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ABSTRACT:

Recently, recurrent neural networks have been proposed for crop mapping from multitemporal remote sensing data. Most of these 
proposals have been designed and tested in temperate regions, where a single harvest per season is the rule. In tropical regions, the 
favorable climate and local agricultural practices, such as crop rotation, result in more complex spatio-temporal dynamics, where the 
single harvest per season assumption does not hold. In this context, a demand arises for methods capable of recognizing agricultural 
crops at multiple dates along the multitemporal sequence. In the present work, we propose to adapt two recurrent neural networks, 
originally conceived for single harvest per season, for multidate crop recognition. In addition, we propose a novel multidate 
approach based on bidirectional fully convolutional recurrent neural networks. These three architectures were evaluated on public 
Sentinel-1 data sets from two tropical regions in Brazil. In our experiments, all methods achieved state-of-the-art accuracies with 
a clear superiority of the proposed architecture. It outperformed its counterparts in up to 3.8% and 7.4%, in terms of per-month 
overall accuracy, and it was the best performing method in terms of F1-score for most crops and dates on both regions.

1. INTRODUCTION

The projections of world population for the next decades
demand more efficient, comprehensive and precise agriculture.
According to the United Nations reports, the world population
is expected to reach 8.6 billion by 2030, 9.8 billion by
2050 and 11.2 billion by 2100 (United Nations, 2017). It
is therefore necessary to promote policies to increase global
agricultural production to ensure food supply with minimal
environmental impact. In this context, crop monitoring is
very important to develop commercial plans, regulate internal
stocks and perform customized management decisions (Leite
et al., 2011). Multitemporal remote sensing (RS) imagery has
increasingly been applied for this task as a cost-effective way
for gathering timely, detailed and reliable information over
large areas (Thenkabail, 2015). However, crop recognition
from RS data is particularly challenging in tropical regions,
because the favorable climate associated with the use of modern
technologies makes agriculture highly dynamic (Sanches et al.,
2018b).

In recent years, deep learning models have made breakthroughs
in several fields such as speech recognition and computer
vision (LeCun et al., 2015). In remote sensing, these
models have also been successfully tested in diverse
applications (Audebert et al., 2017). Such models can
be roughly grouped in two main categories: Convolutional
Neural Networks (CNN) for understanding spatial context,
and Recurrent Neural Networks (RNN), mostly to model data
sequences.

In (La Rosa et al., 2018), a type of CNN called Fully
Convolutional Network (FCN) was used for crop recognition
having as input the stack of a multi-temporal sequence.
Although a good performance is reported, the method requires
the training of a particular model for each date. Thus, this

solution can become computationally expensive depending on
the dataset size.

RNNs can be configured to allow sequential inputs and to
produce a single outcome that represents the semantic of the
whole input sequence. Such ”many-to-one” configurations have
been used for crop-recognition in temperate regions, where a
single crop occurs in each field over the whole season.

In (Ndikumana et al., 2018) two different RNN models, Long
short-term memory (LSTM) and Gated Recurrent Unit (GRU),
were applied for crop classification upon multi-temporal
Sentinel-1 data. In (Bermudez et al., 2018), a CNN was
proposed to provide the input to a RNN for the many-to-one
crop recognition task.

In (Xingjian et al., 2015), the internal fully connected
LSTM layers were replaced by convolutional layers. This
type of recurrent convolutional network (ConvLSTM) is able
to jointly model the spatial and temporal context from
multi-temporal sequences of images. This kind of RNN
was used for precipitation forecasting. Later, in (Rußwurm
, Körner, 2018), this ConvLSTM network was applied to
the multi-temporal land cover classification problem in a
many-to-one configuration. Furthermore, (Rußwurm , Körner,
2018) used a bidirectional variant of ConvLSTM to eliminate
bias toward the later sequence elements. All aforementioned
proposals follow the many-to-one approach.

