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ABSTRACT: 

 

The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural 

Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the 

learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, 

classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to 

improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (𝐿cd) to the designed 

MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks.  Results show that 

we can increase the classification accuracy from 88.7% to 91.0% (from STN to MTN). The second goal of this paper is to solve the 

problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common 

problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating 

training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number 

of dataset and number of classes in the future. 

 

1. INTRODUCTION 

The use of airborne LiDAR for tree species classification has 

proven its effectiveness with high success rate. Compared to 

traditional aerial imageries, a new set of crown structural 

variables being able to derive from the three-dimension (3D) 

data, a generation of studies has evolved based on this 

technology. Numerous studies have been conducted to use 

LiDAR only (e.g. Lim et al., 2003; Holmgren and Persson 

2004; Brandtbert, 2007; Yao et al., 2012) and a combination of 

LiDAR and spectral signature for tree species classification 

(e.g. Holmgren et al., 2008; Jones et al., 2010, Liu et al., 2011, 

Alonzo et al., 2014) with promising accuracy. Internal tree 

crown geometry metrics such as branching structures and 

external tree crown geometry metrics such as overall shape of 

the tree crown has also been taken into consideration in the 

design of classification features (Ko et al., 2013; Blomley et al., 

2017). With the increasing computer power, lower sensor cost 

and more complex algorithm, LiDAR data are being more 

readily available, and the field of research had grown 

significantly in the recent years. However, these researches rely 

on the derivation of hand-crafted classification features, which 

needs a lot of human intervention. Also, hand-crafted 

classification features are sensitive to local changes, a 

classification that works well in a study area may not work well 

in another. 

In this paper, we propose a unique and efficient approach of 

classifying tree genera from LiDAR collected data by a deep 

learning approach. One of the advantages is the needlessness to 

design hand-crafted classification features. This way, when the 

number of classes increases in the future, there is no need to 

redesign the classification features, even with the change in 

geographical location. Often the same tree genera (or species) 

growing in different environment may appear differently and 

may require additional classification features when new 

datasets are added. Also, trees that are different in ages may 

appear differently; often these are the challenges in tree genera 

classification. A universal set of classification features for all 

tree genera (species) is almost impossible. However with deep 

learning, classification features can be learnt through the 

representation of the dataset. Also, rather than classifying tree 

genera as a single objective (or single task), we assigned two 

tasks for a classification objective (coniferous-deciduous and 

genera classification). Intuitively, same tree genera share the 

same classification features, but we also observe that tree 

belong to the same group, coniferous or deciduous also share 

common classification features within the group. We propose a 

new way of classifying tree genera that has two unique 

advancements. The first is the use of Multi-task Network and 

the second is the introduction of a constraint term (concurrence 

loss (𝐿cd)) between the tasks for improving overall accuracies. 

1.1 Deep Convolution Networks 

The field of classification (and object recognition) has a very 

long history, this field falls into a wide discipline of Artificial 

Intelligence (AI) (Goodfellow et al., 2016) and has been applied 

to many domains of science such as speech recognition, 

computer vision and many more (LeCun et al., 2015). In 

environmental science, the use of remotely sensed imagery for 

classifying natural objects falls into this AI category and there 

exist a wide range of literature that discuss the methodologies 

for supervised learning with various machine learning methods. 
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Until recently, a subset of machine learning methods, deep 

learning has been actively researched and applied in different 

fields. The application of deep learning has attracted much 

attention since it has dramatically improved the classification 

results with outstanding classification accuracy (LeCun et al., 

2015). Deep learning falls into the category of representation 

learning where classification features are derived from the 

representation of the dataset itself (Goodfellow et al., 2016, 

Chapter 15). As opposed to classical feature learning where 

classification features are hand-crafted and designed depending 

on the nature of the raw dataset. This approach often requires 

some prior knowledge of the raw data as well. Few 

benchmarking examples of deep learning research include 

LeNet-5 (LeCun et al., 1998), ImageNet (Dent et al., 2009), 

GoogleLeNet (Szegedy et al., 2015) and Microsoft ResNet (He 

et al., 2016). The needlessness of feature derivation is the major 

advantage of representation learning over feature learning; it is 

a more automatic approach where there is less prior knowledge 

needed for the dataset.   

 

Some of the earlier work of the deep learning model originated 

from artificial neural networks (ANNs) and was analogical to 

the neural networks of the brain. Where learning is breaking 

down into layers (input layer, hidden layers and output layer) 

and the learning model is an assembly of inter-connected nodes 

(called neurons) and weighted links. The term “deep” from 

deep learning comes from neural network composed with 

multiple hidden layers. Convolutional Neural Network (CNNs) 

is one of the most popular feed forward deep learning 

architectures because of its high performance accuracy. As a 

result, we adopted a CNN architecture for our tasks. Although 

CNN can be implemented in 3D space, we limit our 

experiments in 2D space for this study and the 3D convolution 

will be addressed in the future study. The use of CNNs adapted 

to 3D data is not discussed in this paper but several approaches 

can be found in examples such as Boulch et al. (2017), Huang 

and You (2016) and Lawin et al. (2017). 

