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ABSTRACT:

Matching synthetic aperture radar (SAR) and optical remote sensing imagery is a key first step towards exploiting the complementary 
nature of these data in data fusion frameworks. While numerous signal-based approaches to matching have been proposed, they often 
fail to perform well in multi-sensor situations. In recent years deep learning has become the go-to approach for solving image matching 
in computer vision applications, and has also been adapted to the case of SAR-optical image matching. However, the hitherto proposed 
techniques still fail to match SAR and optical imagery in a generalizable manner. These limitations are largely due to the complexities 
in creating large-scale datasets of corresponding SAR and optical image patches. In this paper we frame the matching problem within 
semi-supervised learning, and use this as a proxy for investigating the effects of data scarcity on matching. In doing so we make an 
initial contribution towards the use of semi-supervised learning for matching SAR and optical imagery. We further gain insight into 
the non-complementary nature of commonly used supervised and unsupervised loss functions, as well as dataset size requirements for 
semi-supervised matching.

1. INTRODUCTION

The collection and exploitation of complementary information
from multi-modal data sources enables a deeper understanding of
the world and is critical in many applications across multiple do-
mains. A key first step in any data fusion process is determining
correspondences among these data sources in order to align and
further exploit the complementary information in each modality
(Schmitt and Zhu, 2016). In the case of image-based data fusion
this relates to determining corresponding image regions across
images which may have been acquired by different sensors, at
different viewpoints and at various resolutions.

While the task of determining correspondences in conventional
computer vision applications, such as structure from motion and
pose estimation, has seen great progress and is solved to the de-
gree of being usable operationally, it is still an open and rele-
vant problem in the field of remote sensing. This is especially
true when considering the case of determining correspondences
in highly complementary, but vastly different image sources such
as between synthetic aperture radar (SAR) and optical imagery
(Schmitt et al., 2017).

As can be seen in Figure 1, the vastly different image acquisition
schemes of SAR and optical sensors lead to imagery that not only
depicts different properties of a scene, but also contains signifi-
cantly different geometric distortions and imaging artifacts. Syn-
thetic aperture radar imagery captures the physical characteristics
of a scene, such as surface roughness or water content, while op-
tical imagery provides details as to the chemical composition of
the target area. Furthermore, SAR imagery suffers from imag-
ing artifacts such as speckle, layover and radar shadow - none
of which are present in optical imagery. These vast differences
make determining correspondences between the data a challeng-
ing task.

Although many traditional feature matching methods have been
proposed for matching SAR and optical data, e.g. (Ye and Shen,
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Figure 1: An example of corresponding SAR and optical patch
pairs. Matching the image pairs in (a,b) and (c,d) proves to be a
challenging task, even for domain experts.

2016, Ye et al., 2017, Dellinger et al., 2015), many of them still
exhibit sub-optimal performance especially in high and very high
resolution imagery. The advent and success of deep learning in
developing robust solutions to the correspondence problem in
traditional computer vision settings, e.g. by (Han et al., 2015,
Zagoruyko and Komodakis, 2017), has lead to its application to
multi-modal matching within remote sensing, e.g. in (Mou et al.,
2017, Merkle et al., 2017a, Hughes et al., 2018b). Despite deep
networks being universal function approximators, the results of
their application to the SAR and optical matching problem have
been mixed and with varying degrees of robustness and general-
izability. These effects can be attributed to three main challenges:
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firstly the intractability of creating large-scale annotated datasets
due to SAR imagery being difficult, even for experts, to interpret;
secondly the complex nature of SAR image formation which pre-
vents the creation of realistic, synthetic datasets and finally the
natural ineffectiveness of transfer learning techniques to extract
meaningful feature representations from SAR, and lesser so, from
optical space-borne imagery. These factors are all directly im-
pacting on the feasibility of training the complex deep networks
required to accurately determine correspondences between com-
plex multi-modal data sources such as SAR and optical data.

To this end, we propose the use of semi-supervised learning to
relax the requirements for large-scale labeled data in order to
learn a well-generalizing SAR-optical image matching network.
As semi-supervised learning has not yet been applied within this
domain, the question still remains as to how much labeled data
is required, and how well features learned in an unsupervised
manner generalize to support supervised tasks. Additionally, we
strive to understand the effects of data scarcity on the accuracy
of learned SAR-optical descriptors, and the interplay between
the unsupervised and supervised objectives. The main contribu-
tions of this paper can be summarized as follows: We formulate
a semi-supervised approach to SAR-optical image matching and
use this approach as a framework to assess the relative effect of
data scarcity on the network’s ability to learn meaningful descrip-
tors for SAR-optical image matching.