In areas with complex crop dynamics, such as in tropical
regions, multiple crops may come about in a field during the
season. Thus, the single crop per season assumption does not
hold in those regions. In this case we require a network capable
of performing crop recognition for multiple dates.

Our work hypothesis is that many-to-many RNN configurations
can be applied for multidate crop recognition, to accurately
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identify crop classes in tropical regions at each date represented
in a multitemporal sequence. Specifically, we introduce a novel
many-to-many configuration of a bidirectional ConvLSTM for
multidate crop recognition from multitemporal RS data. The
proposed architecture uses a FCN encoder to provide inputs
at a lower spatial resolution to a bidirectional LSTM. After
processing the input provided by the encoder, the LSTM
delivers the output, which is then applied to a decoder that
generates the outcome, a pixel-wise label image, at the original
spatial resolution.

In addition, we adapted two convolutional many-to-one RNNs,
introduced in earlier works (Rußwurm , Körner, 2018), to
the many-to-many task and compare them with the proposed
architecture. The experiments were carried out upon datasets of
two tropical regions charaterized by complex spatio-temporal
dynamics and crop rotation practices.

To the best of our knowledge, this is the first work
that addresses many-to-many recurrent networks as unique,
end-to-end architectures, for pixel-wise crop recognition of
entire image sequences. The contributions of this work are
threefold:

1. a novel recurrent network architecture that combines
bidirectional LSTM and FCN for multidate crop
recognition,

2. an extension of convolutional LSTMs originally designed
for single crop per season applications to multidate crop
recognition,

3. an experimental analysis of the aforementioned network
designs on datasets that represent highly dynamic
agriculture typical of tropical regions.

The remainder of this paper is organized as follows: Section
2 briefly explains the concepts of RNNs, bidirectional RNNs
and ConvLSTMs. In Section 3, the assessed methods for
many-to-many multi-temporal crop recognition are presented,
including the proposed one. Section 4 describes the study
areas and the experimental protocol adopted in this work.
Experimental results are presented in Section 5 and conclusions
are outlined in Section 6.

2. FUNDAMENTALS

2.1 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNN) are a type of neural network
designed for processing sequential data. These models are
regarded as the state-of-the-art for temporal modeling tasks (Ma
et al., 2019). RNNs can be seen as neural networks with
feedback. Given an input sequence (xxx = xxx0,xxx1, ...,xxxt), the
output of such network is given by the equations:

hhht = f(bbb+WWWhhht−1 +UUUxxxt) (1)

yyyt = g(ccc+ VVV hhht) (2)

Where hhht is the state at time step t, WWW , UUU and VVV are weight
matrices, bbb and ccc are bias vectors and yyyt is the network output
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Figure 1. Many-to-many basic RNN.

for time step t. f and g are activation functions, usually tanh
and softmax, respectively.

The training loss of a many-to-many recurrent network
considers the entire output sequence. In this case, the total loss
is computed by the sum of the losses over all time steps. This
configuration is useful for multidate crop recognition because
predictions for the entire image sequence can be obtained by
a single model. Figure 1 shows on the left the basic RNN
architecture and on the right its unrolled representation for three
time steps.

To produce the outcome xxxt at time t the basic RNN relies on
the current input xxxt and on a summary of prior time steps
coded in the previous state hhht−1. When available, inputs at
posterior instants can be used to improve the prediction at time
t. This is achieved by bidirectional RNNs. They consist of
two RNNs trained simultaneously. The first RNN is trained
in the temporal forward direction, whereas the second one is
trained in the backward direction (Schuster , Paliwal, 1997).
Correspondent state vectors from both RNNs, ~hhht and ~hhht are
usually concatenated to form the unified state vector hhht. This
scheme is illustrated in Figure 2 for a sequence of length equal
to 3.
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Figure 2. Bidirectional RNN for three time steps
(Unfolded representation).

