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ABSTRACT: 
 
Terrestrial laser scanner (TLS) techniques have been widely adopted in a variety of applications. However, unlike in geodesy or 
photogrammetry, insufficient attention has been paid to the optimal TLS network design. It is valuable to develop a complete design 
system that can automatically provide an optimal plan, especially for high-accuracy, large-volume scanning networks. To achieve this 
goal, one should look at the “optimality” of the solution as well as the computational complexity in reaching it. In this paper, a 
hierarchical TLS viewpoint planning strategy is developed to solve the optimal scanner placement problems. If one targeted object to 
be scanned is simplified as discretized wall segments, any possible viewpoint can be evaluated by a score table representing its visible 
segments under certain scanning geometry constraints. Thus, the design goal is to find a minimum number of viewpoints that achieves 
complete coverage of all wall segments. The efficiency is improved by densifying viewpoints hierarchically, instead of a “brute force” 
search within the entire workspace. The experiment environments in this paper were simulated from two buildings located on 
University of Calgary campus. Compared with the “brute force” strategy in terms of the quality of the solutions and the runtime, it is 
shown that the proposed strategy can provide a scanning network with a compatible quality but with more than a 70% time saving. 
 
 

1. INTRODUCTION 

Terrestrial laser scanners (TLSs) provide a remote sensing 
surveying technique to model objects with very high speed, 
density, and accuracy. In other words, they quickly capture rich 
details of an entire scene with 3D positioning accuracy as high as 
a few millimetres. Thus, TLS applications are widespread in 
various fields within recent decades. Civil engineers, plant 
designers, CAD professionals, architects, contractors, forensic 
investigators, archaeologists, and owner/operators can all reap 
the cost and added-value benefits that TLS provides (Leica, 
2017). For TLS projects, 100% surface coverage is usually 
required (Scott et al., 2003). However, the large volume of many 
scanning objects, together with occlusion/self-occlusion make it 
impossible to acquire a complete object model from a single 
location. Thus, a scanning network consisting of multiple scan 
placements is usually required to achieve the greatest possible 
coverage. This incurs increased time and labour cost in the field 
as well as processing and production time in the office. More 
importantly, the redundant scans are subject to registration error, 
which will jeopardize the quality of the final products. An 
optimal TLS network design, where optimal implies the 
minimum number of scans as well as a complete coverage of the 
object, is highly recommended. 
 
Surveying network design is an issue that has been widely 
discussed. A commonly-accepted category is proposed by 
Grafarend (1974), where the network design problem is divided 
into four interrelated sub-problems. They are: zero-order design 
(ZOD), which is to define a datum for the network (Kuang, 
1991); first-order design (FOD), which is to determine a 
configuration provided the weighting matrix is known (Kuang, 
1991); second-order design (SOD), the purpose of which is to 
optimize the stochastic model for observations (Kuang, 1991; 
Schmitt, 1985a), i.e., their precision; and, finally, third-order 
design (TOD), which is about further improvement to the 
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network (Schmitt, 1985b), e.g., the densification of the network. 
As only scan locations are to be designed in this paper, and the 
registration is done with signalized targets, the concern here is 
the FOD of TLS networks.  
 
The optimal network design problem has been proposed and well 
addressed in geodesy (Kuang, 1991 and 1996; Schmitt, 1982) and 
photogrammetry (Fraser, 1982, 1984). Unfortunately, the same 
issue has not received equal attention for terrestrial laser scanner 
networks. Usually, the TLS viewpoints are determined 
empirically based on the operators’ experience and the 
knowledge of the scanning area. The most direct impact of this is 
to place unnecessary scans, which however, may still not 
guarantee complete coverage of the object. 
 