2. RELATED WORK

2.1 Deep Learning for SAR-Optical Matching

Deep learning is becoming an increasingly important method in
the toolbox of remote sensing practitioners, especially in the area
of data fusion, and thus also SAR-optical matching (Zhu et al.,
2017).

The first notable examples of this were provided in short suc-
cession by (Merkle et al., 2017b) and (Mou et al., 2017) who
both proposed variants of a 2-stream architecture. (Merkle et
al., 2017b) trained a siamese network to predict the relative shift
between SAR and optical patches in order to improve the geo-
localization accuracy of the optical data, while (Mou et al., 2017)
trained a pseudo-siamese variant as a binary correspondence clas-
sifier. Taking inspiration from these seminal works, we extended
the network proposed by (Mou et al., 2017) by enhancing the fea-
ture fusion stage and converting the output to a similarity score
based on the soft-max probability (Hughes et al., 2018b).

Taking a different approach to the problem, (Merkle et al., 2018)
proposed the use of a generative adversarial network (GAN) to
generate SAR-like templates from optical image patches. These
templates were then used as input to standard template matching
approaches such as mutual information (MI) or normalized cross
correlation (NCC).

These works all make use of supervised learning, which require
large-scale labeled datasets – in this case, corresponding SAR-
optical patch pairs. As such many of them lack robustness and
generalizability, due to the intractability of creating large datasets
of pixel-wisely matched VHR imagery of urban scenes.

In an attempt improve on this, we proposed a novel hard-negative
mining strategy which does not increase the requirements for
training data in previous work (Hughes et al., 2018a). To do this,
we trained a conditional GAN to generate SAR patches which

could be used directly, along with a corresponding optical image,
for hard-negative mining. However, this approach is computa-
tionally expensive and does not completely resolve the problems
caused by the scarcity of labeled data in SAR-optical matching
problems.

2.2 Semi-supervised Learning

Semi-supervised learning constitutes a set of techniques for ex-
ploiting large-scale unlabeled datasets in order to support the
learning in environments where labeled data is scarce (Chapelle
et al., 2009). While many such methods exist, they all are cen-
tered around the same basic principles. Namely, to exploit unla-
beled data in an unsupervised, or self-supervised manner to learn
generalizable features, and to use small amounts of labeled data
to steer learning towards a specific task.

(Zhang et al., 2016) and (Rasmus et al., 2015) proposed combin-
ing supervised classification with an unsupervised autoencoder-
based reconstruction loss for image recognition. (Lai et al., 2017)
trained a deep network using an adversarial loss to predict the
flow field between a pair of images. This method used sparse
depth information from LiDAR for supervision, while using an
image consistency loss for unsupervised training. (Mukherjee
et al., 2017) proposed the use of deep matching autoencoders to
learn a common latent space between multi-modal data. This was
achieved using a statistical dependency measure to pair unlabeled
data during training and supervised with corresponding training
pairs. Using a multi-phase training approach (Bui et al., 2018)
pretrained a classifier for each domain in a supervised manner and
then used a second training phase to learn a transformation be-
tween the learned embeddings for cross-domain image retrieval.

Autoencoders and reconstruction losses form a fundamental part
of many semi-supervised learning approaches. However, they are
still most often used as an auxiliary loss in supervised learning for
matching multi-modal data (Ngiam et al., 2011, Liu et al., 2018).
This is largely due to increased complexity of semi-supervised
learning and the fact that these techniques lend themselves best to
well conditioned problems (Cholaquidis et al., 2018). While the
image matching problem is known to be ill-conditioned, auto-
encoders have still shown success in the domain of supervised
learning for multi-modal matching. Thus in this paper, we will
propose extensions to supervised autoencoder based matching
techniques to allow for semi-supervised learning in within this
domain.

3. SEMI-SUPERVISED SAR OPTICAL MATCHING

In this section, we describe our proposed SAR-optical matching
network, including the use of autoencoders for semi-supervised
learning of descriptors from labeled and unlabeled data, and the
use of an adversarial loss for aligning these descriptor latent
spaces. Further, we describe the training procedure and how
matching can be achieved using the final trained network. An
overview of the proposed architecture can be seen in Figure 2.