2.2 Convolutional Long Short Term Memory
(ConvLSTM)

Traditional RNNs fail when it comes to modeling long-term
dependencies and suffer from some stability issues. A
special type of RNN, called Long Short Term Memory (LSTM),
was conceived to mitigate these problems (Hochreiter ,
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Figure 3. LSTM structure diagram (Bermudez et al.,
2017).

Schmidhuber, 1997). The main improvement in comparison
to traditional RNNs is a memory cell CCCt that can be
accessed, written and cleared by trainable gates (see Figure 3).
Specifically, a LSTM contains an information gate iiit to select
which information should be added to the cell, a forget gate fff t

to discard useless previous knowledge, and an output gate ooot to
decide whether the cell contents should propagate to subsequent
steps through the current state hhht. In their original form, these
gates are implemented as fully connected layers followed by an
activation function such as sigmoid.

An extension of the LSTM design was proposed for image
analysis in (Xingjian et al., 2015). In these networks, called
convolutional LSTM (ConvLSTM), the fully connected layers
at iiit, fff t and ooot are replaced by convolutional layers in order to
better capture spatial context. Thus, the input and the output of
a ConvLSTM correspond to a sequence of images, as opposed
to a sequence of vectors in the basic RNN.

3. RNN ARCHITECTURES FOR MULTIDATE
RECOGNITION

In this section we present the recurrent network architectures
used for crop mapping from multitemporal RS data. Firstly, we
describe the two networks adapted from (Rußwurm , Körner,
2018) for many-to-many tasks that served as baseline in our
research. Next, the proposed architecture is presented.

3.1 Unidirectional Convolutional LSTM

The first architecture we consider in this paper is the
Unidirectional Convolutional LSTM (UConvLSTM),
a unidirectional version of the architecture proposed
in (Rußwurm , Körner, 2018), which we adapted to
many-to-many tasks. Its architecture is shown in Figure 4a.
The input sequence goes first through a ConvLSTM net
followed by 1×1 convolutions that produce as many activation
maps as the number of classes. Next, batch normalization and
ReLU activation functions are applied. In the final layer, a
softmax function assigns posterior probabilities to each pixel.

3.2 Bidirectional Convolutional LSTM

The second architecture we tested in this work is the
Bidirectional Convolutional LSTM (BConvLSTM), illustrated
in Figure 4b. The BConvLSTM also derives from the
architecture proposed in (Rußwurm , Körner, 2018) that we
adapted for many-to-many tasks. It can be regarded as
a bidirectional version of UConvLSTM, whereby the plain
ConvLSTM layer is replaced by a bidirectional ConvLSTM

Bidirectional
 ConvLSTM

INPUT

BN+ReLU

CONV.

ConvLSTM

INPUT

BN+ReLU

CONV.

SOFTMAX

Convolution
Batch normalization+ReLU

(b)(a)

SOFTMAX

Figure 4. RNN architectures adapted to many-to-many
tasks: (a) UConvLSTM, (b) BConvLSTM.

layer. The BConvLSTM network comprises two ConvLSTMs:
one processes the input data in the forward direction, while the
other operates in reversed, backward direction. The outputs
of both ConvLSTM are concatenated to form a single output
tensor. From this point on, the architecture does not differ
from the previous one. 1×1 convolutions are applied to
aforementioned tensor producing one activation map per class,
followed by batch normalization and by a ReLU activation
function. A softmax layer delivers posterior probabilities for
each pixel.

3.3 Bidirectional Dense Convolutional LSTM -
BDenseConvLSTM

The architecture from (Rußwurm , Körner, 2018), which is our
main reference for comparison purposes, applies convolutions
at the original image scale only. In contrast, modern FCN
architectures tend to follow an encoder-decoder pattern to
better capture the spatial information at multiple scales. Such
structure comprises a downsampling path, so called encoder,
which extracts coarse semantic features, followed by an
upsampling path, so called decoder, responsible for recovering
the input spatial resolution in the final output.

