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ABSTRACT:

The advantages of terrestrial laser scanning (TLS) for geodetic monitoring of man-made and natural objects are not yet fully exploited.
Herein we address one of the open challenges by proposing feature-based methods for identification of corresponding points in point
clouds of two or more epochs. We propose a learned compact feature descriptor tailored for point clouds of natural outdoor scenes
obtained using TLS. We evaluate our method both on a benchmark data set and on a specially acquired outdoor dataset resembling a
simplified monitoring scenario where we successfully estimate 3D displacement vectors of a rock that has been displaced between the
scans. We show that the proposed descriptor has the capacity to generalize to unseen data and achieves state-of-the-art performance
while being time efficient at the matching step due the low dimension.

1. INTRODUCTION

Point clouds have become a standard for dense, digital repre-
sentation of 3D sceneries. However, beyond visualization and
simple distance measurements, raw point clouds are of limited
use and mostly serve as a basis for further processing (Hackel
et al., 2016). Methods based on feature-extraction and match-
ing nowadays represent the state-of-the-art for processing steps
such as coarse registration (Yang et al., 2016), 3D object recog-
nition (Wang et al., 2017), 3D shape retrieval (Bai et al., 2016)
and semantic classification (Hackel et al., 2016). Local feature
descriptors are key elements of the feature-based methods. They
represent information about the local geometry and radiometry
around individual points and have to be descriptive enough such
that the nearest neighbors in feature space refer to points with
similar local geometry and radiometry.

Point clouds derived from terrestrial laser scanning (TLS) are in-
creasingly used to detect and quantify displacements and defor-
mation of man-made and natural structures in geodetic monitor-
ing. In comparison to the traditional geodetic methods based
on precise measurements to individual, carefully selected and
marked points, areal-based techniques for data acquisition, like
TLS, allow detecting changes at non-expected locations (Wun-
derlich et al., 2016). However, multiple challenges remain
unresolved in deformation analysis based on TLS (Holst and
Kuhlmann, 2016), in particular parameterization of deformations
and quantification of error probabilities like false alarm rate or
probability of missed detection. These challenges are solved for
individual, repeatedly measured points but not for point clouds.

We address this challenge herein by proposing feature-based
methods for the identification of corresponding points in point
clouds of two or more epochs. This paves the way to the identifi-
cation of stable areas, deformed areas and areas or objects which
transformed rigidly between the measurement epochs. A typical
application case would be the monitoring of a landslide where
parts of the repeatedly scanned scene may be stable over time
while others change due to the flow of earth and debris, and larger

objects like rocks may translate and rotate but not deform over
time. The approach presented herein will later allow deriving 3D
displacement vectors, which can be tested statistically for signif-
icance and can be used for a more rigorous deformation analysis
properly taking into account rigid body motion and actual defor-
mation.

The paper is structured as follows: We propose a 3D feature de-
scriptor tailored for point clouds of natural outdoor scenes in Sec-
tion 3 and address the high time complexity of the matching step
due to the high-dimensional feature vectors (Gawel et al., 2017)
in Section 4. In Section 5, we show the results of the proposed
approach on a selected benchmark dataset and indicate the appli-
cability of the method for geodetic monitoring by estimating the
3D displacement of individual rocks in a scanned scenery.

2. RELATED WORK

2.1 Local feature descriptors

Over the last decades, hand-crafted feature descriptors were
developed and proposed for specific tasks especially in 3D
computer-vision and robotics. For example, Johnson and Hebert
(1999) proposed the descriptor referred to as spin images, where
the neighborhood of each query point is represented by a 2D
histogram of cylindrical coordinates w.r.t. the normal vector at
the point. Rusu et al. (2008) proposed a feature descriptor for
automatic coarse registration denoted as point feature histogram
(PFH). It is a histogram of the angular variations and distances
between points and their normal vectors in the neighborhood of
the respective query point, calculated using Darboux frames be-
tween pairs of points. Due to the high computational complexity
Rusu et al. (2009) later proposed a more efficient version of PFH
referred to as fast point feature histogram (FPFH). Frome et al.
(2004) proposed a 3D generalization of the 2D shape context de-
scriptor denoted as 3DSC. They use a local point density feature
(as we do herein) computed in a subdivided local spherical neigh-
borhood. However, the spherical grid is not unique and an indi-
vidual descriptor needs to be computed for each subdivision in

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-113-2018 | © Authors 2018. CC BY 4.0 License.