Looking at the existing literature, it is evident that from large 
amount of publications, the viewpoint planning problem remains 
an open issue with a TLS applied to large and complex modelling 
projects (Mozaffar and Varshosaz, 2016). Among the 
publications, the most relevant studies are from Ahn and Wohn 
(2015), Blaer and Allen (2007), Biswas et al. (2015), Jia and 
Lichti (2017), Kawashima et al. (2014), Kim et al. (2014), 
Mozaffar and Varshosaz (2016), Pito (1996 and 1999), 
Soudarissanane and Lindenbergh (2011), Soudarissanane (2016), 
Wujanz and Neitzel (2016) and Zhang et al. (2016). They are 
generally grouped into two strategies, which are briefly reviewed. 
 
One commonly used strategy is called the Next Best Viewpoint 
(NBV) planning strategy (Blaer and Allen, 2007; Biswas et al., 
2015; Kawashima et al., 2014; Pito, 1996 and 1999). This type of 
method starts from a set of randomly-selected locations within 
the scanning region, and the scans will be acquired at those 
locations to get an approximate initial model. The targeted object 
is labelled as occupied space and free space that indicate the parts 
have been covered or not. Based on the boundary and surface 
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trend of the existing model, the new scan will be placed in the 
free space using a voxel-based occupancy methodology. After 
that, the model is renewed by the new point cloud until the object 
is fully covered. 
 
Another type of method focuses on the visibility and occlusion 
analysis to obtain the complete coverage, based on the scanning 
geometry between the object and the scan locations. Much 
research has demonstrated that scanning geometry impacts the 
TLS observation quality. A good example is proposed by 
Soudarissanane and Lindenbergh (2011), where the scanning 
geometry is defined as the incidence angle between the laser 
beam and the object, as well as the range between the scanner and 
the object. Under these two constraints, the visibility of the object 
is evaluated depends on the location and orientation of the 
discretised object, with respect to the scan candidates. Known as 
the Greedy Algorithm, this strategy picks the viewpoint 
candidate that covers the most uncovered part of the object in 
each step, until the complete coverage is achieved.  
 
It is concluded that the aforementioned methods mainly have two 
limitations: 
 

1. Optimality of the solution. The solution from the NBV 
method is subject to the bias of the previous scanner 
placement, where no global optimum is guaranteed. Also, 
this type of method is mainly used for robotics/mobile 
mapping. For the Greedy Algorithm, it provides good and 
fast, but only a near optimal solution; 
 
2. Computation complexity. For either of the methods, 
the analysis is based on the entire targeted object and 
candidate workspace, which causes lots of unnecessary 
computations. 

 
The technique proposed in this paper tries to avoid those two 
problems. It adopts a new viewpoint selection method called the 
Weighted Greedy Algorithm with the aim to improve the 
optimality of the solution. It also proposes a hierarchical strategy 
to generate viewpoint candidates, which can improve the 
computational efficiency. The proposed strategy will be 
described in detail and validated in the following sections. 
 
An optimal network design with minimum number of scans and 
high efficiency is especially necessary for the network of large 
size, like a network consists of thousands of scans (e.g., Hullo. 
2016), which leads to the major motivation of this study. Starting 
from the simple building simulations in this paper, the 
methodology applied here is expected to be extended into more 
realistic and complicated networks.  
 
This paper is structured as follows: the background of network 
design problems and the literature review for TLS network 
design are provided in this section. In the subsequent section, the 
research problem in this paper is stated, followed by the 
introduction of an improved optimization method in Section 3. 
The proposed algorithm, the hierarchical viewpoint planning 
strategy, is described in Section 4. The performances of the 
methodology on two TLS networks are evaluated and examined 
in Section 5. Finally, the conclusions are drawn and some future 
topics are suggested in Section 6.  
 
 

2. STATEMENT OF PROBLEMS 

The purpose of this research is the optimal design of the TLS 
networks, where the problem is stated as to minimize the number 

of necessary scanner locations to obtain a full coverage of a given 
environment. The entire process in getting the final viewpoints 
follows a hierarchical strategy with an improved optimization 
method, which will be introduced in next two sections.  
 
