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ABSTRACT: 

 

UAV LiDAR systems have unique advantage in acquiring 3D geo-information of the targets and the expenses are very reasonable; 

therefore, they are capable of security inspection of high-voltage power lines. There are already several methods for power line 

extraction from LiDAR point cloud data. However, the existing methods either introduce classification errors during point cloud 

filtering, or occasionally unable to detect multiple power lines in vertical arrangement. This paper proposes and implements an 

automatic power line extraction method based on 3D spatial features. Different from the existing power line extraction methods, the 

proposed method processes the LiDAR point cloud data vertically, therefore, the possible location of the power line in point cloud data 

can be predicted without filtering. Next, segmentation is conducted on candidates of power line using 3D region growing method. 

Then, linear point sets are extracted by linear discriminant method in this paper. Finally, power lines are extracted from the candidate 

linear point sets based on extension and direction features. The effectiveness and feasibility of the proposed method were verified by 

real data of UAV LiDAR point cloud data in Sichuan, China. The average correct extraction rate of power line points is 98.18%. 

 

 

1. INTRODUCTIONS 

Power line is the essential infrastructure for most of our social 

economic activities. Monitoring power line efficiently and 

effectively is of crucial importance, especially in power line risk 

management. Accurate knowledge of the status about the power 

line and the possible dangerous points is one of the key tasks in 

power line management. The traditional inspection and 

maintenance of power line mainly rely on manual field survey, 

which is financially costly and operationally inefficient. 

Moreover, field crew also face various safety issue in the field. 

An efficient and flexible surveying scheme is needed to 

overcome this problem. In 1950s, helicopters equipped with 

digital cameras, infrared cameras, etc., were used for the power 

lines inspection and maintenance. However, these technologies 

are limited by low positioning accuracy, and the data processing 

is complex (Cheng, 2004). Airborne LiDAR system can solve the 

problems of poor spatial positioning and measurement precision 

(Xu, 2017). Those systems acquire 3D point cloud data with high 

precision along power line corridor, as well as obtain spatial 

information of the power line corridor terrain and line facilities. 

Thus, airborne LiDAR measurement technology was applied 

widely in power line inspection (You, 2013). The methods for 

power line detection based on airborne LiDAR point cloud data 

can be summarized into two categories: Linear feature detection 

methods and supervised classification methods.  

Based on linear feature detection, point cloud data constructions 

and features analysis methods are common way for power lines 

extraction. Axelsson (Axelsson, 1999) separated the power line 

point cloud data from the vegetation using multi echoes and 

intensity information, then the line structure is further detected 

using Hough transform. Melzer and Briese (Melzer, 2004) 

extracted the power lines by an iterative version of the Hough 

transform from the point cloud data after filtering, which can only 
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be used for the power line extraction in small areas. Clode and 

Rottensteiner (Clode, 2005) could distinguish power lines and 

trees by analysing the intensity and elevation differences between 

the first and last echoes, but the echo intensity values should be 

calibrated and the method lack adaptation. Yuee Liu et al. (Liu, 

2009) distinguished the ground and non-ground points by 

statistical analysis of the skewness and kurtosis of the intensity 

for the LiDAR point cloud data, and used Hough transform to 

detect the power lines from the point cloud data after filtering Jwa 

and Sohn (Jwa, 2009) proposed a power line extraction method 

based on LiDAR point cloud data using three constraint 

conditions of power line height, direction and power tower 

position, then the power lines were detected by Hough transform. 

Ye et. al. (Lan, 2010) obtained elevation images by elevation 

projection and resampling, then extracted and fitted the power 

lines in the image space by line detection. Yu (Jie, 2011) adopted 

LiDAR point cloud data filtering method to remove the ground 

points and vegetation points, and then used two-dimensional 

Hough transform to separate the power lines, finally, a single 

power line was fitted according to the hyperbolic cosine function. 

However, the extraction results were poor in the regions, which 

were mixed by trees and power lines. Zhu and Hyyppä (Zhu, 

2014) proposed an automated power line detection method based 

on statistical analysis and 2D image-based processing technology. 

