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ABSTRACT:

This work follows a line of research dedicated to the parallelization of image segmentation algorithms on distributed computing
environments, which is motivated by the increasing resolutions and availability of Remote Sensing (RS) images. Here we focus on
region-growing segmentation, which is regarded as a time consuming and demanding approach in terms of computational resources.
Its parallelization is a complex problem since it usually affects the final outcome in comparison to what would be delivered by a
sequential solution. This is due to the fact that subdividing an image to perform segmentation of its tiles concurrently usually
introduces undesirable artifacts near to the borders of the image tiles. Additional processing steps are then required to properly
stitch together the segments alongside tiles borders in order to eliminate such artifacts. In this work we evaluated alternative
implementations of a previously proposed region-growing distributed segmentation approach, which was originally built on top
of the Hadoop distributed computing framework. We developed a new implementation of the approach, which was built with the
Spark framework, and compared its performance with that of the original implementation. In this investigation RS images of various
sizes were processed using different configurations of a physical computer cluster. We evaluated computational performances and
accessed the differences among the segmentation outcomes generated by the alternative implementations. We also assessed the
stability of the implementations by comparing the segmentations produced with different cluster configurations. Although the
approach is, in principle, suitable to any region growing algorithm, the experiments were performed with a particular segmentation
method, and the results showed that the Spark implementation consistently outperformed the Hadoop counterpart, bringing in most
cases a significant improvement in terms of processing time. The experiment results also attested the stability of the distributed
segmentation approach, as very similar results were produced with the alternative implementations, running on different cluster
configurations.

1. INTRODUCTION capacity of handling huge volumes of data, with respect to

computational techniques and resources (Lee , Kang, 2017).

Considering the current rate of change of the Earth’s surface,
produced directly or induced by human activity, and the
growing frequency of extreme environmental effects related
to global warming; efficient methods for Remote Sensing
(RS) data analysis are of utmost importance in a variety of
application fields, such as environmental and urban monitoring,
disaster response, food security, among others.

Advances in Earth observation technologies were responsible
for increasing, at a very fast pace, the availability of data that
can be used to study, predict and mitigate problems associated
with these new environmental conditions. An increasing
number of aerial and orbital systems are currently producing a
great amount of input for those purposes. Illustrative examples
are ESA’s Sentinel Data Access service, which was, by the
end of 2017, publishing around 10 TB of data daily (Castriotta
, Knowelden, 2018), and NASA’s EOSDIS Project, which
currently adds about 6.4 TB of data to its archives and
distributes almost 28 TB worth of data every day (Blumenfeld,
2019).

This scenario, however, leads to challenges related to the
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There is, therefore, an important demand for automatic tools
for interpreting RS images in a robust and scalable way.

Such increasing rate in digital data collection and the
consequent demand for efficient data processing techniques
capable of handling very large datasets is, however, not
exclusive to Remote Sensing. Different information technology
solutions have been devised to tackle this problem, and most of
those initiatives are based on distributed processing: in which
the datasets are divided into smaller sets that are processed
independently, on different computing units.

Recently the authors of (Happ et al., 2016) proposed a
novel approach for handling region-growing segmentation in a
distributed way. Such approach enables distributed processing
of very large RS images in a physical or virtual cluster, e.g.,
using cloud computing infrastructure. In this approach the
image to be segmented is divided into tiles, which are indexed
according to a particular indexing technique and processed
independently on the various cluster nodes. After independent
processing, a hierarchical stitching mechanism is employed in
order to suppress segmentation artifacts along the borders of
the tiles. Experiments conducted with an implementation based
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on the MapReduce distributed programming model (Dean ,
Ghemawa, 2008) demonstrated the robustness and scalability
of the approach. The solution was built over Apache
Hadoop (Apache Hadoop Development Team, 2019), a widely
used open-source implementation of the MapReduce model.

Meanwhile, alternatives to the MapReduce model have been
proposed, in particular the Apache Spark distributed computing
framework (Apache Spark Development Team, 2019), which
has attracted much attention in the last few years, mostly
because of its capacity to outperform Hadoop in many
applications. ~ And this is due to its ability of sharing
memory among cluster nodes, instead of restricting inter-node
communication to data file access, as it the case in Hadoop and
in alternative distributed frameworks such as Apache Tez (Saha
et al., 2015).

In this work we developed and evaluated a new implementation
of the distributed segmentation approach proposed in (Happ et
al., 2016) built on top of the Spark framework, and compared
its performance with that of the original implementation. In
this investigation we carried out a number of experiments
in which RS images of various sizes were processed using
different configurations of a physical computer cluster. We
evaluated not only computational performance, but also
accessed the differences among the segmentation outcomes
generated by the alternative implementations. Furthermore, we
assessed the stability of the implementations, by comparing the
segmentations produced with different cluster configurations.