3.1 Network Architecture

In a similar vein to the matching networks proposed by (Liu et
al., 2018) and (Mukherjee et al., 2017), we propose a dual au-
toencoder network in order to learn SAR and optical descriptors
which can later be matched in a computationally efficient man-
ner. In doing so we are able to exploit the self-supervised nature
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Figure 2: A single branch of the proposed network architecture. The autoencoder learns a meaningful latent code space z by learning
to reconstruct the input image, while the discriminator network conditions the distribution of the latent codes using adversarial training
and an arbitrary prior distribution. The optical branch is an exact mirror of the SAR branch and the discriminator network is shared
between the branches.

of autoencoders to learn useful features from unpaired SAR and
optical imagery. Furthermore, we use the latent code generated
in the bottleneck as a natural descriptor and jointly train each do-
main specific autoencoder to align these latent codes. This align-
ment is achieved through the incorporation of a supervised loss
function which is optimized using a small dataset of correspond-
ing SAR-optical patch pairs.

Autoencoders typically consist of two networks, namely, an en-
coder and a decoder. Our proposed encoder network is based
on the VGG11 (Simonyan and Zisserman, 2015) architecture.
This architecture was chosen as a base due to its relative sim-
plicity and low number of parameters. Furthermore, it has been
used as a base to achieved state-of-the-art results in a variety of
tasks (Iglovikov and Shvets, 2018), and is thus considered to be a
good starting point for the exploration of semi-supervised learn-
ing for SAR-optical matching. The decoder network is based on a
combination of convolutional and transposed convolution layers
which are used to upsample the latent code in order to reconstruct
the original image. The autoencoders for each modality (i.e. SAR
and optical) have identical architectures and do not share any lay-
ers or weights. This allows for the learning of modality-specific
features. As shown in Figure 2, the encoder network consists
of blocks of 3 × 3 convolutions, batch normalization and activa-
tion with a Leaky ReLU function with a negative slope of 0.2.
Similarly, the decoder network is made up of blocks of 3 × 3
transposed convolutions with a stride of 2 and ReLU activation,
followed by a 3 × 3 convolutional layer and a ReLU activation.
The depth of the feature maps are detailed in Figure 2.

For a given a SAR-optical image pair Is, Io we train the encoders
Encs,Enco to generate a descriptive latent code, zs or zo respec-
tively, such that the decoder networks, Decs,Deco, can create an
approximate reconstruction of the original inputs from the latent
code. For a non-corresponding SAR-optical patch pair we seek
to minimize the reconstruction loss such that,

Lrecon = ‖Is − Ĩs‖2 + ‖Io − Ĩo‖2, (1)

where Ĩs and Ĩo are the reconstructed images generated by

z ∼ Enc(I), (2)

Ĩ ∼ Dec(z) (3)

using the appropriate, domain specific encoder and decoder net-

works.

For a pair of images labeled as either corresponding or non-cor-
responding, we augment the reconstruction loss, Lrecon, with a
contrastive matching loss,

Lmatch = y(‖zo − zs‖22)+

(1− y){max
(
0,m− ‖zo − zs‖22

)
}, (4)

where y is the target label (zero for non-corresponding and one
for corresponding), and m is the margin. The contrastive loss
encourages the network in learning a latent space where corre-
sponding pairs are near to each other, while non-corresponding
pairs have a squared norm distance of at least margin m (Chopra
et al., 2005). To ease the tuning of the margin hyperparameter,
we took the L2 norm of the each of the descriptor vectors zo and
zs prior to the calculation of the contrastive loss. This ensures
that both descriptors are on the hypersphere before matching and
allows the use of normalized measures such as the cosine distance
for matching the descriptors. This is significantly more efficient
than descriptor-specific matching networks as the descriptors can
be precomputed for each image patch.

In the end, the semi-supervised matching network is trained by
minimizing the respective reconstruction losses Lrecon for all
SAR and optical data (paired and unpaired), while additionally
minimizing the matching loss Lmatch for labeled, i.e. paired,
data:

Lsemisuper =
∑
i∈Da

[
Lrecon

(
Iis, Ĩis

)
+ Lrecon

(
Iio, Ĩio

)]
+

∑
j∈Dl

Lmatch

(
Enc(Ijs ),Enc(Ijo)

)
, (5)

where Da and Dl represent the datasets of all, and labeled (cor-
responding and non-corresponding) SAR-optical patch pairs, re-
spectively. Optimizing both the modality-specific reconstruction
loss as well as the joint matching loss enables the network to
learn to extract important features and generate descriptive latent
codes from unlabeled data, while learning to align these latent
spaces using a smaller labeled dataset.