 
113



azimuth. Tombari et al. (2010b) later showed that the descriptive-
ness can be improved by establishing a unique and unambiguous
local reference frame (LRF) at the query point for subdividing
its neighborhood into spatial bins. Tombari et al. (2010a) signif-
icantly improved the performance of 3DSC just by establishing
such an LRF. Similarly, a LRF was also used in Tombari et al.
(2010b) for computing the signature of histograms of orientations
(SHOT) descriptor, which uses the normal vector deviations (also
used herein). SHOT has been identified as still one of the best
performing feature descriptors in a recent extensive evaluation
by Guo et al. (2016).

Inspired by the recent success of (convolutional) neural networks
(NNs) in 2D computer vision, researchers have also proposed
learned feature descriptors. However, such descriptors either re-
quire a volumetric representation which can be very computation-
aly expensive e.g., Zeng et al. (2017), or cannot capture local fine-
grained structures see e.g., Qi et al. (2017). Furthermore, they are
not intrinsically invariant to rotations and try to overcome this by
augmenting the data with random rotations (usually only around
the up-axis). We will present an approach herein where a hand-
crafted high-dimensional feature descriptor is used as an input to
a NN. This approach is similar to the ones proposed by Fang et
al. (2015) and Khoury et al. (2017).

With growing size of point clouds, time and memory efficiency of
the feature descriptors have become crucial, especially for larger
scenes. Particularly the matching step can be very time consum-
ing (Gawel et al., 2017). Researchers tackled this issue by dimen-
sionality reduction using e.g. principal component analysis, e.g.
(Johnson and Hebert, 1999). This reduces the computational bur-
den but comes at the cost of matching performance. On a related
note, several binary feature descriptors that can exploit a very fast
computation of the Hamming distance were proposed, e.g. the lo-
cal feature descriptor proposed by (Dong et al., 2017). Transfer-
ring the feature-based approaches to applications based on point
clouds representing natural scenes with quasi-random structures
and collected under changing environmental conditions repre-
sents a special challenge (Wagner et al., 2016).

2.2 Geomonitoring using TLS point clouds

Ohlmann-Lauber and Schäfer (2011) categorized deformation
models for monitoring based on point clouds into five categories:
point-based, point cloud-based, surface-based, geometry-based
and parameter-based models. Natural outdoor scenes typically
have surfaces which cannot be described analytically. So, de-
formation analysis in geomonitoring is predominantly based on
point cloud- and surface-based models (Neuner et al., 2016) as-
suming that the point clouds from different epochs are registered.
For example, the well-established Cloud to Cloud (C2C) method
yields the distance between each point of the data point cloud
and its nearest neighbor in the reference point cloud. However,
the field of 3D displacement vectors thus obtained does not (nec-
essarily) connect corresponding points, and is therefore very dif-
ficult to interpret.

Lague et al. (2013) proposed a Multiscale Model to Model Cloud
Comparison (M3C2) and showed its applicability on the survey
of a complex 3D river canyon. Using M3C2 the distance between
points from two different epochs is measured along the direction
of the normal vector of a plane fitted to the respective point’s
vicinity. Additionally, a parametric confidence interval denoted
as level of detection (LOD) can be obtained from the point clouds

and enables statistical significance testing of the computed defor-
mations. However, this method is only sensitive to deformation or
displacement in a predefined direction, namely perpendicularly to
the respective surface. Rigid body motion is not easily detected
from such an analysis, and deformation components along the
surface are not indicated.

Indeed, geomonitoring beyond quantification of subsidence re-
quires correspondence between points to be established irrespec-
tive of the spatial direction of the changes. This requires es-
tablishing correspondence based on features extracted from the
data. Wagner et al. (2017) proposed a fusion of laser scanning
and image data using standard image feature descriptors (SIFT
and BRISK) to match the corresponding points and derive the 3D
displacement vectors from the associated point clouds. Herein we
present an approach using directly the geometry within the point
cloud for establishing correspondence.