The remainder of this paper is organized as follows. In the
next section, we indicate some related works. In Section
3 the distributed segmentation approach is briefly described,
and in Section 4 we comment on the differences of the
alternative distributed frameworks. In Section 5 we describe the
experimental analysis, and in Section 6 we present conclusions
and directions for future work.

2. RELATED WORK

Region-growing image segmentation is considered an
expensive procedure in terms of processing time.  This
has to do with the fact that, at least in the most sophisticated
and popular algorithms such as the ones proposed in (Baatz
, Schipe, 2000) and (Camara et al., 1996), for two adjacent
regions to be merged, all their neighbors have to be inspected.
Also, in each of the various iterations of the algorithms, all
regions must be visited.

Such computational burden has inspired a number of parallel
image segmentation algorithms, ranging from traditional
data-parallel approaches to GPU implementations. The work
(Barder et al., 1996) proposed a parallel region-growing
implementation for distributed systems that assumes a shared
memory with a global address space. The authors of (Montoya
et al, 2003) implemented a parallel message passing
split-and-merge algorithm, but focused on the problem of
load imbalance. Also, (Wassenberg et al., 2009) proposed a
graph-based parallel algorithm for RS image segmentation that
runs on multicore processors.

In order to handle the growing sizes of RS image data, parallel
algorithms typically have to divide an image into tiles and
process them independently. The main problem with this
approach is how to deal with the segments that touch the borders

of the tiles. The work (Michel et al., 2015) proposed a
post-processing step for a mean-shift segmentation algorithm
that merges neighbor segments on tile borders if their contact
surface is large enough. The author of (Tesfamariam, 2011)
proposed an edge detection algorithm based on MapReduce that
performs edge detection independently and applies a reduction
step to merge the results. In (Cao et al.,, 2014) the authors
introduced a parallel k-means clustering algorithm that runs
on a cloud environment, their post-processing step, however,
is sequential. The authors of (Tilton et al., 2012) proposed a
region-growing segmentation algorithm that allows segments
with spatially disjoint regions, the algorithm includes a serial
processing window artifact elimination step that requires
parameters, such as the minimum number of regions and merge
threshold to converge. The authors of (Korting et al., 2013)
proposed an adaptive tile division approach where the image
gradient is used to create tile lines that follow the border of the
segments; however, the method might yield erroneous results
due to large, highly homogeneous image regions close to the
cutting lines. The work (Lassalle et al., 2015) introduced the
concept of stability margin for each tile to determine sets of
segments that will not be affected by image tile division, their
method aims at ensuring equivalent results for a tile-based
region-growing segmentation with arbitrary tile sizes in a
sequential way.

The authors of (Happ et al., 2016) proposed a distributed
region-growing segmentation approach that deals with the
border artifacts produced by independent tile processing. Three
post-processing strategies were devised to stitch together the
segments that touch tile limits. The results produced with
an implementation based on the Apache Hadoop framework,
showed a considerable reduction of processing times, and
segmentation outcomes very similar to those of the sequential
execution.

In this work we compare the outcomes of the original
implementation of the approach proposed in (Happ et al., 2016),
with another implementation, built with Apache Spark. In the
next section we briefly describe the approach and its different
post-processing strategies, as well as the main characteristics of
the Spark and Hadoop distributed computing frameworks.

3. DISTRIBUTED SEGMENTATION APPROACH

A region-growing segmentation procedure iteratively merges
neighboring segments until a stopping criteria is reached. The
basic idea to distribute the processing of such procedure,
is to dived the input image into tiles and process each tile
independently. This solution, however, requires some specific
mechanism to deal with the segments located at the edges of
the tiles, or else the outcome will contain numerous segments
with edges affected by artifacts, i.e., straight borders at the tile
divisions.

The approach proposed in (Happ et al., 2016) deals with this
problem in three steps. Initially, the image is divided into
tiles which are distributed to different computing units. Then,
each tile is segmented independently. Finally, a post-processing
method is used to stitch adjacent segments that touch the edges
of the tiles in order to suppress the artifacts generated by the
independent segmentations.

It is assumed that the internal segments, the ones that do not
touch the edges of the tiles, are correctly delineated, that is:
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they are not affected by the division of the image. Although
this assumption is not necessarily true in all cases, it makes
sense primarily because those segments are less subjected
to the potential influence of pixels in adjacent tiles. This
hypothesis implies a much smaller amount of processing during
the stitching process, and allows the segments associated to
different tiles to be grouped without critical memory problems.

