is split into a 

feature extraction part that produces a mapping M(xi) of an image 

xi into some feature space and a classifier Cl(M(xi)) that predicts 

a class label Ci for xi, thus Ci = Cl(M(xi)). The classifier consists 

of the last (output) layer of the network, while M corresponds to 

the rest of the network. In the presence of two domains, there are 

two mappings (MS(xS), MT(xT)) for the source and target domains, 

respectively, and two classifiers (ClS, ClT). The strategy of 

ADDA is to learn MT such that it produces outputs MT(xT) for 

target samples xT that have a similar distribution as the outputs of 

MS(xS) for source samples. Consequently, the source classifier 

can be applied to the target representations, thus ClS = ClT. First, 

Tzeng et al. (2017) train the source mapping and the source 

classifier using the labelled source samples by standard CNN 

training. After that, the parameters of MS are kept constant. The 

parameters of MT are initialized by those of MS and adapted in 

adversarial training. In this context, a discriminator D(M) is used 

as a kind of similarity measure for distributions. The 

discriminator takes a feature vector produced by mapping M and 

predicts whether it was generated from a source sample by MS or 

from a target sample by MT. D is trained to differentiate source 

from target samples as good as possible, while at the same time 

the parameters of MT are adapted so that this task becomes as 

difficult as possible for D. After training, the class label Ci
T of a 

target sample xi
T can be determined by Ci

T = ClS(MT(xi
T)).  

 

4.2 Proposed concept for domain adaptation  

In our case, the output of the CNN is not a single class label, but 

a label map 𝒄 having the same number of pixels as the input 𝒙 

(cf. Section 3). Directly applying the principles of Tzeng et al. 

(2017) to such a CNN implies that the representation to be 

adapted is the one delivered by the last layer before the classifier, 

consisting of one feature vector per pixel. The discriminator 

would also have to deliver a binary label map of the same 

dimensions, discriminating whether such a feature vector was 

generated from the source domain or the target domain. Such a 

strategy is followed by Zhang et al. (2018). We argue that this 

may not necessarily be the best option. In principle, the output of 

any layer of the network could serve as the intermediate 

representation to be adapted, and we expect the selection of an 

appropriate layer to have a heavy impact on the results. It might 

not make much sense to select the early feature maps, because we 

expect these features to be highly correlated with the input and, 

consequently, not abstract enough to be adaptable to the other 

domain. On the other hand, we expect layers near the output layer 

to be more correlated to the labels, which may be bad for 

adaptations in case the label distributions P(C) are very different. 

 

To gain flexibility for selecting the layer of the network at which 

transfer is to occur, we decompose the feature mapping of the 

network into two parts M1 and M2. We assume the mapping M1 

to be domain specific and to produce an intermediate represen-

tation 𝐫 that will be adapted. This intermediate representation is 

ri
S = M1

S(xi
S) for a source sample and ri

T = M1
T(xi

T) for a target 

sample. The representation r is fed into the mapping M2 of the 

network, whose output is classified by the classifier 𝐶𝑙. Note that 

M1 and M2 need not correspond to the encoder and decoder parts 

of the network described in Section 3; the output of an arbitrary 

intermediate layer can be selected for providing the represen-

tation to be adapted, while the remaining layers before the 

classifiers correspond to M2. In the extreme case, we can select 

the layer to be adapted to be the last layer before the classifier. 

This is the strategy used in (Zhang et al., 2018) and can be 

accommodated by selecting M2 to be an identical mapping. In our 

experiments, we will compare different variants for M1 and M2 

(cf. layers A1-A4 in Figure 1) to find out whether DA is best 

carried out near the transition from the encoder to the decoder or 

at the end of the decoder. Figure 2 shows the concept of our DA 

method. 
 

  
 

Figure 2. Concept of adversarial domain adaptation.  
 

Like in ADDA, we start by training the source mappings M1
S, 

M2
S as well as the source classifier ClS on source domain training 
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samples as described in section 3.2, which results in a network 

predicting a label map ci
S from a source sample (MSI + DSM) xi

S 

according to ci
S = ClS(M2

S(M1
S(xi

S))). Adversarial training using 

a discriminator D is applied to learn M1
T(xT) so that its output 

cannot be differentiated from M1
S(xS) by D. In this context, we 

apply an additional regularization to prevent a weight drift (cf. 