3. HIGH-DIMENSIONAL LOCAL GEOMETRIC
FEATURE DESCRIPTOR

A local feature descriptor has to encapsulate the predominant in-
formation of a point’s neighborhood in order to distinguish this
point from other points in a point cloud (Guo et al., 2016). To en-
able matching of corresponding points in two point clouds when
they are not represented in the same coordinate system (e.g. non-
registered scans of the same scene) or when the corresponding
object has been rigidly displaced, the extracted feature represen-
tation should be invariant under rigid transformation.

The state-of-the-art feature descriptors (Tombari et al., 2010a;
Guo et al., 2014; Salti et al., 2014) which achieve the best per-
formance in the assessment by Guo et al. (2016), ensure a trans-
lation and rotation invariant representation of the point’s neigh-
borhood by expressing the local features in a unique, repeatable
LRF. The repeatability refers to the property that the estimated
LRF is object-oriented and should thus be equal for the corre-
sponding point in two or more point clouds of the same scenery
when estimated independently for each of them. Petrelli and Di
Stefano (2011) showed that the probability of successful match-
ing deteriorates rapidly with decreasing repeatability of the LRF.
The datasets typical for geomonitoring are especially challeng-
ing for the estimation of repeatable LRFs because of the high
noise level and typically ragged surfaces. The approach proposed
herein takes this into account by expressing the features with re-
spect to a local reference axis (LRA) instead of a complete LRF.
We use a robustly estimated normal vector to define the LRA be-
cause this is an intrinsically well-defined direction that can be
estimated with high repeatability (Petrelli and Di Stefano, 2011).
We then combine two types of features that showed good per-
formance in the recent evaluation by Guo et al. (2016): the local
point density feature proposed by Frome et al. (2004) and adopted
by Tombari et al. (2010a), and the normal vector deviations fea-
ture proposed by Tombari et al. (2010b). A detailed explanation
of both LRA establishment and local feature extraction is given
in the remainder of this section.

3.1 Local reference axis

Given a point p in the point cloud P we select its local spherical
support S⊂P such that S = {pi : ‖pi − p‖2 ≤ rLRA}, where
rLRA denotes the radius of the neighborhood used for the estima-
tion of the LRA. The eigenvector corresponding to the smallest
eigenvalue of the sample covariance matrix Σ̂S then corresponds
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Figure 1. Segmentation of the local spherical support of the
query point p into spatial bins along the radial and elevation
direction. Point pi is assigned to the spatial bin Fkj (depicted
with grey background color).

to the total least squares estimate of the surface normal. How-
ever, the total least squares estimation is very sensitive to out-
liers. Therefore, we first select a robust subset Q⊂ S and esti-
mate the surface normal using this robust subset. Specifically, we
filter the outliers using the highly robust deterministic minimum
covariance determinant (det-MCD) estimator of the mean-value
and covariance matrix proposed by Hubert et al. (2012). Given
a dataset with a observations in b dimensions, the objective of
the det-MCD is to find h observations1 whose covariance matrix
has the smallest determinant while b(a + b + 1)/2c ≤ h ≤ a.
Using only these h observations the robust estimates of the mean
µ̂MCD,S and the covariance matrix Σ̂MCD,S of S are computed.
We then compute the Mahalanobis distance based on these esti-
mates as

dM (pi,S) =
√

(pi − µ̂MCD,S)
TΣ̂
−1

MCD,S(pi − µ̂MCD,S) (1)

and select Q such that Q = {qi : qi ∈ S ∧ dM (qi,S) ≤ λ},
where we set the cut-off value to λ = 3.06 which corresponds to√
χ2
0.975,3, i.e. the cut-off value proposed by the authors in Hu-

bert et al. (2012). Nurunnabi et al. (2014) empirically showed
that this is a suitable threshold for the surface normal estimation
in unordered point clouds although we cannot assume the points
to be normally distributed around µ̂MCD,S . The LRA is then par-
allel to the estimated normal vector n̂(a) at point p obtained as
the eigenvector corresponding to the smallest eigenvalue of the
robust sample covariance matrix Σ̂Q. To choose the sign of the
LRA we adopt the sign disambiguation method from Bro et al.
(2008) which yields the sign of the normal vector n̂ such that the
inner product of the majority of the vectors −−→ppi is positive. This
is achieved by

1S(pi) =

{
1, if 〈n̂(a), (pi − p)〉 ≥ 0

0, otherwise

n̂ =

{
n̂(a), if

(∑
pi∈S 1S(pi)

)
≥ 0.5|S|

−n̂(a), otherwise

(2)

where | · | denotes the cardinality of the set.