A particular spatial indexing scheme, with different hierarchical
levels, is used to determine the geographical extent of the
image tiles, and to label segments. The indexing scheme
supports clustering of segments in the post-processing step
according to their spatial location. The image division relies
on a hierarchical grid of cells, called geocells. The top-most
geocell layer contains a single geocell, which covers completely
the image extent. This cell is subdivided into four geocells in
the immediately lower layer. From then on, each geocell is
divided recursively into four cells in the next lower layer until
a layer with cells of the same size of the desired tile size is
reached, thereby forming a quadtree structure.

Three post-processing strategies are defined. The first and
simplest has a single step, which allows adjacent segments that
touch the same tile borders to be merged, acording to merging
rule of the segmentation algorith. This post-processing strategy,
called Simple Post-Processing (SPP), is the fastest, but still
produces a considerable number of artifacts.

The Hierarchical Post-Processing (HPP) strategy involves a
hierarchical, iterative procedure. The hierarchical geocell levels
are used to define a progressive post-processing procedure.
Successive steps are performed, until the highest (coarsest)
hierarchy geocell level is reached. The procedure for each
step is exactly the same, but applied to different collections
of segments. At each hierarchical level, the segments that
touch the border of the geocells at that level and intersect
the same upper level geocell are grouped together. Then, the
adjacent segments in each group are allowed to merge. The
processing time is longer, but the number of artifacts is reduced
as compared to the SPP outcome.

The last and most complete post-processing strategy is called
Hierarchical Post-Processing with Re-segmentation (HPPR).
HPPR is similar to HPP but involves re-segmentation at each
hierarchical level. In each iteration step, the groups of tile
bordering segments are dissolved back into pixels, and the
segmentation procedure is carried out over the full extent of
each group. In this way the growth of regions is no longer
bounded by the tiles boundaries. This strategy is naturally the
slowest, but provides a segmentation outcome without artifacts.

4. DISTRIBUTED COMPUTING FRAMEWORKS

Apache Hadoop comprises a software library and a framework
for distributed processing of large data sets across computer
clusters. Hadoop can scale from a single machine up to
thousands of computing units, in physical or virtual computer
clusters. Even though the first official release of Apache
Hadoop distribution was deployed in 2011, Hadoop is now the
de facto standard in big data applications (Hess, 2016).

The Hadoop framework has three main components: the
Hadoop Distributed File System (HDEFS), an open source
implementation of the Google File System (Ghemawat et al.,
2003); the MapReduce API; and a scheduler called YARN (Yet

Another Resource Negotiator) (Vavilapalli et al., 2013). In a
Hadoop application, HDFS ensures that a sufficient amount
of data segments is available, and spread out in the cluster.
Through a process called delay scheduling (Zaharia et al.,
2010a), YARN tries to maximize data locality in order to
reduce network communication. HDFSs architecture follows
the master/slave paradigm, the master keeps information about
data placement, whereas the slaves store data segments and
report their status to the master regularly (Maxdml, 2017). To
ensure fault tolerance and availability, data segment sets are
replicated in different physical locations, in order to provide
resilience to node failures.

Spark belongs to a new generation of Distributed Computing
frameworks (Zaharia et al., 2010b), it became an Apache
project in 2013. Spark is compatible with Hadoops modules,
such as YARN and HDFS, but it also has a standalone mode.
The key motivation behind the Spark project was to enhance
the performance of iterative workloads through in-memory
computations. Due to the numerous disk access required to
process an application, Hadoop is quite inefficient for such
workloads (Maxdml, 2017).

Such in-memory computations rely on a data structure called
Resilient Distributed Dataset (RDD), which are fault-tolerant
collections of elements that can be operated on in parallel, and
can be used to cache a dataset in memory across operations.
RDDs can reference a dataset in an external storage system,
such as a HDFS, and can be created from any storage source
supported by Hadoop. RDDs are lazily computed, in the sense
that sequence of transformations on it will only be process when
the associate data needs to be collected. Moreover, if any data
partition of an RDD is lost due to physical errors, Sparks cache
can automatically be recomputed by re-executing its respective
sequence of transformations (Hess, 2016).

5. EXPERIMENTAL ANALYSIS

In order to evaluate the alternative implementations of the
distributed segmentation approach, we performed experiments
using a WorldView-2 scene, acquired in 2012. The scene covers
urban and rural areas of the Sdo José dos Campos municipality,
in Sdo Paulo state, Brazil.

Figure 1. WorldView-2 image used in the experiments.
(In this figure the image was rotated by 90 degrees.)

The full image (Figure 1), hereinafter called 16K image,
is a pansharpened, 0.5-m spatial resolution image, with
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11370x 16000 pixels, and three bands (red, green, and blue).
In the experiments we also used subsets of this image with
5685x 8000 and 2844 x4000 pixels, denoted in the following
as 8K and 4K images. The subsets were taken from the center
of the full image. Tile size was set to 1024 x 1024 pixels.

