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ABSTRACT:

We explore the use of semantic segmentation in Digital Terrain Models (DTMS) for detecting manmade landscape structures in 
archaeological sites. DTM data are stored and processed as large matrices of depth 1 as opposed to depth 3 in RGB images. The 
matrices usually contain continuous real-valued information upper bound of which is not fixed, such as distance or height from a 
reference surface. This is different from RGB images that contain integer values in a fixed range of 0 to 255. Additionally, RGB 
images are usually stored in smaller multidimensional matrices, and are more suitable as inputs for a neural network while the large 
DTMs are necessary to be split into smaller sub-matrices to be used by neural networks. Thus, while the spatial information of 
pixels in RGB images are important only locally within a single image, for DTM data, they are important locally, within a single 
sub-matrix processed for neural network, and also globally, in relation to the neighboring sub-matrices. To cope with the two 
differences, we apply min-max normalization to each input matrix fed to the neural network, and use a slightly modified version of 
DeepLabv3+ model for semantic segmentation. We show that with the architecture change, and the preprocessing, better results are 
achieved.

1. INTRODUCTION

Airborne Laser Scanning (ALS) is an efficient remote sensing
technique used to collect data on large areas by measuring
the range and reflectance of objects on their surface. Raw
ALS data are stored as point clouds, and have information
on non-terrain objects such as buildings and trees while a
rasterized product of ALS data, Digital Terrain Model (DTM),
is a filtered version in which only the information on the terrain
points are preserved. DTM data could be leveraged to identify
structures on the terrain. Previously, classical machine learning
algorithms were used to detect structures and identify objects in
products of ALS data. Random Forest (RF) is used to to predict
the probability of palustrine wetland in digital elevation data
(Maxwell et al., 2016). Tree-based algorithms are leveraged
for ground water mapping in digital elevation data (Naghibi
et al., 2016). RF and Support Vector Machines (SVMs) are
exploited for forested landslide detection in DTM data (Li
et al., 2015, Pawłuszek , Borkowski, 2016). However, in
classical machine learning algorithms, the features need to be
hand-engineered and selected from the raw data by experts, and
only the meaningful features are used to train a model. For
example, for models processing DTM data, meaningful features
to extract are surface curvature, slope, aspect, distance from
water bodies, and roughness of the terrain, among others.

Recently, deep learning has come into play and shown great
success in many applications. In deep learning models, features
are automatically learned and extracted from the data and no
feature extraction is required beforehand. However, these
models rely on a huge amount of data to learn properly
and not overfit. For image/video data, there are many
benchmark datasets with image and label pairs for hundreds to
millions of examples such as LabelMe (Russell et al., 2008),
ImageNet (Deng et al., 2009), Cityscapes (Cordts et al., 2016),
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and more. In this research, we use deep learning for semantic
segmentation in a derivative of ALS data, namely DTM. We
show that with minimal changes to input data preprocessing
techniques, and a slight modification in the architecture of
the model that proves to work best with RGB data, we can
get reasonable results with DTM data. The preprocessing
approach is applying min-max normalization on each input, and
the modification to DeepLabv3+ architecture is changing the
output size to be smaller than that of the input. The rest of
this paper is designed as follows. Section 2 outlines previous
research. First, it includes famous deep learning methodologies
for image data, which can be adapted to work with DTM
data. Then, applications of these models on ALS or specifically
DTM data are discussed. Section 3 outlines the contributions
of this research work including the deep learning model used
for semantic segmentation, and the type of preprocessing on
the DTM data required by the model. Section 4 discusses the
architecture and the hyperparameters of the model in addition
to the properties of the dataset used in this research. Section
5 shows the results of the experiment, and the qualitative and
quantitative analysis of the results. Finally, section 6 concludes
the paper and lists future research directions on the topic.

2. RELATED WORK

There are varieties of tasks using deep learning in computer
vision research such as image classification, object
localization/detection, semantic segmentation, and instance
segmentation. Image classification is the task of providing a
category/label/class for a given image. Object detection refers
to giving labels and bounding boxes for all possible objects
(of similar or different categories) in a given image. Semantic
segmentation is the task of labelling each pixel in the image
with the object category. Finally, instance segmentation is
providing an outline of each object (of similar or different
category) appearing in the given image, along with their class
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Figure 1. Architecture of DL4DTM. As opposed to DeepLabv3+, the output dimension is, N = M
2 and the second

upsampling is done with a factor 2 rather 4. The rest of the model is exactly the same as DeepLabv3+

labels.