1In Experiments presented in Section 5 we use h = 0.75|S| as pro-
posed by the authors in Hubert et al. (2012) and Nurunnabi et al. (2014).

3.2 High-dimensional feature descriptor

A local feature descriptor has to be invariant to translation and
rotation of the coordinate system or point cloud while also being
descriptive enough to enable successful matching of the corre-
sponding points. Herein, we use two types of features for the
high-dimensional description of the local surface geometry each
of them evaluated for spatial bins about the query point. For
the binning we first determine a local spherical support F of the
query point p. F is chosen like S in Section 3.1 but using the fea-
ture radius rf instead of rLRA.2 We then segment the local neigh-
borhood defined by rf into spatial bins by dividing the sphere
into nr sections along the radial dimension and into nα sections
in terms of elevation (see Figure 1), where elevation is defined
as the deflection angle from the LRA. The radial bins are spaced
logarithmically by adopting the method from Frome et al. (2004)
for calculating the lower and upper limits of the bins:

rj =

{
0, if j = 0

exp(ln rmin +
j
nr

ln(
rf
rmin

)), otherwise
(3)

Logarithmic spacing assigns larger weights to the points in the
vicinity of the query point by reducing the size of the bins close
to it, while rmin is the size of the first bin and is used to avoid
overly excessive binning at or next to the query point. The eleva-
tion direction is subdivided into nα equally sized bins such that
the lower and upper limits of the bins are given by αk = kπ

nα
,

k = 0, . . . , nα. For each of the ns = nα · nr spatial bins we
compute two types of features, the local point density and the
normal vector deviation.

For calculating the local point density we assign each point pi ∈
F to one of the spatial bins Fkj based on its location relative to
point p as

pi ∈ Fkj ⇔ ‖pi − p‖2 ∈ (rj , rj+1] ∧

cos−1(〈n̂, (pi − p)〉) ∈ (αk, αk+1]
(4)

We then normalize the number of points in each spatial bin with
|F|. For the normal vector deviation we follow Tombari et al.
(2010b). In each spatial bin we compute cos θi, where θi denotes
the angle between the normal vector n̂ at the query point and
the normal vector n̂pi at each point lying within that spatial bin.
The cosine is used as a measure of normal vector deviation as it
can be easily computed according to cos θi = n̂ᵀn̂pi . Within
each individual spatial bin nn equally spaced normal deviation
bins covering the range from −1 to 1 are then defined and the
number of deviations within each bin is counted. These numbers
are normalized using the respective |Fkj | such that they sum up to
1 within each spatial bin. Finally, for each point of the point cloud
all these features are collected into a high-dimensional feature
descriptor fhd(pi) of dimension ns ·(nn+1). In the experiments
presented in Section 5, we use nr = nα = nn = 10 such that
the feature descriptor is of dimension 1100.

4. FEATURE EMBEDDING INTO A
LOWER-DIMENSIONAL SPACE

Once the feature vectors are computed, they can be used to
determine the corresponding points in two point clouds using
some sort of a nearest-neighbour search for purposes like reg-
istration or monitoring. This can be very time inefficient. In-

2Note, that rf should be larger than rLRA.
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Figure 2. Siamese network architecture. Local features of an anchor point xi, positive example xpi and negative example xni are
extracted and fed to the fully connected Siamese neural network (yellow squares). The output layer (blue squares) represents the
intermediate representation used for feature matching in the online stage. All branches of the network share all the parameters.

deed, e.g. the brute-force algorithm query will scale approxi-
mately as O(DN2), where D denotes the dimension of the fea-
ture vector and N denotes the number of points. Using tree-
based methods (e.g. kd-tree) this can be reduced to approximately
O(DN log(N)) for small D, but still becomes inefficient when
D grows large. This is known as the ”curse of dimensionality”,
Weber et al. (1998). The curse of dimensionality can be mitigated
using approximate nearest neighbor algorithms or dimensionality
reduction. We opt for dimensionality reduction using a deep NN
that maps the high-dimensional feature vector (c.f. Section 3)
into a lower-dimensional feature space. The gain is twofold:

• by reducing the dimension of the feature vector, the nearest
neighbor search can be performed much faster;

• with fine-tuning the non-linear mapping can be optimized
for a specific application (e.g. for processing point clouds
of natural objects).