Section 4.3). Following the ADDA principles, we do not adapt 

the remaining parts of the network. Thus, after adversarial 

training of M1
T, a target sample can be classified by applying M2

S 

and ClS to the output of M1
T(xT). For a target sample xi

T, the label 

map ci
T is predicted according to ci

T = ClS(M2
S(M1

T(xi
T))).  

 

4.3 Discriminator architecture and adversarial training 

The discriminator D(r) takes a feature map r generated either by 

M1
T or by M1

S and produces the probabilistic confidence map D 

of a binary classifier. Each pixel drc(rrc) of D at position (r, c) 

contains the posterior for the feature vector of the corresponding 

cell rrc of r to have been generated from a source sample. The 

posterior for rrc to have been generated from a target sample is 1- 

drc(rrc). Thus, we propose to view each activation in a specific 

position in the feature map individually and convert it into one 

posterior. In this way, the discriminator has to learn local 

decisions based on the support window of rrc. We argue that this 

is a more difficult task than just taking one such decision based 

on the entire feature map r, because in the latter case, the 

discriminator might just learn to differentiate different types of 

scenes (e.g. suburban from densely built-up). We expect this to 

mitigate the impact of different class distributions P(C) on DA. 

The discriminator consists of four convolutional layers with a 

depth of 512 and leaky ReLU non-linearity with a slope of 0.2. 

We use zero-mean filters for all convolutions, which we observed 

to deliver more stable results than standard filters. In order to 

accomplish an individual classification of each vector rrc, we 

only use 1 x 1 convolutions. The final layer is another 1 x 1 

convolution with depth of 1 and sigmoid activation to produce 

the probabilistic output. Note that this corresponds to applying a 

multilayer perceptron to each vector rrc individually.  

 

We follow the principles of adversarial training of (Goodfellow 

et al., 2014). The training consists of alternatingly updating the 

discriminator network by minimizing the discriminator loss 

 

ℒ𝐷 = − ∑ log(𝑑𝑟𝑐(𝐫𝑟𝑐
𝑆 )) − log(1 − 𝑑𝑟𝑐(𝐫𝑟𝑐

𝑇 ))
𝑟,𝑐

(2) 

 

and updating 𝑀1
𝑇 by minimizing the loss 

 

ℒ𝐺 = − ∑ log(𝑑𝑟𝑐(𝐫𝑟𝑐
𝑇 ))

𝑟,𝑐
+ 𝜆 ⋅

1

𝑛𝑀
∑‖𝛉𝑆 − 𝛉𝑇 ‖

1

𝑛𝑖

𝑖=0

, (3) 

 

In (3), the first term corresponds to the GAN loss recommended 

by Goodfellow et al. (2014) to prevent the discriminator from an 

early saturation. The second term, weighted by a parameter , is 

a regularization loss aiming at minimizing the mean L1 distance 

of the parameters of the source and target mappings. The para-

meters of M1
S and M1

T are denoted by S and T, respectively, 

while nM is the number of parameters of M1 (identical for S and 

T). This regularization loss is designed to prevent a drift of the 

parameters of M1
T and keep them close to those of the source 

network M1
S. We choose the L1 distance because we observed 

more stable results in comparison to using the L2 distance as a 

similarity metric in preliminary experiments. 

 

In the DA phase, the training is done by alternately updating the 

target segmentation network and the discriminator using 

stochastic gradient descent with a mini-batch size of 1. Again, the 

ADAM optimizer is used for both networks with a learning rate 

of 0.0001 and parameters b1 = 0.5, b2 = 0.999. We use a fixed 

number of training epochs (40), noting that it is difficult to define 

a stopping criterion without labelled target samples.  

 

 

5. EXPERIMENTS 

5.1 Datasets and Test setup 

We use two datasets in our experiments. The first one is the 

Vaihingen dataset of the ISPRS labelling challenge, consisting of 

33 patches of annotated multispectral and height data (Wegner et 

al., 2017). For each patch, a multispectral orthophoto consisting 

of three bands (NIR, red, green) and a DSM is provided, both at 

a ground sampling distance (GSD) of 9 cm. The average patch 

size is about 2000 x 2000 pixels. The reference contains the six 

classes (impervious surface, building, low vegetation, tree, car 

clutter). This dataset is only used in Section 5.2 to compare two 

variants of our FCN model (Section 3) to other approaches. 