 

1.2 Multiple-view Data Generation 

One of the most challenging problems in deep learning (or any 

learning problems) is the limited amount of trained dataset. A 

large pre-labeled dataset set is required to train the network for 

learning and often, the acquisition of these pre-labeled data is 

costly. Data augmentation refers to the generation of new 

dataset by providing transformations (e.g. scaling, rotating, and 

translating) to the original data. Its aim is to increase the 

number of training data and it has been proven the effectiveness 

by avoiding a well-known overfitting problem in image 

classification (Krizhevsky et al., 2012). Data augmentation also 

addresses the problem of imbalance training and can improve 

CNN-based methods (Chatfield et al., 2014). In 3D, a particular 

way of data augmentation is to generate a set of 2D images 

from viewing an object at different angles, called multi-view 

data generation (Su et al., 2015). We transformed the 3D 

LiDAR trees into 2D image space for using the existing tools 

that are already developed for the deep-learning algorithms.  

 

1.3 Multi-task Network (MTN) for Tree Genera 

MTN has been applied in different areas such as computer 

vision and drug discovery with success (Ramsundar et al., 

2015; Girshick, 2015). As the name suggests, MTN learn more 

than one task at the same time with shared classification 

features. In our study, the two tasks are coniferous-deciduous 

classification and genera classification. 

 

In general, by performing multiple tasks simultaneously, 

classification features derived from the classifier are less likely 

to be tailored for one single task and therefore could perform 

better by avoiding overfitting the classification problem. 

According to Ruder (2017), MTN is successful because 

learning from different tasks average noise patterns observed in 

different tasks. Also, in the case where data is very noisy, 

features derived from the first task can be verified with its 

relevancy by other tasks. Moreover, the network can learn 

certain features from a task that is easier for the feature to learn 

from and by introducing an inductive bias. Thus, MTN can 

reduces the risk of overfitting, resulting better classification 

accuracy. 

 

2. STUDY AREA AND MATERIAL 

Airborne LiDAR has been useful in studying trees, whether it is 

for tree height estimation (Nilsson, 1996), retrieving 

biophysical variables (Popescu et al., 2004), or species 

classification (Yao et al., 2012). The LiDAR data collected for 

this paper was acquired 7 August 2009 by Riegl LMS-Q560, 

the study area is approximately 75 km east of Sault. Ste. Marie, 

Ontario, Canada. The average point density is approximately 40 

points per m2. 186 Individual trees crown was manually 

detected and segmented from the LiDAR scene before field 

validation. Field surveys were conducted in the summer of 2009 

and 2011. There are eight field sites to capture the diversity of 

environmental conditions. Seven of the sites belong to a 

forested area and one site was chosen along two sides of a 

section of transmission corridor. From the 186 tree samples, 

160 of them belong to the genera of Pinus (pine), 67 samples; 

Populus (poplar), 59 samples; and Acer (maple), 34 samples. 

The detailed description of the LiDAR dataset can be referred 

to our previous work presented in Ko et al. (2013). The 186 tree 

crowns are manually segmented out from the LiDAR scene as 

pre-processing. In this paper, we will focus on the classification 

of the three classes. Figure 1 show 5 example images for each 

genera, pine (top row), maple (middle row) and poplar (bottom 

row). Greyscale of the LiDAR points represents northing (m) in 

UTM.  

 

3. METHODS 

We separate our methods into four sections; section 3.1 

described the preparation of input data and the method of multi-

view data generation. Section 3.2 describes the splitting of 

training and testing dataset. Section 3.3 and section 3.4 

describes the implementation of STN and MTN, respectively. 

STN classifies the trees into genera and MTN contain two 

tasks, first classifies the trees into genera and the second 

classifies the tree into coniferous or deciduous, using STN 

described in section 3.3 as base network.  

 

3.1 Generating Multi-view LiDAR Tree Image Generation 

For each segmented LiDAR tree, we produce 64 2-channel 2D 

images. The first channel (C1) of each image records the 

location of each detected LiDAR point and the second channel 

records the actual height of the tree. The first channel is 
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generated by the inspiration of depth imageries that are widely 

used in computer graphics, where the depth channel records the 

distance between the object and the view point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example LiDAR segmented tree crown, the top row 

shows five examples of pine trees, the middle row shows five 

examples of maple trees and the bottom row shows five 

examples of poplar trees, the greyscale of the points represents 

UTM northing (m). 

  

Similarly, we produced C1 by projecting each tree crown into 

UTM easting (x) and height (z). The representation of each 

discrete LiDAR reflection is symbolized by circle where the 

grey gradient (8-bit) represent the UTM northing (y). Each 

image has aspect x and z in the ratio of 1:1, the size of the 

image is fixed by adding a border around each image resulting a 

500 × 500 pixels image. This implies the smaller trees (younger 

in age) and the bigger trees (older in age) will occupy the image 

the same way. Since C1 is normalized to the size of the image, 

we introduce the second channel (C2) where height above the 

lowest point of the tree crown (m) is recorded as pixel value. 