2.1 Data Preparation 

This new network optimization strategy works on a discretized 
dataset based on Soudarissanane and Lindenbergh (2011). Before 
applying the new method, some prior information, data 
preparation and pre-processing are required: 
 

1. The plan of a scanning scene. This can be a floor map, 
or a quick scan from which the walls can be extracted; 
 
2. The discretized wall segments. They can be simply 
created by discretizing the extracted walls into separate 
segments based on a certain unit length, e.g., 1 m; 
 
3. The discretized viewpoint (VP) candidates. They are 
simulated within the area of interest with a certain step 
length between each other; 

 
4. Scanning geometry constraints. The incidence angle 
of the incident laser ray, and the scanner-to-object range, are 
two constraints adopted to evaluate the visibility of each VP; 

 
5. Boolean score table. It is created under the constraints 
to indicate which wall segments are visible/invisible from 
which viewpoints. Essentially this table includes the 
coverage information per VP, where 1 means a visible wall 
segment and 0 stands for an invisible one. 

 
2.2 Statement of Sub Problems 

The process to solve the optimal design problem in this research 
can be divided into four sub problems, which are stated as: 
 

Problem 1: The walls of a given construction will be 
detected and discretized into wall segments; 
 
Problem 2: VP candidates will be created in some way, 
from which the final optimal solution will be generated; 
 
Problem 3: Under certain scanning geometry constraints, 
incidence angle and range adopted here, any VP candidate 
will be evaluated by their visibility to all wall segments; 
 
Problem 4: An optimization method will be applied on 
existing candidates to provide fast and good solutions. 

 
Problems 1 and 3 have been previously addressed in 
Soudarissanane and Lindenbergh (2011). The remaining issues 
are the means to obtain VP candidates and the optimization 
method to obtain optimal solution. These two aspects are 
introduced next. 
 

3. OPTIMIZATION METHODS 

With the Boolean score table, the optimization problem is to find 
a minimum set of VPs so that each wall segment can be covered 
(i.e., scored as 1) at least once. In the work of Soudarissanane and 
Lindenbergh (2011), the solution is sought with the Greedy 
Algorithm (GA). In this section, an improved method named the 
Weighted Greedy Algorithm (WGA) is proposed. A simple 
example indicating the visibility of 8 wall segments from 4 VPs 
is illustrated in Figure 1. VPs and their visible segments are 
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represented by different colours. The Greedy Algorithm and the 
proposed Weighted Greedy Algorithm are applied to this 
example to show how they work on this type of problem. 

 
 
Figure 1. Example 1: S1 to S8 are wall segments to be scanned, 
VP1 to VP4 are VP candidates to be selected. The visible zones 
for VPs are represented by different colors of dashed lines.  
 
3.1 Greedy Algorithm 

In the Greedy Algorithm, the VPs are selected in a few 
computation steps. The VP with the highest score, the one 
covering the most uncovered wall segments, is always selected 
in each step. This method is good and fast but provides sub-
optimal solutions (Slavik, 1996), as will be demonstrated later.  
 
Table 1 is the Boolean score table for Example 1. In this case, 
VP2, VP1 and VP3 are selected in 3 steps to achieve full coverage. 
 

 S1 S2 S3 S4 S5 S6 S7 S8 Score 
VP1 1 1 1 0 0 0 0 0 3 
VP2 0 1 1 1 1 1 1 0 6 
VP3 0 0 0 1 1 1 1 1 5 
VP4 0 0 1 1 1 0 0 0 3 

a. Boolean score table 
 

 S1 S2 S3 S4 S5 S6 S7 S8 Score 
VP1 1 1 1 0 0 0 0 0 1 
VP2 0 1 1 1 1 1 1 0 0 
VP3 0 0 0 1 1 1 1 1 1 
VP4 0 0 1 1 1 0 0 0 0 

b. Step 1: VP2 is selected 
 

 S1 S2 S3 S4 S5 S6 S7 S8 Score 
VP1 1 1 1 0 0 0 0 0 0 
VP2 0 1 1 1 1 1 1 0 0 
VP3 0 0 0 1 1 1 1 1 1 
VP4 0 0 1 1 1 0 0 0 0 