Following the protocol of the benchmark, we use 16 patches for 

training and 17 for evaluation. To be consistent with the 

evaluation on the benchmark website, we report the overall 

accuracies (OA) and F1 scores determined without considering 

pixels near object boundaries in the reference, i.e., based on the 

eroded reference provided by the benchmark organizers.  

 

For the evaluation of our DA approach, we use the 3City dataset 

provided by (Vogt et al., 2018). It consists of aerial images of 

three German cities, referred to as C1, C2, and C3. For each city, 

it consists of a grid of 3 x 3 adjacent tiles with a total extent of 

about 10,000 x 10,000 pixels at a GSD of 20 cm. For each tile, a 

four-channel multispectral orthophoto (NIR, red, green, blue) 

and a DSM is provided. To make the input data consistent with 

the Vaihingen dataset, we do not use the blue channel in the 

experiments. All pixels of the dataset were manually labelled as 

belonging to one of the three classes tree, building, ground. In 

the context of DA, we consider the three cities in the dataset as 

three different domains. In all experiments, we use the outer ring 

of eight tiles of each city for training and DA and the central tiles 

for the evaluation. We report the OA achieved in the central tiles 

in all experiments. As we found it difficult to define a stopping 

criterion for adversarial training in DA (cf. Section 4.3), in all 

experiments involving DA we report the average OA evaluated 

for the last 15 (of 40) iterations in adversarial training as well as 

the corresponding standard deviations. We report on two sets of 

experiments. In Section 5.3, we compare several variants of DA 

that differ by FCN architecture, the layer of the FCN chosen for 

adapting the domains (cf. Section 4.2) and by the architecture of 

the discriminator (cf. Section 4.3). In this context, we also 

compare the results of DA to a naive approach just applying the 

classifier trained on source data to the target domain without 

adaptation. The difference in OA between this naive approach 

and a DA-based approach is a measure for positive transfer, i.e. 

the degree to which DA improves the classification accuracy. We 

report results for all possible pairs of source and target domains 

involving two cities. This will indicate the performance for 

different degrees of similarity of the domains: while the domains 

C1 and C3 are similar, C2 is rather different, class building 

covering about twice the area it covers in the other test sites.  

 

We apply a band-wise normalization to each domain in each 

dataset. The normalization for a band b is done by subtracting the 

mean 𝜇𝑏 and dividing by the standard deviation 𝜎𝑏. As the DSMs 

contain metric values that have the same scale, the heights are 

normalized with a fixed standard deviation 𝜎𝐷𝑆𝑀 = 5 𝑚. Data 
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augmentation was applied by randomly cropping patches of 

640x640 pixels from the tiles used for training. These patches 

were also randomly flipped along one axis and rotated by k x 90° 

with k  {0, 1, 2, 3} being drawn randomly. Additional random 

rotations did not improve the results. To make the model more 

robust against different data distributions, we applied a band-

specific random scale 𝑠 ~ 𝑁(1.0, 0.1) and a random shift 

𝑏 ~ 𝑁(0.0, 0.1) to each sample. The weight of the regularization 

loss for DA was set to 𝜆 = 2.0 in all experiments. 

 

For testing we apply a sliding window evaluation with a stride of 

200 pixels. Starting from the upper left corner of the test patch, a 

window of 640 x 640 pixels is fed to the network to produce 

pixel-wise class scores. Due to using a stride that is smaller than 

the window classified by the FCN, most pixels of a test patch will 

be classified multiple times. In order to obtain a unique 

prediction, we sum the class scores for every pixel and assign the 

pixel to the class having the maximum combined score. 

 

5.2 Evaluation of the FCN model for classification 

In this section, we compare two variants of our FCN network to 

other architectures using the Vaihingen data: model VSC has 

skip connections while model VB has not. The evaluation results 

based on the eroded reference are given in Table 3. 
 

Model Overall 

Accuracy [%] 

F1 Score [%] 

Imp. sur. Build. Low veg. Tree Car 

VSC 89.6 92.3 94.5 82.5 88.4 77.7 

VB 89.3 91.9 94.4 82.1 88.1 74.9 
 

Table 3. Results for Vaihingen benchmark.  
 