Our proposal combines elements of the architecture presented
in (Rußwurm , Körner, 2018) with the encoder-decoder
structure from a FCN, as shown in Figure 6. Different FCN
architectures could be considered for this encoder-decoder
design. In the present work, we use the dense FCN introduced
in (Jégou et al., 2017). This architecture consists of three main
block types: a) the Dense blocks (DB), consisting of sequences
of convolutional layers with multiple bypassing connections,
b) the Transition Down (TD) blocks, which comprise a
convolution followed by a downsampling operation, and c) the
Transition Up (TU) blocks that perform upsampling operations,
typically a transposed convolution. Skip connections are used
between downsampling and upsampling stages.

4. EXPERIMENTS

4.1 Study Areas

Two publicly available datasets for multitemporal crop
recognition in tropical regions were used for performance
assessment. The first region is located in Campo Verde
municipality, Brazil, with an extension of 4,782 km2 (Sanches
et al., 2018b). It features a sequence of 14 pre-processed,
dual polarized Synthetic Aperture Radar (SAR) images from
Sentinel-1. These images were taken between October 2015
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Figure 5. Class distribution in (a) Campo Verde and (b) LEM datasets.
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Figure 6. BDenseConvLSTM architecture.

and July 2016, with one or two images per month. The class
distribution greatly varies over time (see Figure 5a). Soybean is
the main crop type from October 2015 to February 2016 and its
replaced by Cotton and Maize in the following months.1

The second region is located in Luis Eduardo Magalhães (LEM)
municipality, also in Brazil, with an area of 3,940 km2 (Sanches
et al., 2018a). A set of 13 pre-processed Sentinel-1 SAR images
acquired between June 2017 and June 2018 was used in our
experiments. Similar to Campo Verde, the class distribution
in LEM dataset is non uniform along the year, as shown in
Figure 5b. The main crop types are Soybean, Maize, Cotton
and Millet.2

4.2 Hyperparameter Setup

We experimented with different hyperparameter values for each
method. In this section, we present the configurations that
attained the best results.

1The Campo Verde database is available in IEEE Daport at
https://ieee-dataport.org/documents/campo-verde-database.

2The LEM database is freely accessible at
http://www.lvc.ele.puc-rio.br/downloads/Databases/LEM/home.html.

Parameter setups for UConvLSTM and BConvLSTM networks
are shown in Tables 1 and 2, where T represents the temporal
sequence length. 256 convolutional filters were used in the
UConvLSTM network for each LSTM internal gate. Likewise,
the BConvLSTM model was configured with 256 recurrent
filters per gate: 128 for each direction.

Layer Output Shape Filters
Input T × 32× 32 2

ConvLSTM T × 32× 32 256
Conv. T × 32× 32 #classes

Table 1. UConvLSTM parameter configuration - T is the
sequence length

Layer Output Shape Filters
Input T × 32× 32 2

Bidirectional
ConvLSTM T × 32× 32 256

Conv. T × 32× 32 #classes

Table 2. BConvLSTM parameter configuration - T is the
sequence length.

Following (La Rosa et al., 2018), the BDenseConvLSTM
network was built with two convolutional layers per dense
block and 20% as dropout factor. Further details from this
architecture are presented in Table 3. Average Pooling was
empirically selected as downsampling operator. Except for the
last convolution, we adopted 3× 3 filters in all cases.

Layer Output Shape Filters
Input T × 32× 32 2

DB T × 32× 32 80
Downsampling T × 16× 16 80

DB T × 16× 16 112
Downsampling T × 8× 8 112
Bidirectional
ConvLSTM T × 8× 8 256

DB T × 8× 8 32
Upsampling T × 16× 16 144

DB T × 16× 16 32
Upsampling T × 32× 32 112

Conv. T × 32× 32 #classes

Table 3. BDenseConvLSTM parameter configuration - T
is the sequence length.