4.1 Network architecture

Given a 1100 dimensional feature vector fhd ∈ RD, D = 1100,
a multilayer perceptron (MLP) i.e., a NN fθ , is constructed for
embedding the high-dimensional feature vector fhd into a lower
dimensional feature space. So, fθ(fhd) ∈ Rd, d � D, where
θ denotes the parameters of the NN. This multi-layer NN is de-
signed as a Siamese network (Bromley et al., 1994) consisting of
several identical branches (three branches are used herein) which
share all the parameters (i.e. the number of nodes, weights and bi-
ases, and activation functions of each layer), see Figure 2. Herein
we train a Siamese network to learn the similarity of the positive
and dissimilarity of the negative pair of examples in a triplet, i.e.
E = {(fhd(xi), fhd(xpi ), fhd(x

n
i ))}

|E|
i=1 represents the training

set, where fhd(xi) denotes the high-dimensional feature vector
of the i-th anchor point, fhd(xpi ) denotes a chosen positive sam-
ple and fhd(xni ) a negative one. The details of sampling these
training triplets are given in Section 4.2. The advantage of using a
Siamese network is that the learning process is self-supervised (or
unsupervised) which simplifies the application of the proposed
approach to geomonitoring by allowing generation of an appro-
priate training data set from a pair of pre-aligned point clouds
with sufficient overlap. In order to optimize the parameters of the
NN, we minimize the following contrastive loss functionL(θ) us-

ing stochastic gradient descent (SGD) in the framework of back-
propagation:

L(θ) = 1

|E|

|E|∑
i=1

‖fθ(fhd(xpi ))− fθ(fhd(xi))‖2
‖fθ(fhd(xni ))− fθ(fhd(xi))‖2

(5)

This can be seen as a type of a triplet loss (Khoury et al., 2017),
thus training the network to minimize the distance between cor-
responding feature vectors while at the same time maximizing
the distance between dissimilar ones. The architecture of the NN
used herein consists of four fully connected (FC) hidden layers,
which contain 1024, 512, 512, and 256 nodes respectively, each
followed by a rectified linear unit (ReLU) activation function for
non-linear mapping to a 32-dimensional feature space (see Fig-
ure 2). We use mini-batches and train the mapping fθ using
Adam (Kingma and Ba, 2015). The initial weights of the hid-
den nodes are initialized using Xavier initialization (Glorot and
Bengio, 2010). The learning rate is set to 1.5 × 10−4. The pa-
rameters for the exponential decay of the first and second moment
estimates are set to β1 = 0.9 and β2 = 0.999. The network is
trained with an early stopper (see Section 4.3). We determine pa-
rameters of the NN with the grid search method using the point
clouds from the Bologna 3D Retrieval benchmark dataset (see
Section 5.2). The NN was implemented in Python using Tensor-
Flow.3

4.2 Sampling of the training triplets

Let P = {Pi}; i = 1, . . . , N be a set of overlapping point
clouds of a scene. In this work, we assume that a set T =
{T ij }; i, j = 1, . . . , N of transformations for pairwise alignment
of the point clouds (indices i and j) is given or can be readily ob-
tained using registration. Consider two specific point clouds Pi
and Pj . For each point p ∈ Pi we search the nearest neigh-
bor q ∈ T ji (Pj) and select this point as a positive example.
When training the network it is important to feed the network
with hard negatives, i.e. points that are different but similar to
the anchor point, in order to ensure good performance and fast
convergence (Schroff et al., 2015). Intuitively, hard negative ex-
amples lie in the vicinity of the anchor point. Therefore, for each
point p ∈ Pi we search for a set U of neighbors in T ji (Pj) such
that U = {ui : 0.5 · rf < ‖p − ui‖2 < 1.5 · rf} where rf

3https://www.tensorflow.org/
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is as defined in Section 3. The lower limit of 0.5 · rf is selected
because we treat all the points that are closer to the anchor point
as potentially correct matches. We build the training triplets as
follows: we randomly sample 10 hard negatives from U and aug-
ment them by randomly sampling 10 points from the rest of the
point cloud in order to avoid overfitting to the surrounding of the
anchor point. Additionally, we copy the anchor point and the
positive example 20 times to fill all the triplets. Thus forming 20
training examples for each point in the point cloud.