During the process of statistical analysis, a set of criteria (e.g., 

height criteria, density criteria and histogram thresholds) was 

applied for selecting the power lines candidates. After 

transforming the candidates to a binary image, image-based 

processing technology was employed. Object geometric 

properties were considered as criteria for power line detection. 

Liu et al. (Liu, 2014) proposed and implemented a method for 

automatic extraction of power lines from LiDAR point cloud data 

based on spatial domain segmentation. Firstly, the method 
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removed the ground points, and then used the differences of point 

cloud data density to eliminate the power poles. The single power 

line was separated according to the distance differences between 

adjacent lines and the elevation differences between adjacent 

layers. Finally, the 3D coordinate was reconstructed for each 

power line based on polynomial model. However, for the 

complex urban environment data, this method were not ideal, 

vegetation and building point cloud data should be further 

removed manually. Lin (Lin, 2016) extracted the accurate power 

pole location and number, power line track and other information 

according to pre-knowledge of the power pole position and the 

initial power line track data. After power line central projecting, 

K-means clustering was used to divide each power line point 

cloud data into the corresponding line, however these methods 

were only verified on power lines between two power poles, long 

distance power line extraction was still difficult. The mentioned 

methods can all extract the power line point cloud data, but most 

of them need to filter the point cloud data. And the methods based 

on Hough transform cannot sense multiple power lines in vertical 

arrangement, however 3D Hough can solve the issues mentioned 

above. 

Power line extraction methods based on supervised classification 

were also presented. Robert (Mclaughlin, 2006) presented an 

algorithm to extract high-voltage power lines using airborne 

LiDAR data. LiDAR data was first labelled as power line, 

vegetation and surface using Gaussian mixture model. The 

extracted points of power line were then segmented into 

individual spans using local affine models. However, only 72.1% 

of the individual power line spans were extracted. Kim (Kim, 

2013) proposed a point-based supervised classification method 

for power line extraction in airborne LiDAR data. The method 

enabled the identification of five utility corridor objects (wires, 

pylons, vegetation, buildings and low objects). A total of 21 

features were investigated to illustrate the horizontal and vertical 

properties of power line. Then, a non-parametric discriminative 

classifier, i.e. random forests, was trained with refined features to 

label raw laser point cloud data. The proposed classifier showed 

more than 90% classification accuracy. However, the classifier 

produced classification errors that required manual editing. Guo 

(Guo, 2013) proposed a supervised classification method to 

identify power lines, pylons, buildings, ground and vegetation 

from point cloud data using a JointBoost classifier. The 

JointBoost classifier was modeled with various features obtained 

from LiDAR point cloud data. The overall accuracy was more 

than 95%. Wang et. al (Wang, 2017) presented a novel fully 

automated and versatile framework based on Support Vector 

Machines (SVM) classification. In a detailed evaluation 

involving seven neighbourhood definitions and 26 geometric 

features with two datasets, they demonstrated that the use of 

multi-scale neighbourhoods for individual 3D points is able to 

significantly improve power line classification accuracy. For 

supervised classification methods with multiple features, large 

training dataset and computational time are required to achieve 

the desired results. Furthermore, different models are needed to 

be trained for specific study areas. 

In the last few years, UAV (Unmanned Aerial Vehicle) 

applications in the civil field have become increasingly popular. 

Their use is becoming widespread in many scientific disciplines 

(Capolupo, 2015). Moreover, their large market penetration and 

continuous development have led to a drastic reduction in their 

cost (Capolupo, 2014). In practice, most of the published studies 

about power line extraction based on UAV data have used optical 

images, and many of them have concentrated on line feature 

detection methods (Matikainen, 2016), which cannot sense 

multiple power lines in vertical arrangement. With the recent 

technical electronic and optical improvements for aerial 

platforms and the devices mounted on them, LiDAR system can 

be mounted on the UAVs. The power line extraction based on 

UAV LiDAR data mostly used the above linear feature detection 

methods or supervised classification methods. Therefore, this 

paper presents an automatic extracting power line method from 

UAV LiDAR data based on 3D spatial features of the power lines, 

which does not need point cloud filtering or training 

classification models. The proposed method extracts power line 

by considering the spatial features of point clusters of different 

classes only. In this method, the point cloud data are processed 

from top to bottom vertically without point cloud data filtering. 