For all the networks, we applied early stopping with the
Adagrad optimizer and a learning rate of 0.01. Mini-batches
of size 16 were empirically selected.
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Figure 7. Overall Accuracy for Campo Verde study area,
computed in each date.

Figure 8. Overall Accuracy for LEM study area,
computed in each date.

4.3 Experimental Protocol

Parcels present in the dataset were randomly separated in
training and testing sets, whereby the training set contained
about 50% of all pixels for Campo Verde and 75% for LEM.
Each parcel was split into non-overlapping square patches that
were processed separately by the networks. After all patches
have been processed, the patch-wise classification results were
arranged in a mosaic forming the final outcome. The input
patch size was set to 14 × 32 × 32 pixels for Campo Verde
and to 11× 32× 32 for LEM.

In this work, data augmentation strategies such as rotation,
horizontal and vertical flip were used, since they were
empirically found to improve overall and per-class performance
metrics. Experiments were carried out using Keras framework
with Tensorflow backend, on a Nvidia GTX Titan GPU.

5. RESULTS

The experimental results are reported in Figures 7 to 10. The
figures show one result per month for each architecture. Thus,
when the dataset contains more than one image per month, the
reported result refers to the latest image.

Figures 7 and 8 present the performance achieved by each
architecture in terms of Overall Accuracy (OA) for Campo
Verde and LEM, respectively. Each bar group contains the
performance of all tested network designs for a month. Our
proposed method consistently achieved the highest scores
for both datasets, outperforming the second best approach,
BConvLSTM, in up to 3.8% for Campo Verde and 7.4% for
LEM. The UConvLSTM network presented the lowest OA

Figure 9. Average F1-Score for Campo Verde study area,
computed in each date.

Figure 10. Average F1-Score for LEM study area,
computed in each date.

values (with just one exception) in comparison two the other
networks, specially at the earliest dates. This occurred because
UConvLSTM uses only data from past dates for predictions,
ignoring data of posterior dates.

Figure 9 summarizes the networks’ performance in terms of
average F1 score for Campo Verde. UConvLSTM presented
a poorer performance at the earlier dates, and came closer to
the other network designs at the later dates.

BDenseConvLSTM achieved the best F1 scores in most
months, with exception of October, March and May, when
it performed similarly to the BConvLSTM network. Table 4
sheds light over this results. It contains the F1 scores of most
relevant crop types across the entire Campo Verde sequence.
The best performance values for each crop and month are
highlighted in bold. Clearly, the BDenseConvLSTM network
was the best performing architecture in most cases. Exceptions
occurred mostly in months when the target crop was weakly
represented. This can be inferred by comparing the results of
Table 4 with the crop distribution in Figure 5.

Figure 10 shows the average F1-score for the LEM dataset. As
in the experiments on Campo Verde, UConvLSTM performed
poorer than the other models during the earlier dates and
improved for the later dates. BDenseConvLSTM was the best
performing network over all LEM sequence also in terms of F1,
being 7.5% higher than BConvLSTM in average.

Table 5 shows the class specific F1 scores for the most relevant
crops in the LEM dataset. The best performance values for
each crop and date are also highlighted in bold. The superiority
of BDenseConvLSTM in terms of F1 scores was even more
evident here than in the experiments on Campo Verde. The
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Crop
Type

Month (%)
Oct Nov Dec Jan Feb Mar May Jun Jul

UConvLSTM

Soybean 0.0 57.6 90.4 82.0 76.5 39.2 - - -
Maize 0.0 0.0 10.9 15.2 26.2 54.4 81.6 64.2 45.9
Cotton - - 47.0 52.3 27.7 77.1 89.1 87.8 85.2