4.3 Early stopping regularization

To mitigate the over-fitting problem during training of the NN
early stopping is introduced into the training process (Erhan et
al., 2010). Therefore, the training of the NN is stopped when
the predefined maximum number of epochs is reached or when
a different, more specific condition is fulfilled. The condition
applied herein is the occurrence of three consecutive drops of the
average recall (as defined in Equation 7) of the training epochs.
For computing the average recall of an epoch, we average all the
recall values (τ = 1) in one epoch computed using one mini-
batch as the validation set, after training the NN with 50 mini-
batches.4

5. EXPERIMENTS

In this section we apply the proposed low-dimensional feature
descriptor and briefly assess the results. First, we test the de-
scriptiveness and robustness on the Bologna 3D retrieval (B3R)
benchmark dataset (Tombari et al., 2013) and compare the per-
formance to the results of selected feature descriptors evaluated
by Yang et al. (2017)5. Second, we indicate the applicability of
the proposed descriptor for use in geomonitoring by applying it
to a scanned scenery with rocks (RB3D dataset). Third, we eval-
uate the time complexity of the nearest neighbor search in feature
space. The parameters used in this evaluation are presented in
Table 1.

5.1 Accuracy metric

Given two point clouds, i.e. a reference point cloud PR and a
data point cloud PD , we assume that the transformation param-
eters aligning PD and PR are given. We follow the evaluation
procedure used by Yang et al. (2017). We randomly sample a set
R of 1000 points from PR and search for a set D of correspond-
ing points from PD aligned to PR, i.e. the respective nearest
neighbors. Then we compute the feature vectors as described in
Sections 3 and 4. Let fRi denote the feature vector of the i-th
point of R, and fDi and fDi′ those of the nearest and the second
nearest neighbor (in terms of l2-norm) in D

Dataset rLRA [mm] rmin [mm] rf [mm] batch size

B3R 15 5 25 64
RB3D 40 7 50 64

Table 1. Parameters used for computation of the feature
descriptor in the experiments presented herein.

4While computing the recall during a training epoch, the number of
corresponding points equals the batch size, i.e. 64.

5In Figure 4 we report the results of the SHOT descriptor because the
best performing descriptor is not publicly available.

Figure 3. Bunny and Dragon models from the B3R dataset. Red
color denotes the front part and blue color the back one as used
for separate fine-tuning of the descriptor.

The two feature vectors fRi and fDi are considered a match if
‖fRi −fDi ‖2
‖fRi −fD

i′ ‖2
≤ τ for a given value of τ . Further, the match is

considered correct if the coordinate distance between the points
is less than 10 times the point cloud resolution of the reference
cloud, where the point cloud resolution equals the median dis-
tance between each point of PR and its nearest neighbor. Other-
wise, the match is considered false. We use the precision-recall
curve (PRC) as evaluation criterion. The precision denotes the
number of correct matches versus the number of all matches

precision =
# of correct matches
# of all matches

(6)

and recall denotes the number of correct matches versus the num-
ber of corresponding features

recall =
# of correct matches

# of corresponding points
(7)

The PRC is obtained by varying τ ∈ (0, 1]. Additionally, we pro-
vide the Area under the Curve (AUC) value as a scalar indicator
of overall performance of the descriptor. A high AUC represents
both, heigh precision and heigh recall.