The results show that our model without skip connections (VB) 

performs only 0.3% worse in terms of OA than VSC (with skip 

connections). This indicates that the performance does not 

depend heavily on these connections. Nevertheless, besides 

leading to a slightly better accuracy, they decrease the training 

time of the model significantly. We observe that VB has 

difficulties in reconstructing precise details like building corners 

than VSC, but its predictions are less noisy than those from VSC. 

Having followed the protocol of the ISPRS labelling challenge, 

we can compare our results to those achieved by other methods. 

Currently, the benchmark website (Wegner et al., 2017) lists the 

best OA as 91.6%. Thus, we perform slightly worse (2%) than 

the best approach. 

 

5.3 Evaluation of DA 

5.3.1 Classifying target images using a source classifier: This 

experiment serves as a baseline for all DA variants. We train the 

models VSC and VB using one domain and apply these 

classifiers to the other domains without adaptation. This is 

repeated three times, each time using another domain for training. 

Table 4 shows the resulting OA for each model, training domain 

(TR) and evaluation domain (EV). The accuracies achieved when 

training and testing on the same domain are printed in bold font. 

To summarize the performance of the models on the same and on 

another domain, the corresponding mean OA is provided. 
 

Model   EV, OA [%] Mean OA [%] 

TR C1 C2 C3 Same D. Other D. 

 

VSC 

C1 92.4 77.7 86.2  

91.7 

 

83.1 C2 86.3 91.1 83.8 

C3 90.3 74.5 91.5 

 

VB 

C1 91.7 83.2 86.9  

91.1 

 

84.6 C2 86.3 91.1 83.1 

C3 88.1 80.2 90.6 
 

Table 4. OA of applying a classifier to other domains DA.  

Again, VSC achieves slightly better results when trained and 

evaluated on the same domain (bold numbers in Table 4). 

However, when training and evaluation domains are different, 

VB achieves a higher mean accuracy, which indicates that VSC 

has a stronger tendency to overfit to the training domain than VB. 

In any case, we note a considerable drop in OA when applying a 

classifier to another domain without adaptation. For VSC, it is in 

the order of 5% in most cases, but it can reach about 10% when 

the data are dissimilar; cf. the results for classifiers trained using 

datasets C1 or C3 when applied to C2 (column C2 in Table 4).  

 

5.3.2 Comparing different DA variants: Here we test four 

variants of DA differing by the layer of the network at which the 

adaptation occurs, i.e. using different definitions of the mappings 

M1 and M2 (cf. Section 4.2). In all cases, the feature mappings 

M1
S, M2

S and the classifier ClS for the source domain are those 

already determined in the training described in Section 5.3.1. For 

all source domains, DA is applied using the two other cities as 

target domains. The layers at which the adaptation occurs are 

marked as A1-A4 in Figure 1. In all cases, M1 consists of all layers 

before and including Ai, while the remaining layers constitute M2.  

 

In variant V1, representing an early matching of representations, 

the adaptation occurs at layer A1 of the colour branch of the 

encoder (cf. Figure 1). In variant V2, the adaptation is based on 

the results of the last convolutional layer of the colour branch of 

the encoder (layer A2 in Figure 1). It corresponds an adaptation 

of the representations generated by the encoder before fusion. In 

contrast, variant V3 adapts the encoder output after fusing the 

results of the DSM and colour branches (layer A3 in Figure 1). 

Finally, variant V4 corresponds to late matching, with adaptation 

occurring in the last layer of the decoder (layer A4 in Figure 1).  

 

The results achieved for the four variants using the models VB 

and VSC are shown in Table 5. In these tables, numbers in bold 

font mark cases of a positive transfer (i.e., the OA for the specific 

pair of source and target domains is better than the one reported 

for the baseline in Table 4). Numbers in bold and italic font show 

a neutral DA result, while numbers in standard font indicate a 

negative transfer. SD and TD are the source and target domains, 

respectively. There are no numbers on the main diagonals, 

because in this case SD and TD are identical (Table 4).  