c. Step 2: VP1 is selected 
 

 S1 S2 S3 S4 S5 S6 S7 S8 Score 
VP1 1 1 1 0 0 0 0 0 0 
VP2 0 1 1 1 1 1 1 0 0 
VP3 0 0 0 1 1 1 1 1 0 
VP4 0 0 1 1 1 0 0 0 0 

d. Step 3: VP3 is selected 
 

Table 1. Example 1: Greedy Algorithm 
 
3.2 Weighted Greedy Algorithm 

For Example 1, the solution from Greedy Algorithm is a group 
of 3 VPs, which contains one redundant VP. To achieve better 
result, a Weighted Greedy Algorithm is developed in this paper. 
 
In the Greedy Algorithm, the scores are binary, either 0 or 1, and 
are equally weighted in a VP’s score, i.e., the numbers in the last 

column in Table 1. However, if one segment is visible from fewer 
scans, it should contribute greater weight to the scans’ scores. 
Accordingly, those scans will be given higher priority for 
selection. 
 
This principle is an integral part of the Weighted Greedy 
Algorithm, where the score for each segment is weighted by the 
times it can be covered (i.e., the last row in Table 2.a). Table 2.b 
is the weighted score table, then the following process is the same 
as Greedy Algorithm that the VP with the highest weighted score 
is selected step by step.  
 

 S1 S2 S3 S4 S5 S6 S7 S8 
VP1 1 1 1 0 0 0 0 0 
VP2 0 1 1 1 1 1 1 0 
VP3 0 0 0 1 1 1 1 1 
VP4 0 0 1 1 1 0 0 0 
Scanned 
Times 

1 2 3 3 3 2 2 1 

a. Scanned times for segments from the Boolean score table 
 

 S1 S2 S3 S4 S5 S6 S7 S8 Score 
VP1 1 1/2 1/3 0 0 0 0 0 11/6 
VP2 0 1/2 1/3 1/3 1/3 1/2 1/2 0 15/6 
VP3 0 0 0 1/3 1/3 1/2 1/2 1 16/6 
VP4 0 0 1/3 1/3 1/3 0 0 0 6/6 

b. Weighted score table 
 

 S1 S2 S3 S4 S5 S6 S7 S8 Score 
VP1 1 1/2 1/3 0 0 0 0 0 11/6 
VP2 0 1/2 1/3 1/3 1/3 1/2 1/2 0 5/6 
VP3 0 0 0 1/3 1/3 1/2 1/2 1 0 
VP4 0 0 1/3 1/3 1/3 0 0 0 2/6 

c. Step 1: VP3 is selected 
 

 S1 S2 S3 S4 S5 S6 S7 S8 Score 
VP1 1 1/2 1/3 0 0 0 0 0 0 
VP2 0 1/2 1/3 1/3 1/3 1/2 1/2 0 0 
VP3 0 0 0 1/3 1/3 1/2 1/2 1 0 
VP4 0 0 1/3 1/3 1/3 0 0 0 0 

d. Step 2: VP1 is selected 
 

Table 2. Example 1: Weighted Greedy Algorithm 
 
We name the wall segments visible from less VPs as uncommon 
segments and the VPs covers those segments are called necessary 
VPs. One can tell from Table 2 that two necessary VPs, VP1 and 
VP3, covering uncommon segments S1 and S8, are selected in 
the first two steps. The redundant VP2 that is selected first by the 
Greedy Algorithm is actually removed. It is obvious that with the 
Weighted Greedy Algorithm, the priorities of VPs are reordered, 
which increase the speed of selecting the necessary VPs and 
removes redundant VPs in the final solution. 
 