The region-growing image segmentation algorithm built into
the implementations of the distributed segmentation approach
is the one proposed in (Baatz , Schipe, 2000). This choice was
due to its complexity and popularity among the remote sensing
community. Its parameter values were kept the same in every
run: scale = 40; color weight = 0.84; compactness = 0.8; bands
weights = 1, 1, 1; merging heuristic = local mutual best fitting.

The experiments were carried out in a physical cluster
composed of 10 nodes. Every cluster node has two Intel R
Xeon-E5345, with 4 cores each, operating at 2.33 GHz, with
a 64-bit architecture, 8 GB DDR2 667MT/s RAM and a 146
GB hard disk, with 10k RPM. We used version 2.6 of Hadoop
and 2.1 of Spark.

Figures 2 to 4 show the processing times of the segmentations
performed with the alternative implementations, for all images
and post-processing strategies. Running on clusters with 1,
3, 6, and 9 nodes, for the 4K and 8K images, and with 3,
5, 7 and 9 nodes, for the 16K image. In all cases one more
machine was reserved for the YARN Resource Manager. We
decided to start with a three machine cluster in the case of the
16K image, because Spark’s Driver Program was consuming
all resources from one cluster node, which was then not
participating in the segmentation task. In the figure legends the
S suffix identifies the Spark implementation and the H sulffix,
the Hadoop implementation.

Speedups were computed as a ratio, considering the execution
time obtained with the smallest number of nodes, for the same
framework and post-processing strategy.

The figures show that the Spark implementation consistently,
and in most cases significantly, outperforms the Hadoop
counterpart in terms of processing time, for all cluster
configurations and post-processing strategies.

Moreover, the speedups associated with Spark were
consistently higher, but some times similar to those obtained
with Hadoop. It is noteworthy that, especially for the
hierarchical post-processing strategies, speedups tend to
decrease in rate, as more machines are used. This has to do
with the fact that in those strategies, as processing reaches the
higher geocell hierarchy levels, the number of tasks decrease,
up to a point that adding more machines will not result in
a linear decrease in processing time. Anyhow, we believe
these results confirm the scalability potential of the alternative
frameworks in the context of tile-based region-growing
segmentation.

Framework/Strategy SPP | HPP | HPPR
Hadoop xSpark (9 nodes) | 0.992 | 0.991 | 1.000
Hadoop (1 nodex9 nodes) | 0.994 | 0.999 | 1.000
Spark (1 node x9 nodes) 0.988 | 1.000 | 1.000

Table 1. Comparison of the segmentation outcomes
according to Hoover metric.

As for the stability of the two implementations, we compared
segmentation outcomes using the Hoover metrics (Hoover et
al., 1996). In Table 1 we show the values associated with the
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Figure 4. Segmentation of the 16K image.

segmentation of the 4K image, for the three post-processing
strategies. We first compared the segmentation produced
with the Hadoop and the Spark implementations running
on nine nodes. Then we compared the outcomes of each
implementation running on one and nine nodes. Recalling that
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the value 1.0 (one) represents a perfect match, we can conclude
that the two implementations generated very similar results. In
the case of the HPPR strategy, all results are identical. The
discrepancies noted for the other strategies can be explained by
the irregular latencies associated to cluster computing, which
can interfere in the order of selecting segments for merging.
Anyhow, a Hoover value of the order of 0.995 indicates that
discrepancies where found in approximately 60 segments out
of 13,400, what represents an insignificant difference.

6. CONCLUSIONS

In this work, we developed and evaluated a new implementation
of the distributed segmentation approach proposed in (Happ
et al., 2016), built on top of the Spark distributed computing
framework, and compared its performance with that of the
original implementation, built using the Hadoop framework.
In this investigation, we made a number of experiments
processing RS images of different sizes, using clusters with
varying number of processing units. In addition to comparing
computational performances in terms of processing times, we
accessed the discrepancies among the various segmentation
outcomes.

With respect to computational performance, the experiments
show that the Spark implementation consistently outperformed
the Hadoop counterpart, for all cluster configurations and for
all post-processing strategies. Additionally, in most cases the
improvement brought by using Spark was very significant in
terms of processing times. The experiments also show the
stability of the distributed segmentation approach, in the sense
that it produces very similar results, if not identical, regardless
of the distributed framework and of the cluster configuration.

As a continuation of this research, we plan to run experiments
on larger clusters, provided by cloud computing infrastructure
services, in order to further investigate the scalability potential
and limitations of the general approach and its particular
implementations. We also want to investigate the stability of
the segmentation outcomes with respect to varying image tile
sizes.
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