 

Analysing Table 5, it is evident that variant V1 is the only one 

achieving a positive transfer in all combinations of source and 

target domains and for both models. Although the improvement 

of the OA due to DA is larger for VSC, final mean OA is slightly 

higher for model VB. On average, we can gain 2.3% and 1.0% in 

OA for VSC and VB, respectively. In both cases, the largest 

improvement (4-5%) is observed for the difficult case (column 

C2) using the model VSC. Variant V2 can achieve a positive 

transfer in 9 of 12 cases, with a slightly smaller improvement 

compared to V1. There is still a small average improvement of 

OA. Variant V3 results in a negative transfer in the majority of 

cases (9 out of 12). The reasons for this are unclear and require 

further investigations. Although we consider this setup as not 

suitable for a stable DA, we still want to point out that the 

adaptation still worked slightly better for model VB, where at 

least 2 of 6 adaptations were successful and the final mean OA is 

higher by 1.9% than for VSC. Finally, our results for variant V4 

show that, not unexpectedly, the last layer is not suited well for 

adaptation, achieving a considerable negative transfer. 

Interestingly, model VB results in a positive transfer from C1 to 

C3 and vice versa, which might be due to the fact that the label 

distributions of these domains are similar. We consider variant 

V1 with model VB as the best method, yielding a positive transfer 

in all tested cases. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-197-2019 | © Authors 2019. CC BY 4.0 License.

 
202



 

M
o
d

el
  

 

TD, OA after adaptation [%]  

mean and std. dev. of epochs 25-40  

M
ea

n
 

O
A

 [
%

] 

 

V
ar

ia
n

t 

SD C1 C2 C3 

V
S

C
 C1 --- 81.2 ± 0.003 86.2 ± 0.005  

85.4 

 

V
1

 (
ea

rl
y
 

m
at

ch
in

g
) 

C2 86.3 ± 0.009 --- 85.4 ± 0.006 

C3 91.0 ± 0.002 82.1 ± 0.011 --- 

V
B

 C1 --- 83.3 ± 0.005 87.0 ± 0.005  

85.6 

 
C2 87.1 ± 0.002 --- 84.7 ± 0.003 

C3 88.7 ± 0.001 82.8 ± 0.002 --- 

V
S

C
 C1 --- 80.5 ± 0.006 85.3 ± 0.016  

84.2 

V
2
 (

b
ef

o
re

  

fu
si

o
n
) 

C2 86.3 ± 0.005 --- 85.2 ± 0.008 

C3 90.8 ± 0.004 76.8 ± 0.009 --- 

V
B

 C1 --- 81.9 ± 0.022 85.6 ± 0.002  

85.0 

 
C2 87.4 ± 0.002 --- 84.1 ± 0.005 

C3 88.7 ± 0.003 82.0 ± 0.008 --- 

V
S

C
 C1 --- 77.1 ± 0.008 85.1 ± 0.011  

81.5 

 

V
3
 (

af
te

r 

 f
u
si

o
n
) 

C2 81.9 ± 0.053 --- 76.3 ± 0.140 

C3 88.1 ± 0.014 80.6 ± 0.026 --- 

V
B

 C1 --- 84.6 ± 0.019 86.1 ± 0.005  

83.4 

 
C2 84.0 ± 0.050 --- 77.2 ± 0.062 

C3 89.7 ± 0.008 78.8 ± 0.011 --- 

V
S

C
 C1 --- 78.9 ± 0.002 86.4 ± 0.001  

74.7 

V
4
 (

la
te

  

m
at

ch
in

g
) 

C2 74.3 ± 0.022 --- 47.9 ± 0.119 

C3 86.7 ± 0.004 74.1 ± 0.004 --- 

V
B

 C1 --- 83.0 ± 0.002 87.0 ± 0.001  

80.9 C2 83.4 ± 0.020 --- 73.8 ± 0.036 

C3 88.2 ± 0.001 70.1 ± 0.022 --- 
 

Table 5. Mean OA and standard deviation on the target domain 

after DA by variants V1-V4. 
 

5.3.3 Comparing different discriminator architectures: In 

this section, we report on additional experiments highlighting 

some properties of the proposed discriminator architecture, again 

using the models VB and VSC. In the first experiment, we want 

to validate the positive effects of using zero-mean convolutions 

in the discriminator. This experiment is based on the best DA 

variant according to Section 5.3.2, variant V1 (early matching). 

We replace all zero-mean convolutions in the discriminator (cf. 

Section 4.3) with regular convolutions. The results for models 

VB and VSC are shown in Table 6. We can achieve a positive 

transfer only in 8 of 12 cases and the mean accuracies for both 

models are lower than in variant V1. We take this as an indication 

for the importance of using the zero-mean convolutions.   
 