 

4. THE HIERARCHICAL VIEWPOINT PLANNING 
STRATEGY 

To obtain full coverage of an object, VP candidates should be 
distributed throughout the surrounding environment. One 
straightforward way is to have the VP candidates evenly 
distributed with fixed step length, after which the score table is 
generated by searching through all candidates and wall segments. 
Clearly, the number of VP candidates varies with the step length, 
which also impacts the efficiency in building the score table. 
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4.1 Assumptions 

A real example is illustrated in Figure 2. This is a building located 
on the University of Calgary campus. It was discretised into 328 
wall segments with the unit length of 1 m. Figure 2 shows the 
heatmaps of VP candidates created with different step lengths. 
Blue represents lower WGA scores and yellow represents higher 
ones. We may consider the step length between neighbouring 
VPs as the sampling resolution, symbolized by σ. The scores in 
all figures are weighted scores for the WGA, while in Figure 2.d 
they are binary GA scores. One can tell the obvious differences 
between Figure 2.c and Figure 2.d, which clearly shows that 
using weighted scores does reorder the VPs’ priorities. 
 

   
a. σ = 10 m                                   b. σ = 5 m  

 

  
c. σ = 2.5 m                                   d. σ = 2.5 m 

 
Figure 2. WGA score heatmaps for Example 2: VP candidates 
were created with various resolutions σ . Colours represent 
weighted scores in a, b and c, and binary scores in d. 
 
It is obvious that VP candidates are denser with higher resolution, 
which causes the scores to be weighted differently in each 
resolution, as indicated by the different score ranges of the colour 
bar. However, the heatmaps of different resolutions appear with 
the similar patterns. This means that neighbouring VP candidates 
tend to cover the similar part of the object. Thus, the VPs of the 
optimal solution under different resolutions tend to concentrate 
at the same spots. It provides us the following assumption: 
 
Assumption 1: Solutions from different sampling resolutions 
exhibit similar geometry but a different number of VPs. 
 

   
a. σ = 10 m                                  b. σ = 5 m  

 

    
       c. σ = 2.5 m 

 
Figure 3. Solutions for Example 2: WGA is applied to get 
solutions under three resolutions. 
 
To validate this assumption, corresponding solutions from the 
Weighted Greedy Algorithm are illustrated in Figure 3. We can 
tell that the overall geometries of the solutions are the same. With 
increasing σ, VPs can be located at more detailed positions. 
Redundant VPs can be removed by slightly adjusting the 
locations of existing VPs. For example, the VP1, VP3 and VP4 
in Figure 3.a have been reduced to VP1 and VP2 in Figure 3.c. 
 
It is evident that with higher resolution, near-optimal solutions 
are sought at the cost of evaluating many unnecessary VPs, such 
as the large number of VPs southeast of the building. Since the 
locations of some VPs, e.g., VP1, don’t change significantly with 
resolutions, it is reasonable to propose another assumption: 
 
Assumption 2: VPs can be hierarchically selected by starting at 
a globally coarse resolution and continuously increasing local 
resolution. 
 
4.2 The hierarchical viewpoint planning strategy 

Based on the assumptions, a hierarchical viewpoint planning 
strategy is proposed in this subsection.  
 
An idea called distinguishable VP is proposed here. It is defined 
as a VP that has no neighbouring VPs within a certain area. VPs 
here represent the viewpoints in the solutions that are selected by 
the Weighted Greedy Algorithm. This is to say that once the 
solution is created, the VPs are grouped by distance. VPs that are 
not grouped with other VPs are distinguishable VP, while VPs 
grouped together are called indistinguishable VPs. The goal of 
the hierarchical viewpoint planning strategy is to search for the 
optimal solution as a set of VPs that are all distinguishable. 
 
As mentioned, VPs close to each other tend to cover the same 
part of the object or scene. Thus, if one VP is distinguishable, it 
is considered necessary for scene coverage. In other words, 
redundant VPs are more likely to exist in the groups of 
indistinguishable VPs. In this case if we increase the local 
resolution, redundant VPs are likely to be replaced by necessary 
ones along with more detailed location and better coverage. 
 