Sorghum - - 0.2 0.5 2.8 8.4 50.3 50.9 53.1
Beans - 15.4 39.1 - - - 36.2 - -

Eucalyptus 4.9 39.5 61.8 70.2 75.3 81.2 83.8 84.7 86.0

BConvLSTM

Soybean 27.0 74.5 96.6 85.8 84.5 37.3 - - -
Maize 44.3 73.5 57.5 0.6 3.0 70.1 87.3 66.1 42.1
Cotton - - 73.2 71.4 43.7 80.2 91.8 89.1 86.1

Sorghum - - 14.7 13.4 12.3 11.8 50.5 49.8 50.4
Beans - 28.3 29.8 - - - 33.9 - -

Eucalyptus 95.3 94.4 93.4 93.1 93.2 89.1 85.8 85.6 86.3

BDenseConvLSTM

Soybean 34.7 78.3 98.3 88.2 86.2 38.1 - - -
Maize 67.1 91.3 84.8 68.2 69.6 72.8 89.7 72.3 43.1
Cotton - - 76.1 72.6 46.0 81.9 92.2 90.0 87.0

Sorghum - - 41.4 41.7 34.0 16.7 51.6 53.8 51.6
Beans - 46.8 59.6 - - - 40.9 - -

Eucalyptus 95.6 95.3 95.1 94.5 92.7 93.7 93.3 93.1 92.5

Table 4. Average F1 score for the most relevant crop types in Campo Verde study area, computed at each date from
October 2015 to July 2016.

Crop
Type

Month(%)
Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

U
C

on
vL

ST
M

Soybean 1.2 0.5 - - - 28.1 39.7 88.0 91.4 91.5 58.6 74.2 77.2
Maize 0.0 1.3 14.9 13.3 - 15.1 43.1 63.5 64.3 64.9 73.7 62.0 35.8
Cotton 17.1 42.0 0.3 - - - - 29.6 69.4 80.8 95.9 98.0 97.8
Coffee 8.4 11.8 15.2 17.4 23.9 29.6 35.4 39.6 42.4 45.4 48.6 50.6 51.5
Beans 3.7 2.4 - - - - - - - 63.1 48.4 43.0 -

Sorghum 12.0 14.9 33.7 24.4 - - - - - - - - -
Millet 44.7 46.2 14.7 0.0 - - - - 0.0 0.0 11.7 16.1 0.0

Eucalyptus 2.6 7.7 13.5 17.5 19.9 22.9 26.1 27.8 28.3 28.6 28.7 28.7 28.2

B
C

on
vL

ST
M

Soybean 32.6 15.1 - - - 35.6 41.0 94.1 95.0 94.4 60.6 83.4 84.5
Maize 75.2 77.3 20.1 67.1 - 83.8 76.7 80.3 75.0 72.2 75.3 61.6 25.9
Cotton 76.6 75.7 0.9 - - - - 77.8 99.3 98.9 97.7 98.7 97.5
Coffee 75.9 75.6 73.8 71.2 70.2 68.4 66.0 64.0 62.8 64.3 65.5 68.3 70.1
Beans 30.3 78.0 - - - - - - - 85.7 69.6 59.3 -

Sorghum 19.4 19.2 29.4 42.0 - - - - - - - - -
Millet 59.2 47.8 53.8 0.0 - - - - 0.0 0.0 27.1 20.9 0.0

Eucalyptus 24.2 25.8 27.8 29.0 31.7 33.7 34.5 33.8 32.5 31.6 31.0 30.7 29.7

B
D

en
se

C
on

vL
ST

M Soybean 79.5 74.1 - - - 62.3 46.0 96.1 96.4 96.6 65.4 88.9 88.1
Maize 84.3 81.5 17.2 59.5 - 67.9 85.5 90.6 87.0 86.8 86.9 74.6 41.6
Cotton 87.6 88.9 7.3 - - - - 80.5 99.7 99.6 99.4 99.8 99.8
Coffee 87.4 87.8 87.1 87.2 87.3 85.9 87.4 85.8 88.7 89.5 89.3 89.8 89.6
Beans 31.9 47.7 - - - - - - - 79.8 77.8 77.7 -