While autoencoders are capable of learning complex data man-
ifolds, these manifolds are often poorly conditioned with weak
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supports. Thus they often do not extend well to unseen data, such
as imagery with a slightly different data distribution or from a
different spatial region. This is due to the fact that the manifold
is only smooth near to existing samples, i.e. the training samples.
To reduce these effects, and simplify the alignment between the
modality specific latent distributions we propose to impose a con-
tinuous prior distribution p(z) on the respective latent codes. This
is realized through the reformulation of our modality specific au-
toencoders as adversarial autoencoders with a joint adversary, and
is described in the following.

3.2 Adversarial Training

An adversarial autoencoder is an autoencoder which is regular-
ized by matching the generated posterior q(z) to an arbitrary prior
p(z). This is achieved through a min-max game in which the
generator network, the encoder (Enc) of the autoencoder, learns
to maximize the error of a discriminator network (Dis), while the
discriminator learns to minimize the classification error of sam-
ples coming from the prior and the posterior (Makhzani et al.,
2016). This objective function can be expressed as:

min
Enc

max
Dis

E
z∼p(z)

[log(Dis(z))] + E
I∼Da

[log(1− Dis(Enc(I)))].

(6)

In order to prevent the discriminator being able to learn the prior
and posterior distributions too easily, the discriminator network
is kept relatively shallow and simplistic. In our case, the discrim-
inator is comprised of three fully connected layers of decreasing
size, each of which is followed by a Leaky ReLU activation with
a negative gradient of 0.2. The last layer of the discriminator uses
a sigmoid activation to classify the input vector as either coming
from the prior or posterior distribution. This network structure
can be seen in Figure 2.

As we wish for the SAR and optical latent spaces to be aligned,
such that corresponding pairs appear nearby in the code space,
we impose the same prior on both latent distributions and solve
the min-max problem over both encoders and the shared discrim-
inator. This is done by alternating between updating the discrimi-
nator network and the generator (encoder) network using samples
from the full dataset of labeled and unlabeled SAR-optical pairs.

Due to instabilities which can arise during the optimization of the
min-max game (Equation 6), we replace the traditional genera-
tive adversarial loss with a Wasserstein-distance-based loss (Gul-
rajani et al., 2017). The Wasserstein loss strives to optimize the
min-max game in terms of distributions rather than directly as a
classification problem, and is thus more robust against gradient
explosion and problems of mode collapse. Thus our final semi-
supervised matching network is trained by minimizing the dis-
criminator and autoencoder objective functions,

Ldis =
∑
i∈Da

(
Dis(Enc(Iis)) + Dis(Enc(Iio))− 2

(
Dis(zip)

))
,

(7)

Lae = Lhnet −
∑
i∈Da

(
Dis(Enc(Iis)) + Dis(Enc(Iio))

)
, (8)

where zip is a sample from an arbitrary prior distribution p(z).
In our case, we define p(z) as a normal distribution such that
p(z) ∼ N (0, 5).

3.3 Implementation Details

We implement the proposed approach using the PyTorch deep
learning framework (Paszke et al., 2017). The optimization of the
autoencoders is performed using the Adam solver with β1 = 0.9
and β2 = 0.99 and a weight decay of 10−4. The discrimina-
tor network is optimized using stochastic gradient descent (SGD)
with a momentum of 0.9, weight decay equal to 3 · 10−4 and a
learning rate of 4 · 10−3.

The learning rate for the Adam optimizer was determined us-
ing the search method proposed by (Smith and Topin, 2017),
whereby the learning rate is rapidly increased from a small value,
10−7, over consecutive batches while the loss is recorded. The
learning rate is then selected to be in the region where the loss
decreased in a smooth and constant manner (region of highest
gradient). Using this approach we found the optimum learning
rate for the Adam optimizer to be in the range of 5 · 10−5 and
5 · 10−4. This learning rate range was then used to initialize a
one-cycle policy learning rate scheduler to dynamically vary the
learning rate during training (Smith and Topin, 2017). The full
network was then trained in an end-to-end manner for 100 epochs
with a batch size of 32.