The 3D region growing method is used for segmentation of 

power line candidates. Then, linear point sets are extracted by 

linear discriminant method. Finally, the points of power lines are 

extracted from the linear point sets according to the horizontal 

extension and direction features. The test results show that the 

proposed method is easy to be implemented, and efficient at high 

degree of automation. Moreover, the proposed method is 

effective to point density and topographic variations. 

This paper proposes and implements an automatic power line 

extraction method based on 3D spatial features using UAV 

LiDAR point cloud data. The contents of the paper are organized 

as follows. Section 2 detailed the experimental material. The 

proposed method was introduced in Section 3. Experiments 

results and discussions were presented in section 4. Section 5 

drew the conclusions.   

 

2. MATERIAL 

The experimental LiDAR data in this paper was acquired in 

Xichang, Sichuan Province by AOEagle, which is developed by 

Academy of Opto-electronics, Chinese Academy of Sciences 

(Teng, 2017). The AOEagle LiDAR system is equipped on a 

UAV of six rotors, as shown in Figure 1. Main technical 

parameters of AOEagle are listed in Table 1. The absolute flight 

height of this experiment is from 2800m to 3000m (above ground 

varied between 50m and 150m).  

Data description is given in Table 2. The method was tested on 

all the 6 data sets. Especially, in data set 6, poles, power lines and 

ground points distribute uniformly. Moreover, both straight line 

poles and corner poles present in data set 6, as shown in Figure 

4. Therefore, this work takes data set 6 as a benchmark to 

elaborate the processing and the extraction results from the other 

five data sets are compared. In order to analyse the effects of the 

average point density, the data 6 was thinned to be data 5 just as 

listed in Table 2. 

  

 

 
Figure 1. AOEagle is equipped on a UAV of six rotors. 
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Item Description 

Weight 3.5kg 

Power Consumption 13W 

Angular Resolution 0.125° 

Maximum Range 

Distance 
200m 

Detection Angle      110° 

Range Resolution 4cm 

Wavelength 905nm 

Azimuth Accuracy 0.08° 

Pitch Accuracy 0.015° 

Roll Accuracy 0.015° 

Horizontal Accuracy 2cm 

Vertical Accuracy 2cm 

Table 1. Specifications of the AOEagle 

 

Data 
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or 

shape 

Point 

elevation 

differenc

e in 

measure

ment area 

(m) 

Averag

e point 

density 

(pts/m2

) 

Mean 

distanc

e 

betwee

n 

power 

lines 

(cm) 

Corridor range 

Lengt

h (m) 

Width 

(m) 

1 

Mountain

ous areas 

with 

sparse 

undulatin

g hills 

Broke

n line 
220 16 9 1527 120 

2 
Same as 

data 1 

Straig

ht line 
120 12 9 1068 88 

3 

Steep 

forest 

slope 

Broke

n line 
180 39 3 583 107 

4 

Steep 

forest 

slope  

Straig

ht line 
200 12 3 600 100 

5 
Gentle 

slope with 

low 

vegetation 

cover 

Broke

n line 
100 

9 24 

1133 120 

6 18 11 

Table 2. Data characteristics of each study area. 

 

3. METHOD 

3.1 Characteristics of power line point cloud data 

To extract power lines from LiDAR point cloud data, it first 

needs to analysis the features of power lines in point cloud data. 

The next step is to separate points of power lines from huge 

LiDAR point cloud data, which means to identify the power lines. 