Convolutional Neural Networks (CNNs) are the main building
blocks of computer vision tasks using deep learning. Even
though CNNs were used for digit recognition in 1998 (LeCun
et al., 1998), their usage became popular after AlexNet
(Krizhevsky et al., 2012), a deep CNN architecture for
image classification task, won the 2012 ImageNet Large-Scale
Visual Recognition Challenge (Russakovsky et al., 2015).
After that, many researchers designed models such as
ZF-Net (Zeiler , Fergus, 2014), GoogLeNet (Szegedy et
al., 2015), VGGNet (Simonyan , Zisserman, 2015), and
ResNet (He et al., 2016) to improve image classification tasks.
CNNs are also used in other computer vision tasks. Region
based CNNs (RCNN) (Girshick et al., 2014) are proposed for
object detection. Fast RCNN (Girshick, 2015), and Faster
RCNN (Ren et al., 2015) are improvements to the RCNN
model. YOLO-V1 (Redmon et al., 2016), YOLO-V2 (Redmon
, Farhadi, 2017), and YOLO-V3 (Redmon , Farhadi, 2018)
are incremental improvements in object detection tasks and
are computationally efficient compared to versions of RCNN.
In classification and bounding box regression tasks, the final
layer of a deep CNN model is a dense layer with the same
number of outputs as the number of classes or categories
(in classification), and number of coordinates (in bounding
box regression). A deep CNN model for image classification
could be transformed to perform semantic segmentation by
removing the final dense layer (all together referred to as the
encoder), and adding a few layers of transposed convolutions
and upsampling methods to get the same spatial dimensions
as the input image. The second part of the network is called
the decoder and it makes it possible to produce a label for
each pixel. A Fully Convolutional Neural Network (FCN)
(Long et al., 2015) is used for semantic segmentation. It uses
VGGNet (Simonyan , Zisserman, 2015) as an encoder, and a
series of transposed convolutions and bilinear upsampling as
a decoder. Other examples of CNN for segmentation include
U-Net (Ronneberger et al., 2015), DeepLabv1 (Chen et al.,
2015), DeepLabv2 (Chen et al., 2018a), DeepLabv3 (Chen et
al., 2017), DeepLabv3+ (Chen et al., 2018b), and the works
in (Drozdzal et al., 2016, Jégou et al., 2017, Yu , Koltun,
2015). Another task leveraging CNNs is instance segmentation
producing labels and outlines for every object present in a given
image. Some examples of instance segmentation models are
DeepMask (Pinheiro et al., 2015), SharpMask (Pinheiro et al.,

2016), FCIS (Li et al., 2017), (He et al., 2017), and PANet (Liu
et al., 2018).

The use of CNNs is studied for remote sensing data and
specifically ALS as well. They are used for landuse
classification in remote sensing images (Castelluccio et al.,
2015), feature extraction and classification of hyperspectral
images (Chen et al., 2016, Chen et al., 2014), classification
and segmentation of ALS data (Yang et al., 2018), ground
and multi-class land cover classification (Rizaldy et al.,
2018), tree classification (Hamraz et al., 2018), ground point
extraction and classification (Hu , Yuan, 2016), pointwise and
object-based classification (Politz et al., 2018), classification
of archaeological objects (Kazimi et al., 2018), forest tree
detection and segmentation in ALS data (Windrim , Bryson,
2018), and semantic segmentation in ALS data (Politz , Sester,
2018), among others. While there are many applications of
deep learning and CNNs for ALS data, there is still room for
improvements. With an intent to contribute, we explore the
use of semantic segmentation inspired by DeepLabv3+ (Chen
et al., 2018b) for identifying objects in ALS data acquired
from archaeological sites. Details of the network and our
contribution are included in Section 3.

3. CONTRIBUTIONS

The contribution of this research is two-fold. First, we explore
semantic segmentation for identifying objects in DTM data
acquired from archaeological sites. Second, we show how a
different data normalization technique is required for DTM data
prior to training a neural network. We take DeepLabv3+ (Chen
et al., 2018b) as the basis for our model and adapt it to our
specific problem of semantic segmentation in DTM data. We
first give detailed information on the original DeepLabv3+
model, and then describe the modifications we made to create a
version for our needs.