To improve the stability of the adversarial training the discrim-
inator was trained using an update schedule with five times the
frequency of that of the generator. Furthermore, the discrimina-
tor weights were clipped to the range of [−0.1, 0.1] in order to
preserve the 1-Lipschitz constraints required for the Wasserstein
loss (Petzka et al., 2017, Gulrajani et al., 2017).

Data augmentation was used to improve generalization and pre-
vent overfitting due to the relatively small supervised dataset
which we used. The data augmentation scheme included 1) hori-
zontal and vertical flipping with a probability of 0.5 for each cor-
responding image pair, 2) the addition of Gaussian white noise
with a standard deviation of σ = 0.02 to the optical image, and
3) scaling of image intensities by a randomly selected factor of
[0.95, 1.05], with a probability of 0.2. In order to preserve the
accuracy of the labeled dataset, the same flipping and scaling
transformations were applied to each image in the image pair.
For the unlabelled dataset, these transformations are applied in-
dependently to each image.

4. EXPERIMENTS

4.1 Experimental Setup

As large-scale SAR-optical correspondence datasets are difficult
to produce for very high resolution imagery, especially in urban
areas, we make use of the UrbanAtlas dataset and reduce the re-
gion of interest for matching to areas which are mainly comprised
of rural and semi-urban areas. In doing so we can limit the ge-
ometric differences between the SAR and optical imagery, and
thus can derive corresponding points using the geo-localization
information. While this approach may contain inaccuracies, these
are assumed to be small at the spatial resolution of the dataset.

The UrbanAtlas dataset is comprised of high resolution (2.5m
GSD) TerraSAR-X and PRISM imagery of 23 cities across Eu-
rope. In order to increase the probability of salient features be-
ing present in both images we applied a Harris corner detector
to the optical domain and applied a non-maximal suppression fil-
ter with a spatial constraint to ensure a minimum distance of 128
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Figure 3: The distribution of the cities which were used for train-
ing (yellow), testing (black) and validation (white).

pixels between feature points. These feature points were then
used as the center point when cutting SAR and optical patches,
of 256 × 256 pixels, from the scenes. For training we extracted
50,000 patch pairs from 12 cities; 10,000 patch pairs from 3 cities
for validation and 10,000 patch pairs from 8 cities for testing. The
distribution of the cities into training, testing and validation sets
is depicted in Figure 3.

In order to optimize the supervised loss we require both positive
and negative training pairs. In order to achieve this we utilized a
center crop of 128×128 pixels as the positive training pair, and an
off center random crop of 128×128 to form a non-corresponding
negative pair. The motivation for cropping both the positive and
negative pair from the same patch was that nearby regions are
likely to be more similar, giving the negative pair a similar dis-
tribution to the positive pair. This is expected to provide harder
negative examples than purely random patch selection.

During pre-processing, all image patches were scaled to the range
[0, 1] and then standardized to zero mean and one standard devi-
ation using the normal distributions as calculated from the SAR
and optical images of the training set, i.e. NSAR(0.5, 0.2) and
NOpt(0.45, 0.15). All other hyper-parameters were kept fixed
for each scenario, such that the only variable was the degree of
supervision.

For prediction at test time, we make use of a sliding win-
dow search procedure with a fixed optical template patch and a
256× 256 SAR image search region. Matching is performed by
calculating a descriptor for the central optical patch, and compar-
ing this to the descriptors generated from a 128 × 128 sliding
window over the SAR image. Thus, we obtain a 256×128×128
descriptor volume for the SAR search region. The final corre-
spondence map is then computed by calculating the cosine sim-
ilarity between the descriptor volume and the descriptor of the
optical template patch.

4.2 Matching under Data Scarcity

In order to assess our proposed network’s ability to learn robust
and discriminative features under conditions of data scarcity, we
train the network with varying degrees of supervision. This fur-
ther allows us to assess the effects of data scarcity on training
the network, as well as the dynamics between the supervised and
unsupervised loss functions.

We split the training dataset into supervised and unsupervised
subsets with ratios of 100%, 75%, 50%, 25% and 5% supervised
data to unsupervised data. The supervised subset is then over-
sampled to ensure that the distribution remains balanced. The
network is then trained using alternating batches of unsupervised
and supervised data.