The process of this hierarchical viewpoint planning strategy is 
summarized into 7 steps: 
 

1. Initial resolution. The process starts from a low initial 
resolution, e.g., 10 m. A small number of VP 
candidates are created and evaluated with low runtime; 

 
2. Solution from WGA. A weighted score table is 

generated, and a solution is provided by WGA as 
introduced in Section 3.2; 
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3. Group VPs. VPs in the solution are grouped by 
distance. A certain distance threshold is required in this 
step. VPs then are labelled as either distinguishable 
VPs or indistinguishable VPs; 

 
4. Increase local resolution. There may be more than 

one group of indistinguishable VPs after step 3. VPs in 
each group are bounded to define a new local area. The 
local resolution is increased to obtain denser VP 
candidates in each area; 

 
5. Repeat steps 2 to 4. Solutions are determined by the 

WGA with continuously densified VPs. More VPs are 
labelled as distinguishable ones and saved to the final 
solution. In this way, redundant VPs are to be removed 
to provide an optimal solution with a minimum number 
of VPs; 

 
6. Stop criterion. The process ends if all VPs in the 

solution are labelled as distinguishable VPs. Now all 
VPs are the necessary VPs to get the full coverage of 
the construction. All distinguishable VPs are saved to 
the final solution. 

 
In summary, this hierarchical strategy starts with a coarse 
resolution over the entire area, and increases the resolution only 
at local areas of interest. The current optimal solution under each 
resolution is always determined by the proposed Weighted 
Greedy Algorithm until the stop criterion is met. Figure 4 is a 
flowchart corresponding to the above 6 steps. 

 
Figure 4. Flowchart of the hierarchical viewpoint planning 

strategy 
 

There are three advantages for using this hierarchical strategy: 
 

1. Coverage rate. The general geometry of VPs in the 
solutions is preserved during the entire process, which 
guarantees the object is scanned from all directions and 
full coverage is achieved; 
 

2. Minimal VPs. Wherever possible, redundant VPs are 
to be removed by relocating existing VPs to finer local 
resolution. Thus, this method can provide a solution 
with minimal number of VPs;  

 
3. Computational efficiency. This is realized by 

avoiding the time waste on large amount of useless VP 
candidates, i.e., the VP candidates created under the 
finest resolution over the entire workspace. 

 
5. APPLICATIONS AND ANALYSIS 

In this section, the proposed hierarchical viewpoint planning 
strategy is used in the problem of optimizing two outdoor TLS 
networks. The performance is compared with the non-
hierarchical strategy in terms of the quality of the solutions and 
runtime. All methods are conducted on an Intel® CoreTM i5-7500, 
3.40GHz, 24 GB RAM computer in the Microsoft Visual Studio 
2017 environment. 
 
5.1 Experiment environments 

Two buildings, Crowsnest Hall and CCIT, located on the 
University of Calgary campus are tested here as experiment 
environments. They each cover an approximate area of 80×80 
mଶ. The walls of the two buildings were extracted from the 2D 
floor map public on the University of Calgary website. With a 
unit length of 1 m, the building walls were discretized into 358 
segments for Crowsnest and 328 segments for CCIT. CCIT is the 
same one as in the earlier example in Section 4. The layout of 
experiment environments is depicted in Figure 5.  
 

  
a. Crowsnest                                 b. CCIT 

 
Figure 5. 2D floor maps of the experiment environments 

 
5.2 Results and discussions  

In this section, the hierarchical viewpoint planning strategy is 
evaluated by a comparison with the non-hierarchical strategy. 
The two methods compared are the “Hierarchical + WGA” 
strategy and the “Non-hierarchical + GA” strategy. Their 
performance is compared in terms of the quality of the solutions 
and runtime. 
 
5.2.1 Quality of the Solutions: In this part, the quality of the 
solutions from two methods are compared. As the goal is to 
obtain the minimal number of viewpoints for optimal design, it is 
used as the quality criterion. 
 