 

Model 

 TD, OA after adaptation [%]  

mean and std. dev. of epochs 25-40 

Mean 

OA [%] 

SD C1 C2 C3 

 

VSC 

C1 --- 79.5 ± 0.019  85.8 ± 0.004   
83.9 C2 85.8 ± 0.017 --- 85.2 ± 0.005  

C3 90.5 ± 0.004 76.5 ± 0.011 --- 

 

VB 

C1 --- 74.8 ± 0.105 85.7 ± 0.009  

83.7 C2 87.3 ± 0.002 --- 84.1 ± 0.006 

C3 88.5 ± 0.006 81.8 ± 0.022 --- 
 

Table 6. Mean OA and standard deviation on the target domain 

after DA by variant V1 w/o zero-mean convolutions. 
 

In a last set of experiments, we adapt the discriminator from 

(Zhang et al., 2018) which uses four dilated 3 x 3 convolutions 

with dilation rates 1,2,3 and 4 and 128 filters each. The resulting 

activations are concatenated and a 1 x 1 convolution with depth 

1 and sigmoid activation is applied. As proposed in (Zhang et al., 

2018) we apply this discriminator to activation map A4 (variant 

V4b). Table 7 shows the results for models VB and VSC. The 

results using this discriminator are even worse than those for V4. 

We analyse the transfer from C2 to C3 to show possible reasons 

why this approach does not work here. For that purpose, we 

compare the results of V4b to those of V1, where the transfer was 

successful. As stated in Section 4.2, the last feature maps are 

highly correlated with the labels, which are very different in C2 

and C3: while the percentage of tree pixels is similar, in C2, 

36.7% of the pixels correspond to building and 42.2% to ground. 

The corresponding numbers for C3 are 18.2% and 67.0%, resp. 

In this setting of DA, the target network has to adjust to the label 

distribution in the source domain in order to fool the 

discriminator. Consequently, after DA in variant V4b, the 

percentages of building and ground pixels in the target domain 

(C3) are much closer to those of the source domain (29.7% and 

56.3%, resp.). This contrasts with 20.6% and 66.3%, resp., in 

variant V1, which is much closer to the true label distribution in 

the target domain and, thus, allows for positive transfer.  
 

 

Model 

 TD, OA after adaptation [%]  

mean and std. dev. of epochs 25-40 

Mean 

OA [%] 

SD C1 C2 C3 

 

VSC 

C1 --- 78.7 ± 0.005 63.9 ± 0.050  

71.8 C2 67.7 ± 0.059 --- 58.5 ± 0.008 

C3 88.8 ± 0.007 73.2 ± 0.016 --- 

 

VB 

C1 --- 72.3 ± 0.021 87.2 ± 0.005  

76.1 C2 80.8 ± 0.020 --- 67.1 ± 0.064 

C3 81.1 ± 0.008 68.4 ± 0.019 --- 
 

Table 7. Mean OA and standard deviation on the target domain 

after DA by variant V4b. 

 

 

6. CONCLUSION 

In this paper, first we presented a FCN that is invariant to shifts 

in the height model by design and showed that neglecting the 

skip-connections in our model only leads to only a small drop of 

classification quality, while in general achieving results close to 

the state of the art in a benchmark. Our main contribution is the 

transfer of a method for deep DA to the task of pixel-wise classif-

ication of aerial imagery and derived data. We tested different 

variants of the representation transfer and found that DA 

performed best when applied to the middle layer of the colour 

branch of the encoder network. In this variant, we could achieve 

a positive transfer for all combinations of source and target 

domains. We could also show that neglecting the skip-

connections results in a better OA after DA and that the success 

of representation transfer based on the last feature map is heavily 

influenced by the label distribution, resulting in poor DA 

performance if the true label distributions differ.  

 

Future research should analyse whether the inclusion of multiple 

domain discriminators can improve the results, in particular for 

difficult cases (large differences between domains). The reasons 

why an adaptation of the height data is detrimental to the results 

also need to be analysed. Furthermore, we have not fine-tuned 

our hyper-parameters using a validation dataset; this could have 

a positive impact on the results. Finally, additional tests involving 

larger datasets and more domains are required to analyse the 

behaviour of our DA approach in more detail.  