5.2 Bologna 3D retrieval dataset (B3R)

The B3R dataset consist of 18 scenes derived from six 360◦ mod-
els which are originally part of the Stanford 3D Scanning Repos-
itory. The scenes are rigidly-transformed copies of the models
with three levels of added Gaussian noise. Herein, we only use
the scenes with 0.1 mesh resolution one sigma standard devia-
tion. Of those, we use the Armadillo, Buddha, Chinese Dragon
and Statuette data sets for training, and Bunny and Dragon as test
datasets. We perform the split such that the test dataset contains
one model with lower resolution and predominantly smooth sur-
faces (Bunny) and one model with higher resolution and partially
ragged surface (Dragon). We train the NN for 11 epochs and
then test the learned descriptor on the Bunny and Dragon mod-
els. The results, depicted in Figure 4 (left), show that our learned
descriptor has the capacity to generalize to unseen data. We can
further increase the performance of the descriptor by fine-tuning
it to the point density and geometric structures that are specific
for an individual model. Therefore, we divide the test models
into the front and back parts as denoted in Figure 3 and use one
of them for fine-tuning the pre-trained model and the other one
for testing. The number of points in the training dataset in re-
lation to the batch size is approximately three times higher for
the Dragon model than for the Bunny model. Therefore, we stop
the fine-tuning process after three epochs for the former and af-
ter one epoch for the latter. The final performance of the learned
descriptors is presented in Figure 4 (right). The average AUC us-
ing the low-dimensional descriptor proposed herein equals 0.74
for Bunny, 0.85 for Dragon and 0.79 on average for both mod-
els from the B3R data set. The best performing descriptor in
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Figure 4. Results of the learned low-dimensional feature descriptor on the B3R dataset models Bunny and Dragon compared to the
results of the SHOT descriptor on all models as reported by Yang et al. (2017). Values in squared brackets denote the AUC. Left:
Performance after learning the model for 11 epochs on the training dataset. Right: Performance after fine-tuning the model for 3
epochs (Bunny) and 1 epoch (Dragon), respectively. Bunny-front denotes that the NN was fine-tuned using the Bunny-back and tested
on the Bunny-front. Interpretation of the other labels is correspondingly.

the comparative study by Yang et al. (2017) achieved an AUC
of 0.76 on average for the six models with 0.1 mesh resolution
of noise. While this might suggest that our descriptor performs
slightly better, it is just a first indication because the values re-
fer to an average performance over six models using a different
support size (15 times mesh resolution i.e. approx. 20 mm) than
the one used herein. A comprehensive performance assessment is
not a primary goal of this publication and is left for future work.

5.3 Simulated monitoring of an outdoor scenery (RB3D)

We demonstrate the applicability of the proposed feature descrip-
tor to TLS-based geomonitoring using point clouds from a real
outdoor scenery, denoting the dataset as rigid body 3D (RB3D).
Two rocks with a diameter of approximately 0.5 m are located
next to seven boulders (diameter up to approximately 3 m), see
Figure 5. The scene has been scanned three times using a Faro
Focus3D X330 terrestrial laser scanner from a distance of approx-
imately 15 m and using an angular sampling interval of 0.018◦.
This resulted in more than 1.9M points for each of the three
epochs. Between epochs 1 and 2, we moved the scanner by about
1 m; the resulting point clouds represent an unchanged scene in
different coordinate systems. Between epochs 2 and 3 one of the
two small rocks (displaced rock) was moved by about 1.5 m and
rotated by approximately 5◦ around a vertical axis while the scan-
ner and the other rock (stable rock) remained at the same position.
In this way we simulate a use case where a landslide would be
scanned several times over a certain period of time, some parts of
the scene remaining constant during that period and others mov-
ing. By moving the scanner between epochs 1 and 2 we attempt

to incorporate some of the nuisances which may affect the point
clouds of repeated scans of the unchanged scene. For preparation,
the scans were roughly aligned manually and then coregistered
using ICP. Points representing vegetation were removed in order
to reduce the number of points in each point cloud and restrict
the analysis to the part of the pointclouds representing boulders
and rocks. We then computed the high dimensional feature de-
scriptor for all three epochs and used points of the stable rock
and displaced rock from epochs 1 and 2 for training of the neural
network (NN). The performance was evaluated using the point
clouds from epochs 2 and 3. As a consequence of displacing and
rotating the displaced rock, a lot of nuisances for the feature de-
scriptors are introduced. As the rock is closer to the scanner, the
resolution of the point cloud increases and the footprint of the
laser beam gets smaller (less smoothing). Additionally, due to
the displacement of the rock different parts are occluded and the
incidence angle of the laser beam for individual points changes.
Nevertheless, more than 1700 points from displaced rock and
more than 4800 points from stable rock (approximately 12 %
and 20 % of the overlap respectively) were correctly matched
at τ = 1. The search space. i.e. the point cloud of epoch 2,
contained approximately 0.8M points. Areas that were correctly
matched and the consequently derived 3D displacement vectors
are presented in Figure 6. Many object have similar surfaces in
the scanned scenery. So, many points were erroneously matched.
However, the correct matches can be identified using filtering or
integration of some prior knowledge. In this particular example,
we assumed that individual rocks were rigidly displaced but not
deformed. In this case the correct matches referring to the same
objects or to objects undergoing the same rigid body motion cor-