3.1 DeepLabv3+

DeepLabv3+ (Chen et al., 2018b) is a an encoder decoder
model for semantic segmentation, and an improvement on
top of its previous versions, namely DeepLabv1 (Chen et al.,
2015), DeepLabv2 (Chen et al., 2018a), and DeepLabv3 (Chen
et al., 2017). In deep classifiers, in addition to convolution
operations, there are additional striding and pooling layers.
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Striding and pooling learn higher level abstract information and
help avoid overfitting, decrease the output size, apply fewer
filters, gain invariance to translations in the input, and gain
computational efficiency. However, the abstraction causes loss
of detailed information, and the translation invariance in the
input harms pixel-perfect accuracy in semantic segmentation.
DeepLabv3+ and its predecessors solve this problem by
removing downsampling layers, e.g., pooling and striding and
using atrous convolutions also known as dilated convolutions.
It refers to enlarging the window size, without increasing the
number of parameters, by inserting zeros in the convolution
kernels. Thus, the output feature maps have a larger size, and
fewer upsampling steps are needed. Moreover, objects in the
input image can appear at different scales, and to capture this
information, atrous spatial pyramid pooling (ASPP) is used.
ASPP refers to applying multiple atrous convolution to the input
feature with different rates, and concatenating the results to
capture multiscale contextual information. Finally, rather than
directly upsampling the output feature map to the original input
size, it helps to gradually upsample it through a decoder with a
convolutional layer in between.

In regular convolution, a filter is applied to the image in the
spatial dimensions, i.e., width and height, in a sliding window
manner considering all the input channels thus producing an
output feature map with a single channel. If an output feature
map of more than one channel is desired, it is necessary to
apply the same number of filters to the image and stack the
output feature maps together to get a multi-channel feature
map. This results into having a high number of parameters to
learn and many multiplication operations to perform, requiring
more memory and more computation time. In DeepLabv3+,
the convolutions in the encoder and decoder are operated
with atrous separable convolutions. Depthwise separable
convolutions, as used in the Xception model (Chollet, 2017),
are done in two steps: depthwise convolution and pointwise
convolution. In depthwise convolution, the convolutional filters
have the same number of channels or depth as the input feature
map. Each channel of the filter is convolved separately with
the corresponding channel of the input feature map to produce
a single-channel output feature map. The output feature maps
are then stacked together, and have the same depth as the input
feature map and the filter. Thereafter, pointwise convolution is
applied along the depth of the resulting feature map. it is a 1x1
filter applied across channels. Multiple pointwise convolution
is required to get the desired output depth. This combination
of depthwise and pointwise convolutions, named depthwise
separable convolution, requires fewer parameters to learn with
fewer multiplications, thus resulting in significant gains in
terms of memory and computation time. In DeepLabv3+, the
depthwise convolutions are operated with atrous convolutions.

3.2 DeepLabv3+ for DTM

To correctly label a pixel in RGB images, it is important
to capture the context or local information for the pixel in
consideration using the surrounding pixels. Thus, pixels in the
center of an image are better identified compared to those on
the image boundaries. This is tolerable as usually the target
objects are the focus of the acquisition device, and each image
is independent of other images in the data in the spatial sense.
Semantic segmentation models in general take an input image,
and produce an output of the same spatial dimension as the
input image containing label predictions for each pixel.

DTM data for a big area stored as a large matrix need to be

divided into smaller sub-matrices to be fed to deep learning
models. Each sub-matrix is spatially bound to its surrounding
ones, and unlike RGB images, it is important to include
the local information for pixels in the boundaries of each
sub-matrix using their neighboring pixels that lie in other
sub-matrices. To this end, we propose to design a model that
takes an input (a sub-matrix of DTM) with a spatial dimension
of MxM , and outputs a pixel-level prediction with spatial
dimensions of NxN , where N ≥ M

2
, and the predictions

belong to the central NxN pixels of the MxM input. Hence,
the predictions for each pixel leverage the context in the
surrounding pixels. Once trained, the model could segment the
original big DTM matrix in a sliding window manner cropping
inputs of MxM with a stride S = M −N .