The results of matching for these various scenarios are depicted
as histograms/density functions of the pixel distance between the
detected matching point and the ground truth location, as seen in
Figure 4.

From Figure 4 it is clear that there is a non-linear relationship
between the level of supervision and the number of well matched
pairs. This relationship is particularly evident when observing the
1-percentile for each of the scenarios. The overall shape of the
distribution should be noted too as it provides important insights
into the network’s matching abilities.

Due to the complexities of matching SAR and optical imagery it
is expected that matching efforts will only yield a few correspon-
dences. Thus it is often easier to obtain an intuition for the per-
formance of a matching algorithm through a qualitative investiga-
tion of the correspondence maps for successful and unsuccessful
matches. To this end Figure 5 depicts a few such examples for
test scenes of varying building density and difficulty.

In an ideal matching scenario we would expect the correspon-
dence maps, as shown in Figure 5, to have a single point of corre-
spondence (red pixel) at the center, with the values at other offsets
being relatively low in comparison (blue). However, in reality it
is much more common to see a Gaussian like spread around the
point of correspondence, with the peak value indicating the cor-
rect shift for maximal correspondence. From Figure 5 we can
clearly see these point spread functions which depict the point of
correspondence.

5. DISCUSSION

5.1 Semi-Supervised Matching

The examples in Figure 5 were selected as a fair depiction of
the range of results which were obtained. From these examples,
and in a qualitative manner, it is clear that the network is able
to achieve SAR-optical matching, specifically in rural and semi-
urban areas, across many levels of supervision.

On the other hand, the number of accurately matched points re-
mains low, as evident from Figure 4. However, a large majority of
data fusion tasks (such as stereogrammetry or image registration)
require only a few reliable matches, i.e. they rely on a low false
positive rate instead of only a high true positive rate. In conjunc-
tion, a high number of false negatives does not negatively impact
follow-on applications.

The low number of detected correspondences is related to the vast
differences in geometry between SAR and optical imagery which
leads to salient points in the optical domain not always being vis-
ible in the SAR domain. Thus, the matching of these specific
points becomes intractable even in the case of a fully supervised
approach – which by nature of having more examples to learn
from – should perform better than a semi-supervised approach.
This outcome is also depicted in results corresponding to the SAR
scene in Figure 5c, whereby the sharp edges and corners of the
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Figure 4: Histograms reflecting the precision of the determined matched point when compared to the ground truth location for varying
degrees of supervision. The dashed black line represents the mean matching distance while the dashed blue line represents the 1-
percentile matching distance.

building in the optical domain is not clearly visible in the SAR
domain.

The relative consistency of these correspondence maps, across
multiple levels of data scarcity, support the hypothesis that using
a shared adversary and supervised objective function, we are able
to align these latent spaces in a meaningful way for cross domain
matching; even with very little data.

Furthermore, we note from Figure 5 that the spread of the cor-
respondence peak appears to grow as we decrease the amount of
supervision. This is providing insight into the increased uncer-
tainty in the matching process as the latent distributions are only
aligned at a small number of locations. Furthermore, and perhaps
more importantly, we note that in the case of failed correspon-
dences the correspondence map no longer represents a Gaussian
like distribution and instead becomes multi-modal or somewhat
random – as depicted in the results corresponding to Figure 5c.
This observation could perhaps be exploited in future work to fil-
ter out failed correspondences, or to design more sophisticated
correspondence point selection schemes; as selecting the point of
correspondence based on a single value rather than based on the
distribution of values is susceptible to noise.

5.2 Effects of Data Scarcity

From the examples depicted in Figure 5 the impression arises
that the proposed network performs best in semi-urban scenes
(cf. Figure 5b), while it also shows reasonable performance in
rural scenes (cf. Figure 5a). In urban scenes (Figure 5c-d), how-
ever, the matching accuracy varies significantly at different levels
of supervision with the corresponding point shifting to a variety
of locations. The reason for the better performance in semi-urban
environments is likely due to the well distributed nature of objects
in the scene, which allows the network to observe enough diver-
sity in a patch that the descriptor can accurately capture the inher-

ent details. In rural scenes, more often than not, there are fewer
visual features and the scene has a relatively high self-similarity
index, and thus the descriptors at multiple locations are similar.
In urban scenes, the dense spacing of buildings, and thus the in-
creased layover effects coupled with the 2.5m resolution obfus-
cate features and degrade the lower level structure of the scene,
thus creating regions which have similar visual appearance, and
in turn similar descriptors and multiple peaks in the correspon-
dence map.