The features of power lines in point cloud data include: 

1. Power line is always at the top of the corridor, and there are no 

other objects above it; 

2. There is a certain standard for the distance between power lines; 

the distance between the ground surface and the lowest layer of 

the power line is bigger than that between each power lines; 

3. The power lines are linearly distributed through the entire 

region, and have a strong extension and direction feature in 

horizontal direction; 

4. Elevation of a single power line is similar in a small area. 

  

3.2 Overall work-flow of power line extraction 

Firstly, outliers are removed from the original point cloud data 

by pre-processing. Secondly, parameters are setup according to 

the characteristics of the power lines. Thirdly, the power line 

candidates are selected according to elevation. Fourthly, the 

candidate points are divided into different point sets, which are 

called elements in this paper, and then the linear elements are 

extracted. Finally, power line elements were identified from the 

elements according to the 3D spatial characteristics of power 

lines. The overall work-flow of power line extraction method in 

this article is shown in Figure 2. 
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Figure 2. Overall work-flow of the proposed power line 

extraction method. 

 

3.3 Pre-processing and parameter settings 

Due to circuits, birds, fog and other reasons, the abnormal 

distance value above the power line will have a great impact on 

the data processing results in this paper. Therefore, the original 

point cloud data needs to be pre-processed to exclude the 

abnormal points with the high-altitude in the original point cloud 

data. According to the density of the laser point cloud and the 

horizontal distance 𝐷𝑥 between each wire, the size of m in X-Y 

plane is set. The parameter m is calculated by formula (1). 

2

xD
m                                         (1) 

where  m = size of grid in X-Y plane 

 𝐷𝑥 = horizontal distance between each wire 

The elevation stratified d is determined according to the vertical 

distance ∆h between each power line, as shown in Figure 3. In 
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order to make the adjacent power line layer divided into different 

layers, the calculation formula of d is shown as formula (2). 

2

h
d


                                        (2) 

where  d = elevation stratified 

 ∆h = vertical distance between each power line 

 

Figure 3. Vertical distance between power lines. 

As shown in Figure 4, in the study area of data 6, the topographic 

relief is small and there is no tall tree, average point density is 18 

pts/m2. According to the relevant specifications of power line 

construction and the speed of data processing, the planar grid size 

is set as 3 to 5 meters. The results are good when the grid size m 

is 3 meters and height layer spacing d is 4 meters. Based on the 

practical condition, the power line is vertically divided into two 

layers, so we set 𝑛𝑓  to be 2. Unless otherwise specified, the 

illustrations are colored according to the height. 

 

Figure 4. Point cloud of power line corridor in gentle slope 

topography. The colour bar represents the real height range. 

 

3.4 Determination of power line candidates 

According to the main features of the power line in LiDAR point 

cloud data, the data is processed from top to bottom in vertical 

direction and gridded in the XY plane. Then, stratifying the point 

cloud data in each grid based on the distance ∆h between the 

adjacent layers. Meanwhile, merging the non-empty layers to 

make that each grid point cloud data are contained in several 

independent layers. According to the real power line layers 

number, 𝑛𝑓 power line candidate layers are selected from top to 

bottom in each grid. Specific steps are listed below: 

1. Gridding in XY plane 

Point cloud data is resampled to grids with grid size m and the 

indices of each point in the grids were established.  

2. Vertical stratification and merging in each grid 

The maximum elevation 𝑧𝑚𝑎𝑥  and minimum elevation 𝑧𝑚𝑖𝑛  in 

each grid were identified, which could help calculate the 

elevation difference of the point cloud data, then each grid was 

divided into Num layers in the vertical direction with d as the 

interval threshold. 

max minZ Z
Num round

d

 
  

 

 (3) 

where  𝑧𝑚𝑎𝑥 = maximum elevation value 

 𝑧𝑚𝑖𝑛 = minimum elevation value 

 𝑑= elevation stratified 

 𝑟𝑜𝑢𝑛𝑑⌈ ⌉ = upward rounding function 

Using an iterative approach to divide the point cloud data into the 

corresponding cubic cells. Then, determine whether the two 

adjacent layers are empty in the grid. If both of layers are not 

empty, merge them into one layer. Then determine whether the 

new layer adjacent layer is empty, to achieve all non-empty 

adjacent layer of the merger. Finally, each grid gets a number of 

independent layers of the space. The elevation stratification-

merge diagram is shown in Figure 5. 