 

 

ACKNOWLEDGEMENTS 

This work was partially funded by the Federal Ministry of 

Education and Research, Germany (Bundesministerium für 

Bildung und Forschung, Förderkennzeichen 01IS17076). The 

Vaihingen dataset was provided by the German Society for 

Photogrammetry, Remote Sensing and Geoinformation (DGPF) 

(Cramer, 2010): http://www.ifp.uni-stuttgart.de/dgpf/DKEP-

Allg.html. The 3City dataset is an extract from the geospatial data 

of the Lower Saxony survey and cadastre administration, (c) 

2013 (LGLN), the reference was provided 

by (Vogt et al., 2018).  

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-197-2019 | © Authors 2019. CC BY 4.0 License.

 
203

http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html


 

 

 

 
 

  

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

   
 

 

 
 

  
 

  
 

 
 

 

  
 

   
 

  
 

   
 

REFERENCES

Yang, C.,  Rottensteiner,  F,  Heipke,  C., 2019. Towards  better 
classification of land cover and land use based on convolutional 
neural  networks. ISPRS - International  Archives  of  the 
Photogrammetry,  Remote  Sensing  and  Spatial  Information 
Sciences. XLII-2/W13.

Audeberg, N., Saux, B. L., Lefevre, S., 2018. Beyond RGB: Very 
high  resolution  urban  remote  sensing  with  multimodal  deep 
networks. ISPRS Journal of Photogrammetry and Remote 

Sensing,140, 20-32.

Bashmal, L., Bazi, Y., AlHichri, H., AlRahhal, M. M., Ammour, 
N., Alajlan, N., 2018. Siamese-GAN: Learning invariant repre- 
sentations  for aerial  vehicle  image  categorization. Remote 
Sensing, 10(2), 351.

Bruzzone,  L.,  Chi,  M.,  Marconcini,  M.,  2006:  A  novel 
transductive  SVM  for  semisupervised  classification  of  remote- 
sensing  images. IEEE  Transactions  on  Geoscience  &  Remote 
Sens., 44(11), 3363-3373.

Cramer,  M.,  2010.  The  DGPF  test  on  digital  aerial  camera 
evaluation – overview  and  test design. Photogrammetrie 
Fernerkundung Geoinformation, 2(2010), 73–82.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Lorachelle, H., 
Laviolette, F., Lempitsky, V., 2016: Domain-adversarial training 
of neural networks. The Journal of Machine Learning Research, 
17(1), 2096-2030.

Goodfellow,  I.,  Pouget-Abadie,  J.,  Mirza,  M.,  Xu, B.,  Warde- 
Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative 
adversarial nets. Advances  in  Neural  Information  Processing 
Systems (NIPS), 2672-2680.

Hoffmann J. Wang, D., Yu, F., Darrell, T., 2016. FCNs in the 
wild: Pixel-level adversarial and constraint-based adaptation.

arXiv:1612.02649.

Hoffmann, J., Tzeng, E., Park, T., Zhu, J., Isola, P., Saenko, K., 
Efros,  A.,  Darrell,  T.,  2017. CyCADA: Cycle-consistent 
adversarial domain adaptation. Proceedings of the 35th 

International Conference on Machine Learning, 1989-1998.

Huang,  H.,  Huang,  Q.,  Krähenbühl,  P.,  2018. Domain  transfer 
through  deep  activation  matching. European  Conference  on 
Computer Vision (ECCV). 590-605.

Kingma, D. P., Ba, J. L., 2015. Adam: A method for stochastic 
optimization. International  Conference  on  Learning 
Representations. 

Krizhevsky,  A.,  Sutskever,  I.,  Hinton,  G.  E.,  2012.  ImageNet 
classification with  deep  convolutional  neural  networks.

Advances in Neural Information ProcessingSystems(NIPS),

1097-1105.

Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal 
loss  for  dense  object  detection. Proceedings  of  the  IEEE 
international conference on computer vision (ICCV), 2980-2988.

Long, J., Shelhamer, E., Darrell, T., 2015a. Fully convolutional 
networks  for  Semantic  Segmentation. IEEE  Conference  on 
Computer Vision and Pattern Recognition (CVPR), 3431-3440.

Long,  M.,  Cao,  Y.,  Wang,  J.,  Jordan,  M.  I.,  2015b: Learning 
transferable features with deep adaptation networks. Proceedings 
32nd International Conference on Machine Learning,37,97-105.