Sorghum 43.1 47.4 66.0 72.2 - - - - - - - - -
Millet 68.6 59.0 57.5 0.0 - - - - 2.3 9.6 55.7 49.1 0.1

Eucalyptus 60.4 62.1 61.2 63.0 66.3 65.6 66.1 64.7 63.2 63.8 65.5 66.1 62.1

Table 5. F1 score for most relevant crop types in LEM study area, computed at each date. The sequence starts in June
2017 and ends in June 2018.

few exceptions when BDenseConvLSTM did not achieve the
highest score refer mostly to weakly represented classes.

As stated before, classes with few samples are vulnerable
to obtain very different F1 score among different networks.
This can be seen in the Campo Verde for Maize in January,
with an F1 score of 0.6% for BConvLSTM and 68.2% for
BDenseConvLSTM.

Figure 11 shows snips of the reference and the classification
maps obtained by the methods on a particular location of the
test area in Campo Verde at three dates. Consistent with results
reported in Figure 9, UConvLSTM performed worse than the
other models in the first month (Oct). It predicted Soil for all
the area. Its performance improved for the later dates coming
closer to the other methods. This indicates the importance of
exploiting data from posterior dates. Figure 11 also reveals that
BDenseConvLSTM results tended to be less affected by the salt

and pepper effect.

Figure 12 shows snips of reference and classification maps
for the LEM dataset. Similar to what was shown in
Figure 10, BDenseConvLSTM clearly outperformed the other
methods. In addition, the salt and pepper effect is once again
more evident in UConvLSTM and BConvLSTM. In contrast,
BDenseConvLSTM obtains smoother predictions in almost all
parcels. Recall that BDenseConvLSTM reduces the resolution
of the input data, before feeding the recurrent network. Thus,
in this network, the LSTM layer operates upon comparatively
lower resolution patches. The result produced by the LSTM
layer is then upsampled by a decoder that restores the original
spatial resolution. We verified experimentally that this last step
prevents small regions in the outcome. This explains partially
the comparatively smoother outcome of BDenseConvLSTM.
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Ground TruthMonth
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May

BDenseConvLSTMBConvLSTMUConvLSTM

Figure 11. Sample structured output for Campo Verde study area.
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Month BDenseConvLSTMBConvLSTMUConvLSTMGround Truth

Figure 12. Sample structured output for LEM.
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6. CONCLUSIONS

This paper introduced an extension of the traditional
ConvLSTM networks in multitemporal crop recognition,
by performing classification of an entire sequence of
multitemporal images. In contrast, previous approaches
produced classification for a simple element of the sequence.
Furthermore, a novel fully convolutional bidirectional recurrent
network, called BDenseConvLSTM, was proposed. The
network was validated by comparing its performance against
the conventional ConvLSTM network and its bidirectional
variant BConvLSTM.

In all cases, the bidirectional networks outperformed the
unidirectional approach for the first elements of the temporal
sequence. This indicates that the bidirectional variation for
recurrent networks is essential in many-to-many configurations.

The UConvLSTM and BConvLSTM networks produced a
salt and pepper effect at their outputs. In contrast,
BDenseConvLSTM, which includes an additional spatial
encoding stage, reduced this effect and obtained smoother
predictions. This indicates the importance of multi-scale
spatial information in the design of convolutional recurrent
architectures.

Finally, BDenseConvLSTM obtained the highest scores
across two different datasets, with a more significant
performance difference in LEM dataset. Thus, this network
is recommended for many-to-many multi-temporal crop
recognition applications.

Future works will focus in comparing these approaches
with novel recurrent fully convolutional architectures using
state-of-the-art semantic segmentation techniques such as
Atrous Pyramid Spatial Pooling, and the design of more suitable
data augmentation techniques for SAR images.
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