3.3 Data preprocessing

Pixels in DTM data contain continuous information, generally
height from a reference surface. Even though the difference
in height, hence the differences in pixel values, are important
to immediate neighboring pixels, it is less important or even
irrelevant to distant pixels. For example a small grid of a DTM
containing information for a bomb crater in a surface slightly
above sea level differ immensely from another grid of the same
spatial dimension with information for a similar bomb crater on
top of a high hill. Feeding both grids as raw inputs to a deep
learning model could confuse it, and cause a decrease in its
performance. Therefore, a proper preprocessing of the input is
necessary. There are many preprocessing techniques for image
data prior to training a neural network. Some of the common
ones are listed below:

• Zero Centering

newXi = Xi − X̄ (1)

• Standardization

newXi =
Xi − X̄
σ

(2)

• Min-Max Normalization

newXi =
Xi − X̄

max(X)−min(X)
(3)

In all the three equations above, newXi is the transformed
example, Xi is the original raw example, min(X), max(X),
X̄ and σ indicate the minimum, maximum, mean, and
standard deviation of the whole dataset, respectively.

The preprocessing methods listed above are usually performed
to help the machine learning algorithm converge faster. In our
experiments of semantic segmentation on DTM data, we found
that using the preprocessing steps mentioned earlier confuses
the model and the model fails to converge. This is due to
the fact that any two sub-matrices of DTM used as input
examples have different values if they are sampled from two
different regions, e.g., one from a hilltop and the other from
a surface slightly above sea level, even if they represent the
same structure, e.g., bomb craters or charcoal kilns. Due to the
nature of DTM data, it is not the difference in raw values among
two sub-matrices that help distinguish different structures, but
the difference in their values when they are both separately
rescaled in the range [0, 1] using their correspondent minimum
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and maximum values. Thus, rather than applying min-max
normalization using the maximum and minimum of the whole
dataset to calculate rescaled examples, we rescale each example
using the maximum and minimum of that example only. The
equation is given below:

newXi =
Xi − X̄i

max(Xi)−min(Xi)
(4)

Where X̄i, max(Xi), and min(Xi) represent the mean,
maximum, and minimum for each example i, which is different
to those of the whole dataset as used in equation 3 This
approach transforms two sub-matrices representing the same
structures to have similar distribution, even if they were
originally sampled from two different grids of different height.
The original min-max normalization would map them to
different distributions again, and it would be of no help to the
learning algorithm.

With the slight change in the architecture of the DeepLabv3+
model to create a semantic segmentation framework for DTM
data, hereafter referred to as DeepLab for DTM or in short
DL4DTM, and applying the data preprocessing, we performed
some experiments, details of which are given in the next
section.

4. EXPERIMENTS

In this research, we aim to use a slightly modified version of
DeepLabv3+, named DL4DTM, to do semantic segmentation
on DTM data. The following sections give details of the model
architecture, the dataset used, and the experiment setup.

4.1 DL4DTM architecture

DL4DTM basically has the same architecture as DeepLabv3+
with the difference that instead of taking RGB input images
with 3 channels, it accepts DTM sub-matrices which have a
single channel. Another difference between DL4DTM and
DeepLabv3+ lies in the output size. Instead of outputting
a prediction matrix of the same spatial dimension as the
input, DL4DTM outputs a prediction matrix with the spatial
dimensions equal to half of the input, resulting into predictions
only for the pixels in the mid-region of the input. Consequently,
the output of the final convolutional layer is upsampled with
a factor of 2 rather than 4. The architecture for DL4DTM is
depicted in Figure 1.

4.2 Dataset

The dataset used in this research is DTM derived from ALS data
acquired from the Harz Mountains in Lower Saxony, Germany
which is home to early mining regions, water management
systems, and hosts the UNESCO World Heritage Site, Goslar.
The goal of the project is to identify and localize manmade
landscape structures such as bomb craters, charcoal kilns,
dammed ponds, mine shafts, heaps, and ditches, among others.
The challenge with DTM data is creating ground truth labels. It
is time consuming to manually create labels, and additionally, it
is hard to identify structures and objects in DTM data visually
without expert knowledge of the area. In this experiment, we
have labelled data for bomb craters, and charcoal kilns. The
model learns to categorize input data to bomb craters, charcoal
kilns, and background, where background contains everything
else in the dataset.