The hierarchical solutions for Crowsnest are illustrated in Figure 
6. For this case, we started with the resolution of 8 m and the 
method stopped at σ = 2 m . In each figure, the optimal VPs 

Read building file 

2. Solution: VPs from WGA 

Start 

End 

No 

4. Increase local 
resolutions for 

indistinguishable VPs 

Yes 

3. All 
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VPs? 

Save VPs 
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under the current level of resolution are represented by black 
squares and the distinguishable VPs are represented by red 
triangles with blue circles having radius equal to the 
corresponding resolution.  We can tell that with the proposed 
strategy, VPs are labelled under different resolutions, e.g., VPs 1, 
4 and 6 are labelled in Figure 6.a while in Figure 6.b three other 
viewpoints are labelled. Also, the number of viewpoints is 
gradually reduced. VPs 3 and 9 in Figure 6.a reduce to VP 5 in 
Figure 6.b, and VPs 2, 7 and 8 eventually changes to VPs 7 and 
8. Finally, all VPs are labelled as distinguishable VPs with their 
corresponding resolutions. 
 

      
a. Level 1: σ = 8 m                    b. Level 2: σ = 4 m       

                                    

                                                
c. Level 3: σ = 2 m  

 
Figure 6. Solutions from the proposed “Hierarchical + WGA” 
strategy for Crowsnest: three levels of resolutions are applied 
before the stop criterion is met. 
 

 
a. σ = 8 m                                 b. σ = 4 m 

 

   
c. σ = 2 m  

  
Figure 7. Solutions from the “Non-hierarchical + GA” strategy 
for Crowsnest: three resolutions corresponding to three levels of 
resolutions in Figure 6 are applied. 

Figure 7 shows results from three experiments with the “Non-
hierarchical + GA” strategy on Crowsnest. The resolutions are 
set as 8 m, 4 m and 2 m, which are the three levels of resolution 
in the “Hierarchical + WGA” strategy. It is shown the number of 
viewpoints reduces with the increased resolution, from 10 VPs to 
9 VPs, which is reasonable as the scanner can be placed to more 
detailed locations. From Figure 6 and Figure 7, one can tell that 
the hierarchical solution is better than the non-hierarchical 
solution in terms of the number of VPs. 
 

         
a. Level 1: σ = 10 m                  b. Level 2: σ = 5 m  

  

                                      
c. Level 3: σ = 2.5 m           

 
Figure 8. Solutions from the “Hierarchical + WGA” strategy for 
CCIT: three levels of resolutions are applied before the stop 
criterion was met.  
 
Figure 8 shows the hierarchical solution from the “Hierarchical 
+ WGA” strategy on CCIT. In this case, the method works from 
σ = 10 m to σ = 2.5 m. Similarly, the solutions update from 8 
VPs to 7 VPs. Its non-hierarchical solutions are shown in Figure 
9, where the number of VPs reduces from 9 to 7 with increased 
resolutions. The final number of VPs for the two strategies is the 
same. It is notable that the examples here are relatively simple 
structures, thus the number of viewpoints does not decrease 
considerably with our method. A more dramatic decrease is 
expected for more complex scenes, which is the final goal of our 
research. 
 

    
a. σ = 10 m                                     b. σ = 5 m  
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c. σ = 2.5 m 

 
Figure 9. Solutions from the “Non-hierarchical + GA” strategy 
for CCIT: three resolutions corresponding to three levels of 
resolutions in Figure 8 are applied. 
 
5.2.2 Runtime: Runtime for the proposed “Hierarchical + 
WGA” strategy is compared with the “Non-hierarchical + GA” 
strategy. The corresponding runtime are provided in Table 4. The 
“Non-hierarchical + GA” strategy was repeated three times for 
each dataset with resolutions shown in the second column in 
Table 4. These resolutions correspond to the three levels of 
resolutions continuously applied in the “Hierarchical + WGA” 
strategy.  
 