 

 
(a)                            (b)                            (c) 

Figure 5. Elevation stratification-merge diagram. (a) Raw Point 

Cloud data; (b) Stratification; (c) Merge of the non-empty cells. 

3. Selection of power line candidate layers 

The power line is located on the top of point cloud data, for the 

reason that the power line is catenary, and the power line 

diameter is less than the point cloud data layer elevation 

difference. So the top 𝑛𝑓 layers of each grid are selected to 

calculate the elevation difference of each layer, if the difference 

is not more than h this one is a candidate layer; if the difference 

is greater than h, there is no power line layer in this grid. Due to 

the curvature of each wire are varied, considering the 

applicability of the h in the whole wire, we use the maximum 

curvature point to calculate h. 

 

Figure 6. Calculation of the elevation difference of each layer. 

As shown in Figure 6, h is determined by formula (4), as given 

below. 

, , 2 , [ , )
tan 4 2

h

h

m
h m m m

 



   
 

  (4) 

where  h = threshold value of power line layer 

α  = angle between power line tangent and vertical 

direction 

𝑚ℎ= projected length of the power line in the grid 

horizontally 

In the study area of the data 6, based on the parameters settings 

in section 3.3, the presented method first grids the whole power 

line corridor. The point cloud data is divided into the 

corresponding horizontal square grid, and then is divided into the 

3D grid with 4 meters intervals. Different 3D grid represents 

different point cloud data layers, by merging non-empty adjacent 

3D grids, two continuous point cloud data layers are combined 

into one layer. The top two layers of each grid are selected as 

candidates, it can be seen in Figure 7. The candidate points 

contain almost all of the power line points, part of the bare ground 

and vegetation points, and remove most of the pylon points. 

 

Figure 7. Power line candidates. The color bar represents the 

real height range. 

 

 

 

 

Power line 
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3.5 Extraction of linear elements 

In different grids, a region growing method based on 3D space is 

used to cluster the candidate layers, and the independent sets of 

points in the whole measurement area are obtained. Then, the 

linear elements can be obtained by the width features of the 

elements projection in the XY plane. Specific implementation 

methods are as following: 

1. Clustering based on 3D spatial region growth 

According to the region growing method in 3D space, for each 

grid, each of its 8 neighbourhood grids were searched first. Then, 

average elevations of points in central grid and 8 neighbourhood 

grids were calculated respectively. Meanwhile, if the average 

elevation difference in central grid layer and any layer of a 

neighbourhood grid is smaller than h, these two layers were 

clustered into one layer. The clustering of power candidate layers 

in all grids was traversed iteratively which results in multiple 

spatially independent elements. 

2. Linear element extraction 

According to the coordinates of each point in every element, their 

8 neighbourhood grids were first acquired. Then, the diameter of 

the inscribed circle in horizontal plane that was projected from 

points in central grid and its 8 neighbouring grids was calculated. 

Considering measurement error and accuracy, we chose a 𝐷𝑟as a 

criterion, which was slightly larger than the power line diameter 

Dρ. If the inscribed circle diameter value is greater than Dr, this 

element belongs to nonlinear element; otherwise, it belongs to 

linear element. The calculation of the diameter of the inscribed 

horizontal circle from point cloud data is shown in section 3.6. 

The main projection types of elements are shown in Figure 8. 

 
 (a)                       (b)                        (c) 

Figure 8. Sketch of surface and linear projection. (a) Planar; (b) 

Linear; (c) Polygonal. 

According to the region growing method in 3D space, several 

independent elements can be obtained by clustering the point 

cloud data of candidate layers. In this paper, we set Dr as 3.8m to 

determine the linear element based on the above criterion. Figure 

9 shows the results of the linear element extraction from power 

line candidates. The results show that the power line point cloud 

data was well segmented and most of the non-power line point 

cloud data was eliminated. 

 
Figure 9. Linear element extraction result (colored by element). 

 

3.6 Extraction of power line point  

The points of power line are linearly distributed and have 

dominant horizontal directional extension. Therefore, power line 

elements can be identified by the directional extension and linear 

characteristics. In this paper, the directional extension of linear 

elements is described by calculating the diameter of the 

inscribed/circumscribed horizontal circles of the projected points. 