From Figure 4 the effects of data scarcity are visible in the over-
all distribution of the matching errors. As the amount of super-
vision is decreased the histogram becomes more skewed towards
the right, and the number of successful matches for lower thresh-
old values decreases significantly. This can be clearly observed
when comparing the histograms of the fully supervised baseline
(cf. Figure 4a) network to that of the scenario where only 5%
supervision (cf. Figure 4d) was employed, where the former has
a tighter distribution with a lower mean matching error, while the
latter has a long tail and a very right-skewed distribution.

From further evaluation of Figure 4 it is clear that there isn’t a
linear trend between the number of accurately matched pairs and
the amount of supervision used during training. This is evident
in the accumulation of the number of matches which fall in the 1-
percentile. Through this observation it is clear that 75% supervi-
sion and 25% supervision both have a higher number of low-error
matches than the baseline approach.

At first glance this outcome can seem counter intuitive, however,
an analysis of the literature (Dai et al., 2017) leads to the hy-
pothesis that the unsupervised reconstruction loss and supervised
matching loss are orthogonal to some degree. Thus, by optimiz-
ing for both losses in the baseline method the network ends up
in a local minimum which is not necessarily best suited to ei-
ther task. The reduction in the amount of supervision in the net-
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(a) (b) (c) (d)

(e) Optical (f) 100% (g) 75% (h) 50% (i) 25% (j) 5%

Figure 5: Correspondence maps produced under varying conditions of data scarcity, on example scenes of differing density. (a-d)
exemplary SAR test scenes, corresponding rows depicting (e) optical image patch, and (f - j) correspondence maps when trained with 
supervision percentage of 100%, 75%, 50%, 25% and 5% respectively.

work can be likened to applying some weighting function to the
loss functions, and thus prioritizing the one objective over the
other. In doing so the network is able to find a better optimum for
the latent space generation task (reconstruction and adversarial
losses) and the alignment of these spaces becomes an auxiliary
task. While we would prefer to improve matching over recon-
struction, it appears from the results that the prioritization of the
adversarial task (by decreasing the supervision level) does in turn
improve the matching task in some situations. This, however,
would need to be subject to further investigation to fully under-
stand the dynamics at play.

6. SUMMARY AND OUTLOOK

In this work, we proposed a semi-supervised approach to learn
modality-specific features which are matchable via a simple
distance-based metric, in our case cosine similarity. The ap-
proach consists of modality-specific autoencoders, which learn
feature representations from unlabeled data, and are trained in
an adversarial manner to enforce smoothness on the latent space.
These learned representations (descriptors) are then aligned, us-

ing a supervised matching loss such that matching can be per-
formed.

We further evaluated the effects of data scarcity on learning
meaningful feature descriptors for SAR-optical matching by
training our proposed network at varying levels of supervision
and analysing the matching results in the form of correspondence
maps, as well as the precision achieved for matching on our test
set.

Overall we showed that even under very low data conditions, i.e.
only 5% of supervision, we were able to obtain accurate cor-
respondences in rural and semi-urban areas. While the overall
number of accurate (1-percentile) correspondences was low, the
strong structure of their correspondence maps leads us to believe
that they could be filtered out during a post-processing step. This
will be subject to further investigation in future work.

Furthermore, we found that the unsupervised and supervised ob-
jective functions are not fully complementary. That leads to a
stunted baseline approach due to the strong trade-offs in the fea-
ture space required for each task. However, it was found that

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-71-2019 | © Authors 2019. CC BY 4.0 License.

 
77



decreasing the amount of supervision can be sufficient to enable 
the network to learn a better latent distribution, and thus achieve 
higher accuracy in matching. This paper provides an initial con- 
tribution to the use of semi-supervised learning to exploit unla- 
belled training data in order to support SAR-optical matching, 
where training data is usually scarce and difficult to obtain. In 
future work we will investigate post-processing methods for ex- 
tracting high accuracy correspondences based on the structure of 
their correspondence maps. We will further investigate the hy- 
pothesis that lowering supervision signals is equivalent to apply- 
ing a weighting between the loss functions, and then will inves- 
tigate ways of automatically learning an inverse weighting to re- 
prioritize the matching/alignment task objective over the unsu- 
pervised objectives.
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