Matasci,  G.,  Volpi,  M.,  Kanevski,  M.,  Bruzzone,  L.,  Tuia,  D., 
2015. Semisupervised  transfer  component  analysis  for  domain 
adaptation  in  remote  sensing  image  classification. IEEE 
Transactions on Geoscience & Remote Sens., 53(7), 3550-3564. 
 

 
 

 
 

 
 

 

 

 
 

 
 

  
 

  
 

 

 
 

 
 

 
 

  
 

  
 

  
 

  
 

 

  

  
 

 

Noh,  H.,  Hong,  S.,  Han,  B.,  2015. Learning  Deconvolution 
Network  for  Semantic  Segmentation. IEEE  International 
Conference on Computer Vision (ICCV), 1520-1528.

Pan, S. J., Yang, Q., 2010. A survey on transfer learning. IEEE 
Transactions on Knowledge and Data Engineering, 22(10),

1345-1359.

Postadjian, T., Le Bris, A., Sahbi, H., Mallet, C., 2018. Domain 
adaptation for large scale classification of very high resolution 
satellite  images  with  deep  convolutional  neural  networks.

International Geoscience and Remote Sensing Symposium, 
3623-3626.

Ronneberger,  O.,  Fischer,  P.,  Brox,  T.,  2015. U-Net:

Convolutional  Networks  for  Biomedical Image  Segmentation.

Medical Image Computing and Computer-Assisted Intervention 
(MICCAI), 9351,234-241.

Schlüter, J., Lehner, B., 2018. Zero-mean convolutions for level- 
invariant singing voice detection. 19th International Society for 
Music Information Retrieval Conference, 23-27

Springenberg,  J.,  Dosovitskiy,  A.,  Brox,  T.,  Riedmiller,  M., 
2015. Striving  for simplicity:  The all convolutional net. Inter- 
national Conference on Learning Representations workshops.

Srivastava,  N.,  Hinton,  G.,  Krizhevsky,  A.,  Sutskever,  I., 
Salakhutdinov,  R.,  2014.  Dropout:  A  Simple  Way  to  Prevent 
Neural Networks from Overfitting. Journal of Machine Learning 
Research, 15, 1929-1958.

Tuia, D., Persello, C., Bruzzone, L., 2016. Domain adaptation for 
the classification of remote sensing data: an overview of recent 
advances. IEEE Geoscience and Remote Sensing Magazine, 4(2), 
41-57.

Tzeng, E., Hoffman, J., Saenko, K., Darrell, T., 2017. Adversarial 
Discriminative  Domain  Adaptation. IEEE  Conference  on 
Computer Vision and Pattern Recognition (CVPR), 7167-7176.

Ulyanov,  D.,  Vedaldi,  A.,  Lempitsky,  V.,  2016. Instance 
Normalization:  The  Missing  Ingredient  for  Fast  Stylization.

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Vogt, K., Paul, A., Ostermann, J., Rottensteiner, F., Heipke, C., 
2018. Unsupervised  source  selection  for  domain  adaptation.

Photogrammetric Engineering & Remote Sens. 84(5), 249–261.

Wang,  M.,  Deng,  W.,  2018.  Deep  visual  domain  adaptation:  a 
survey. Neurocomputing, 312, 135-153.

Wegner et al., 2017. The ISPRS 2D semantic labelling contest. 
http://www2.isprs.org/commissions/comm3/wg4/semantic- 
labeling.html (accessed 8/4/2019).

Yosinski,  J.,  Clune,  J.,  Bengio,  Y.,  Lipson,  H.,  2014.  How 
transferable are features in deep neural networks? Advances in

Neural  Information  Processing  Systems  27  (NIPS’14),  2,

3320-3328.

Zhang, Y.,  Qiu,  Z.,  Yao,  T.,  Liu,  D.,  Mei,  T., 2018. Fully 
Convolutional Adaptation Networks for Semantic Segmentation.

IEEE Conference  on  Computer  Vision and Pattern Recognition 

(CVPR), 6810-6818.

Zhu,  X.X.,  Tuia,  D.,  Mou,  L.,  Xia,  G.-S.,  Zhang,  L.,  Xu,  F., 
Fraundorfer,  F.,  2017. Deep  learning  in  remote  sensing:  A 
comprehensive  review  and  list  of  resources. IEEE  Geoscience 
and Remote Sensing Magazine, 5(4), 8-36.

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-197-2019 | © Authors 2019. CC BY 4.0 License.

 
204

http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html