Model mIOU
DeepLabv3+ 0.77
DL4DTM 0.75

Table 1. mIOU scores for both models on 220 test
examples

The DTM has a resolution of 0.5 meters per pixel, and covers
a total area of approximately 3000 kilometers squared with
the highest elevation of approximately 971 meters. We have
labelled some bomb craters, and charcoal kilns in this area.
There are 157 labelled bomb craters with a diameter in the
range 2 to 10 meters. For charcoal kilns, we have 1044 labelled
examples, with diameters in the range 3 to 19 meters. The
maximum diameters for bomb craters and charcoal kilns are
10 and 19 meters, respectively, which means that in a DTM
with a resolution of 0.5 meters per pixel, a grid of 20x20 and
38x38 pixels in size are required to include the whole object.
To include context, we created input grids of 128x128 pixels
for each example, and to ensure diversity, the 128x128 input
grids are cropped randomly from another grid of size 256x256
centered at the object in consideration. Thus, not every input
of size 128x128 contains objects at the center. In addition
to random cropping, which also serves as data augmentation
technique, we performed random rotations to the input during
training. Finally, the data preprocessing technique explained in
Section 3.3 is done for each input grid prior to being fed to the
network.

4.3 Experiment setup

The input data is prepared as 128x128 pixel grids, thus
the DL4DTM model is designed to take inputs of this
dimensionality. The output of the model however, as explained
in Section 3.2, has a size equal to half of the input size,
i.e., 64x64 pixels. The output pixels are label predictions for
the central pixels of the input grid. DL4DTM inspired by
DeepLabv3+ is implemented in Python using Keras (Chollet,
2015). The model is trained for 150 epochs with a batch size
of 20, randomly generated from the dataset using augmentation
techniques explained in Section 4.2. It is trained to minimize
sparse categorical cross entropy using Adam (Kingma , Ba,
2014) optimization algorithm with a default learning rate
of 0.001. The metric for evaluation of its performance is
mean intersection over union (mIOU). The dataset (before
augmentation) is split to two, around 80 percent (127 bomb
craters, and 854 charcoal kilns) for training and 20 percent
(30 bomb craters, and 190 charcoal kilns) for validation. In
order to compare and evaluate our approach, we use the original
DeepLabv3+ architecture without any change, and train it on
our dataset with the same specifications (except the output size,
which is equal to input size in the original model). At each
epoch, the model is saved to disk, and at the end of training, the
best model is used to scan the test region in a sliding window
fashion as explained in Section 3.2, and produce pixel-level
predictions. The qualitative and quantitative analysis of the
experiments are detailed in the next section.

5. RESULTS

We plot the results of training the two models in the experiments
from Section 4 in Figure 2. The final versions of the two models
are tested on the same validation data, and the mIOU scores are
shown in Table 1.
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(a) Loss during training DeepLabv3+ (b) Loss during training DL4DTM

(c) Mean IOU for DeepLabv3+ (d) Mean IOU for DL4DTM

Figure 2. Performance of the DeepLabv3+ and DL4DTM models on our dataset.

Model mIOU at region 1 mIOU at region2
DeepLabv3+ 0.35 0.37
DL4DTM 0.37 0.47

Table 2. mIOU scores for both models on two test regions

Object Type DeepLabv3+ DL4DTM
Bomb craters 44/51 (86%) 49/51 (96%)
Charcoal kilns 188/233 (81%) 228/233 (98%)

Table 3. Detection rates for DeepLabv3+ and DL4DTM
for each object category.

The trained models are used to perform segmentation on large
DTMs of test region using a sliding window approach. The
test region is scanned using a window of size MxM , with
a stride of M for DeepLabv3+, and that of size M − N for
DL4DTM where M , and N are the dimensions of the outputs
by DeepLabv3+ and DL4DTM, respectively, and N = M

2
.

Example test regions, and the predictions by the two models
are shown in Figures 3 and 4 . Mean IOU for the test region
predictions are shown in Table 2.