The diameter of the inscribed/circumscribed circles is equal to 

the diameter and length of the linear element. The diameter of the 

circumscribed circle describes the extensional characteristics, 

which can be used to judge whether the linear element has 

obvious directional by the diameter ratio of the circumscribed 

circle to the inscribed circle. The example of the 

inscribed/circumscribed circles is shown in Figure 10. The point 

p is the center of the circle. The line segment pq is the radius of 

inscribed circle, whose length is r. The line segment pQ is the 

radius of a circumscribed circle, whose length is R. The 

implementation workflow is given below: 

1. Calculate the center of gravity of each point in the element 

in the XY plane p (xMean, yMean), and take it as the 

common center of the inscribed and circumscribed circles; 

2. Firstly, the distances between all the points and p of each 

element are calculated. Then, the circumscribed circle 

radius R was set to the maximum distance. Supposing the 

point which has the largest distance to point p is Q, 

Calculate the directional vector 𝑅𝑣  of pQ , then calculate 

the direction vector 𝑟𝑣 that perpendicular to pQ according 

to Rv, and take the 𝑟𝑣 as the direction vector to determine 

the linear equation AX+BY+C=0; 

3. The buffer zone on both sides of the line determined in step 

2 was set, if the distance between the point and the line is 

not bigger than Df, which is half of the width of the buffer 

and associated to the point spacing, then this point is 

regarded as the candidate of inscribed circle edge point; if 

there is no point in the buffer, then Df is increased until a 

point locates at half of the width of the buffer on both sides 

of the line; Next, compute the distance between candidate 

edge points and point p, then set the maximum distance as 

the radius of inscribed circle of r. If 2r> Dr , this linear 

element is polygonal, then the value of Dr is the diameter 

of the inscribed circle; if R r⁄ > vf , this element has 

obvious directional characteristics, so we classify it to 

power line element. Meanwhile, vf is a variable threshold, 

whose value should be more than 2 times the length of the 

plane grids. 

 
Figure 10. Example diagram of inner and outer circles. 

 

In order to eliminate ground fragmentation, as shown in Figure 9, 

a suitable vf is needed. Figure 11 shows the power line extraction 

results when vf is set to 4. From the figure we can see that, when 

the vf is 4, the power line element cannot be separated from other 

linear element well, just as the red marks in Figure 11. When vfis 
8, only the power point cloud data is left in the extracted result, 

as shown in Figure 12. It can be seen that the result is the best 

when the value of vf is more than 2 times of the grid length. 

 
Figure 11. Power line points extraction results when vf = 4. 
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R 
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Figure 12. Power line points extraction results when vf = 8. 

It can be seen that the power line point cloud data in data 6 were 

almost extracted in Figure 12. We used the same method to 

process the other five data sets, the results are listed in Figure 13. 

 
 

Data 1 Data 1 Results 

 
 

Data 2 Data 2 Results 

 

 

Data 3 Data 3 Results 

 
 

Data 4 Data 4 Results 

 
 

Data 5 Data 5 Results 

Figure 13. Processing results of the remaining 5 sets of data. 

 

4. RESULTS AND DISCUSSIONS 

To verify the feasibility and reliability of the proposed method, 

data sets contain different terrains, pole types and point cloud 

data density were selected as shown in Table 1. Combined with 

the characteristics of this algorithm, we also analysed the 

influences of power line spacing on extraction results. 

We analysed the power line extraction rate of each data sets based 

on manual extraction results that are considered as the true values 

in this paper. As shown in Table 2, the average extraction rate 

(i.e., the percentage of correctly identified power line points to 

entire number of points.) is 98.18%. The terrain in the 6 sets of 

data is complex and diverse. However, the power line extraction 

rate has reached 95%, which means the results of the proposed 

method are not affected by the measurement area terrain. 
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1 16 9 75541 76806 98.35% 

98.18% 

2 12 9 51452 52181 98.60% 

3 39 3 71774 75180 95.47% 

4 12 3 68702 70111 97.99% 

5 9 24 23052 23232 99.23% 

6 18 11 45597 45336 99.43% 

Table 3. Statistics of power line extraction results. 