From the last subsection, we know that the solution from the 
“Non-hierarchical + GA” strategy is compatible with the 
“Hierarchical + WGA” strategy when the finest resolution is 
applied. Upon this, one can tell that with compatible results, the 
computation efficiency is improved by more than 70%, i.e., time 
that is bolded in Table 4. 
 

Dataset σ 
Non-hierarchical 
+ GA 

Hierarchical + 
WGA 

 m s s 

Crowsnest 
8 10.2 

50.6 4 42.4 
2 173.5 

CCIT 
10 9.7 

38.5 5 40.2 
2.5 170.7 

 
Table 4. Runtime for methods with different resolutions 

 
5.3 Sensitivity tests  

Regardless of which strategy a user chooses, both strategies 
described above provide solutions consisting of a set of 
viewpoints with complete scene coverage. The sensitivity of the 
solutions to actual VP placement is of concern in future studies. 
Here as a start, a test has been applied on the “Hierarchical + 
WGA” strategy results.  
 

  
a. Crowsnest                                        b. CCIT 

 
Figure 10. Heatmaps of 100 random solutions 

Since the hierarchical strategy provides VPs with corresponding 
resolutions, new solutions are created by generating a random 
point around each VP within the resolution circle. This process is 
repeated 100 times to get 100 sets of VPs, shown as the dots in 
Figure 10. The colour of the dots represents the score of each 
random point. 
 
The coverage rate for 100 random solutions was tested and is 
summarized in Table 5. The coverage rate is calculated as the 
percentage of walls covered by the random solution. Over the 100 
cases, the average coverage rate for both two datasets are around 
98%.   
 

Dataset 
Min 

coverage rate 
Max 

coverage rate 
Average 

coverage rate 

 % % % 
Crowsnest 92.2 100 97.6 
CCIT 92.1 100 98.0 

 
Table 5. Coverage tests of 100 random cases 

 

  
a. Crowsnest                                        b. CCIT  

 
Figure 11. Invisible segments of 100 random solutions 

 
Figure 11 shows all the invisible wall segments in 100 random 
tests. The different colours represent how many times an 
individual segment is missed in 100 tests. This provides a tool to 
probe the sensitive parts of the network in view of the solution. 
It indicates which areas the user should pay more attention to, 
e.g., by putting an extra scan to be on the safe side, which is more 
of a TOD problem as introduced in Section 1. Detailed studies 
are planned as future work. 
 

6. CONCLUSIONS AND FUTURE WORK 

Compared to geodesy and photogrammetry, optimal network 
design for TLS hasn’t received the same attention in current 
research. In this paper, the first-order design of TLS networks, 
i.e., the configuration of scanner locations, is of interest. The 
experiment environment was simulated with discretized wall 
segments and possible viewpoints. A minimum number of 
viewpoints with complete coverage was found by adopting the 
hierarchical viewpoint planning strategy with the Weighted 
Greedy Algorithm as the optimization method. The experiment 
environment were two buildings located on the University of 
Calgary campus. 
 
Comparisons were made with the original non-hierarchical 
strategy and the Greedy Algorithm regarding the quality of the 
solutions and runtime. It was demonstrated that our proposed 
hierarchical strategy can provide solutions with at least 
compatible solutions, but with less computation cost. 
 
The main problem we need to solve in future is the number and 
the configuration of targets for optimal performance of point 
cloud registration, which also makes the constraint of overlap 

Y
 (

m
)
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between adjacent scans necessary. As mentioned, the sensitivity 
of the solution is to be explored as well. In addition, this problem 
is currently considered in 2D space, which can be further 
extended to more complex 3D problems. This may be realized by 
extending the 2D wall segments into 3D wall patches distributed 
in the building façades. Moreover, more complex environments 
with occlusions will be simulated. Finally, it is notable that the 
strategy has been developed without reference to a specific 
scanner system, which means that one can modify the constraints 
in planning according to the properties of different instruments, 
e.g., the range capacity, the scanning window, etc. In summary, 
a full design system that can automatically provide an optimal 
plan for the high-accuracy and large-volume scanning network is 
to be developed in this research. 
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