The mIOU scores by DeepLabv3+ as shown in Table 1 are
slightly better than that of DL4DTM, but that is expected
because for the same input example, the output for DeepLabv3+
is bigger (128x128) than that of DL4DTM (64x64). In the
ground truth masks, the objects are mostly located in the center,
and pixels far from the center are labeled as zeros. Thus,
for the bigger outputs (as in DeepLabv3+), the proportion
of background labels (zeros) are higher than that of smaller
outputs (as in DL4DTM), and the mean IOU for bigger outputs
is expected to be higher than smaller outputs just by getting the
background labels correct. The superiority of our method is

clearly visible in Table 2, and Figures 3 and 4 since both the
models are evaluated on the same large areas.

Bomb craters and charcoal kilns do not come in circular shapes,
but it is hard to label each of them in their actual shape while
creating training examples. Therefore, the ground truth bomb
craters and charcoal kilns are represented with a circular shape.
Consequently, the calculated mIOU score for the detections
may not be a very accurate measure of performance. To resolve
this, we also count the number of instances for each class that
were detected by the models. There are 51 bomb craters in
region 1, and 233 charcoal kilns in region 2. The detections
are first converted to polygons using ArcGIS software. Using
the Spatial Join operation in ArcGIS, we count the number
of intersections between the ground truth polygons and the
detections by each model. As listed in Table 3, we can see
that our approach captured more examples than the original
DeepLabv3+ directly applied. Even though we are interested in
the exact outline of each object, we are equally interested in the
detection accuracy of the model. Even though the mIOU scores
for region 1 in Table 2 are not significantly different for both
models, the detection rate listed in Table 3 is quite significant
for our approach.

The quantitative analysis show that even though for individual
input data, the original DeepLabv3+ performs slightly better in
terms of mIOU score (as listed in Table 1), in detection rates,
and segmenting larger areas, our approach gives better results,
as recorded in Tables 2 and 3. It is also clear in Figures 3 and
4 that many examples are missed by DeepLabv3+ while our
approach, DL4DTM, correctly identifies them. DL4DTM also
detects more examples that were not labeled manually.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W7, 2019 
PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 18–20 September 2019, Munich, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W7-87-2019 | © Authors 2019. CC BY 4.0 License.

 
91



(a) Hillshade of region 1 (b) Ground truth labels for bomb craters

(c) Predictions by DeepLabv3+ (d) Predictions by DL4DTM

Figure 3. Region 1 containing bomb craters. In 3c and 3d, blue indicate correct predictions, yellow indicate bomb craters
that were not detected by the models, the green circle indicate that the model made a better prediction than the other.

(a) Hillshade of region 2 (b) Ground truth labels for charcoal kilns

(c) Predictions by DeepLabv3+ (d) Predictions by DL4DTM

Figure 4. Region 2 containing charcoal kilns. In 4c and 4d, green indicate correct predictions, the cyan circle indicate
that the model made a better prediction than the other, green shapes without the magenta circle around indicate correct

predictions that were not captured during manual labeling, and yellow indicate examples not detected by the model.
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6. CONCLUSION

In this work, we demonstrated that deep convolutional networks
can be used to perform semantic segmentation and identify
objects in DTM, a derivative of airborne laser scanning
data. Due to the inherent differences in a spatial sense,
and the difference in values between RGB images and DTM
data, a different data preprocessing technique is required
prior to training a neural network. The neural network for
semantic segmentation in this research is a modified version of
DeepLabv3+ (Chen et al., 2018b). To evaluate the performance,
our approach is compared with the original DeepLabv3+
model using the same dataset and the same hyperparameters.
Results of the experiment indicate successful application of
our approach, and prove that the modification in DeepLabv3+
enhances the performance in the case of DTM data. The focus
of our study is detection of manmade landscape structures
in archaeological sites, and the current approach is used to
detect charcoal kilns, and bomb craters. Due to labeling
the ground truth as circular shapes, even though the models
learn to segment the objects in their actual structure, they are
still constrained, and trained to produce somewhat circular
outputs. Additional processing of the input data, and other post
processing steps could improve segmentation performances.

Future research directions include application of this technique
in detection of other interesting objects such as dammed ponds,
mine shafts, heaps, grave hills, and ditches, among others in the
region of study. Moreover, other computer vision techniques
such as instance segmentation, bounding box regression and
object localization could be explored for the same purpose.
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