Since the average point spacing distributed uniformly and the 

size of it was less than the plane grid, thus it is easy to clustering 

power line point cloud data into every one element. It can keeps 

the power line element extensibility and direction characters 

pretty well, even if the average density is different, the extraction 

rate is stable, just as data 1, data 2, data 5 and data 6. 

Data 2 and data 4 belong to linear power line, but the extraction 

rate of data 4 was less than that of the data 2 by 0.61%. The 

reasons could be: as shown in Figure 14, the data 4 power line 

point cloud data has several discontinuous segments, the lack 

distance of adjacent segments was greater than 6 meters. 

Therefore, in the process of region growing, the points in the 

block could not be clustered as the same element with the left 

point cloud data. Instead, they were clustered into several 

independent elements as shown in Figure 15. When extracting 

the power line elements, the horizontal extension features of 

these independent elements do not meet the requirements of the 

power line element, resulted in the lack of power line point cloud 

data in the block. While the point spacing in data 2 is well-

distributed, only a few discontinuous segments existed, and the 

missing distance of the adjacent segment is less than 3 meters, so 

power lines in data 2 were well extracted. 

Data 4                             Enlarged drawing of Data 4 

 

Results of Data 4    Enlarged drawing of the results of Data 4 

Figure 14.  Partial enlarged drawing for Data 4 and its result 
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Figure 15. Linear elements extraction results for the partial 

enlarged part of Data 4 (coloured by element). 

The extraction results for data 3 has the lowest success rate, 

mainly due to the existence of corner pole as shown in Figure 16. 

The insulators on the corner pole are approximately straight in 

horizontal direction, which causes the unsuccessful extraction of 

the power lines pass through the insulators. The average point 

density of data 3 is the highest, which makes the absence more 

obvious. 

 
Figure 16. Corner tower. 

Compared with the data 3, the data 2 belongs to the linear power 

line corridor and the insulators are vertically installed, as shown 

in Figure 17. The extraction of power lines only removed the 

points in the grid with the hanging point, so the effect of the 

insulator was smaller, therefore the extraction effect reached 

98.60%. 

 
Figure 17. Straight pole.  

Data 5 was obtained after thinning data 6. Compared to the data 

6, the power line point extraction rate of data 5 is only dropped 

by 0.2%. Although the average power line spacing in data 5 and 

6 is the largest, the power lines extraction results for data 5 and 6 

are the best.  The reason is that the power line spacing of the two 

data sets is uniform and less than the size of the plane grid. We 

could find that when the point spacing of the power line is smaller 

than the size of the plane grid, the power line points can be 

extracted and the extraction effect is not restricted by the average 

point density in the measurement area. 

 

5. CONCLUSIONS 

Based on analysis of main characteristics of the power line point 

cloud data in 3D space, this paper proposes an automatic power 

line extraction method from UAV LiDAR point cloud data based 

on the 3D spatial features of power line, which can effectively 

extract the power line point cloud data from the LiDAR point 

cloud data. The proposed method processed the point cloud data 

vertically; therefore, the possible location of the power lines in 

point cloud data can be predicted without point cloud data 

filtering. The data processing flow is simple, and the method is 

  

 

 

 

 

 

 

 

 

 

  

  

 

   

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 
       
 
 
          
  
 
 

         

   
        

    
      
 

         
 
         
       

    
         
 
 

        
   
       
      

   
       
       

          
 

          
      
        
   
 

    
  

    
       

           
       
       

not affected by the terrain and the average point density in the 
measurement area. Moreover, automatic extraction of power 
lines between multiple towers is realized with high precision. The 
experiment shows that the method has a good extraction rate on 
the straight / polygonal power lines corridor, and the average 
extraction rate of the 6 sets of power lines is up to 98.18%, which 
is according to the comparison with the manual extraction results. 
But for the corner poles, it cannot extract the power lines below 
insulator, the method needs to be further improved.
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