Figure 5. Point cloud of the geomonitoring scenery (first epoch). Stable natural environment is indicated by grey color (intensity).
Rocks, which where placed in the scenery are displayed in color: stable rock (red), displaced rock (blue = first epoch, green = third
epoch).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-113-2018 | © Authors 2018. CC BY 4.0 License.

 
118



Figure 6. Results of the RB3D experiment for displaced rock:
second epoch (orange), third epoch (blue). Green color denotes
the points that were correctly matched. For clarity we only show
20 derived 3D displacement vectors.

respond to a single set of transformation parameters. RANSAC
was used in our example to identify these matches and the corre-
sponding transformation of the displaced rock. To obtain correct
matches we set the inlier threshold in RANSAC to 10 times the
point cloud resolution.

5.4 Time complexity of the descriptor

We analyze the time needed to perform the nearest neighbor
search on the RB3D dataset using the high-dimensional feature
descriptor (see Section 3) and its low-dimensional embedding
(see Section 4. We only analyze the time complexity of the
dimensionality reduction using NN and the matching step, be-
cause the computation of the high-dimensional feature vector was
not optimized (single-thread implementation in Python). Specif-
ically, we use the Scikit-learn machine learning library6 imple-
mentation of the nearest neighbor search in Python on a stan-
dalone desktop PC with Intel Xeon E5-1650 CPU v4 (hexa-core,
3.60 GHz) and 32 GB of RAM for this analysis. We use the
k-d tree implementation of the nearest neighbor search for both
descriptors and additionally a brute-force search for the high di-
mensional feature descriptor. Points are sampled randomly for
this analysis. The results are presented in Figure 7. For the
low-dimensional feature descriptor they contain the joint time
needed for embedding the feature vector and performing the near-
est neighbor search; for all implementations they cover samples
sizes up to the respective maximum which the computer could
handle. The low-dimensional feature descriptor clearly outper-
forms the high-dimensional one regarding time complexity of
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Figure 7. Time needed for querying the nearest neighbor of one
point in the dataset.

6http://scikit-learn.org/

the nearest neighbor search, especially when evaluating larger
datasets. For particularly small datasets (less than 1000 points)
the brute-force algorithm outperforms the k-d tree implementa-
tion due to the overhead time needed to build the tree. Consid-
ering the largest dataset for which all the implementations could
be computed in this test (50k points), the k-d tree search with the
low-dimensional feature vector takes about 0.11 ms per query.
It is approximately 35 times faster than the brute force search
with the high-dimensional feature vector (3.84 ms). Due to the
curse of dimensionality (search space grows approximately expo-
nentially), the k-d tree search with the high-dimensional feature
vector (68.13 ms) performs approximately 600 times slower than
with the low-dimensional feature vector.

6. CONCLUSION

We have proposed a low-dimensional feature descriptor tailored
for point clouds of natural outdoor scenes. Considering typical
characteristics of the natural objects, we express local features
(normal vector deviation and local point density) with respect to
a robustly estimated LRA. Furthermore, we address the high time
complexity of the matching step by implementing a NN based
dimensionality reduction. In the numerical examples used for
evaluation, reduction of the dimension of the feature vector from
the initial 1100 to 32 reduced the time needed to search for cor-
responding points by a factor of up to 1200. We showed that we
can achieve a state-of-the-art performance with a feature vector of
only 32 dimensions on the B3R dataset. Using a dedicated exper-
iment we indicated the applicability of the feature-based method
for geomonitoring correctly estimating the rigid-body displace-
ment of a single rock in a natural outdoor scenery from the dis-
placement of corresponding feature points identified using the
proposed descriptor.

Future work will include a test of the performance of our ap-
proach on real geomonitoring data, and the implementation of
a rigorous deformation analysis model capable of differentiating
between stable, rigidly transformed and actually deformed parts
of a scenery.
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