This way, two similar looking trees (in C1) that are differing in 

sizes will appear differently in C2, that is, the absolute size of 

the tree crown is preserved in C2. The images are then stored as 

2-channel images. For illustration purpose, C1 is represented by 

red and C2 is represented by green. Figure 2(a) shows an 

example of a LiDAR pine tree projected to x-z axis. Each 

segmented tree crown has a local coordinate system where the 

origin (0,0) of the axis is located at the centre bottom of the tree 

crown. The grey scale represents the location of LiDAR points 

3m out of the paper or 3m into the paper (-3m), this will lead to 

the generation of C1, represented in Figure 2(c). Figure 2(b) 

shows an example of the same pine tree with the same axes, 

where grey scale represents the height of the tree above the 

lowest point of the tree crown. Note that the highest point 

recorded for this tree is 12.3m. Figure 2(b) will produce C2; 

shown in Figure 2(d). By combining Figure 2(c) (red) and 

Figure 2(d) (green) will produce an example shown in Figure 

2(e). All images are then resized to 48 × 48 pixels. 

 

 
Figure 2. Example of a pine LiDAR tree projected on to x-z 

plane (a) shows the results when the origin represents the x-y 

centroid of the tree, the lowest point of the recorded LiDAR 

point is zero. Grey value represents the location of the LiDAR 

point out of the paper (+) and into the paper (-) (b) shows the 

results of the same tree on the same axes where grey scale 

represents height above the lowest recorded LiDAR point. (c) 

and (d) are the resulted image produced from (a) and (b), 

respectively. (e) is the result of combining (c) and (d) into a 2-

channel image where (c) represents red channel and (d) 

represents green channel. 

 

We then rotate the tree in 64 different angles about the vertical 

axis of the x, y centroid of the segmented tree crown. The angle 

of rotation is 2𝑛𝜋/64 where 𝑛 = 1 … 64, the projection plane 

remains the same where x represents the UTM-easting rotated 

and z represents the height rotated. Figure 3 shows an example 

of the generated 64 trees from a single pine tree. The top down 

view of the tree is included to indicate the 64 angles of rotation 

for the tree about the tree centre. This process is being repeated 

for all 160 trees.  

 

  
Figure 3. The generation of 64images from a single tree, 

example shows the results generated for C1 

 

As a result of this method, we generate 10240 2-channel images 

(160 tree x 64 multiple views) for training and testing the 

results. Figure 3 illustrates the results of 64 C1 images 
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generated from a single tree. 64 C2 images are generated the 

same way and are then combined into 2-channel images as the 

method described above.  

 

3.2 Training Data and Testing Data 

We split the data into two categories, training data (25%) and 

testing data (75%). We had chosen this partition from our 

previous study for comparison reasons (Ko et al., 2013). From 

the 160 trees we have collected, we randomly selected 40 trees 

for training, when a single tree is selected, 64 associated images 

are also selected as training. In the case of MTN, the same 

training and testing images are used for both tasks. 

 

Where M = Maple; Po = Poplar; P = Pine; D = Deciduous; C =  

Coniferous 

 

Table 1. Training and testing data partition for the experiments 

 

3.3 Single-task Network (STN)  

Motivated by LeNet-5 (LeCun et al., 1998), we designed a base 

network for tree genera classification, as in Figure 4. The base 

network consists of three Conv layers (Conv1, Conv2 and 

Conv3) and two fully connected layers (Fc1 and Fc2), where 

each Conv layer is composed of a series of layers of a 

convolution, batch normalization, Rectified Linear Unit 

(ReLU), max pooling, and dropout. Since this base network 

contains one single task, it is considered as a Single-task 

Network (STN). Note that for our experiment, the dimension of 

the input data is 48 pixels × 48 pixels × 2 channels.  

 

 
Figure 4. Summary of STN network 

 

When the convolution operation is applied to the input with a 

filter, the result is called the convolution layer. The common 

two parameters for this layer are the filter sizes and the number 

of filters. In our study, the size of the filters is chosen based on 

examples such as LeNet-5 (LeCun et al., 1998) where authors 

have 32 × 32 pixel images, the first convolution operation use a 

5×5 filter. In AlexNet (Krizhevsky et al., 2012), the input 

images are 224 × 244 pixel and the first convolution 
operation have filter size of 11 × 11. As our images are 48 × 
48 pixels, we had chosen filter size of 5×5; 3×3 and 3×3 for 

all convolution layers 1, 2 and 3, respectively. Batch 

Normalization is the layer lies between convolution layers and 

Rectified Linear Unit (ReLU) layers and is used for speeding up 

the training (Ioffe et al., 2015). ReLU layer is the activation 

function where 𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 which changes all the pixel 

values that are negative to zero. As a result, the stack of images 

only contains positive numbers. Dropout is a regularization 

technique for reducing overfitting in neural networks. It 

randomly drops units (along with their connections) from the 

neural network during training. Max Pooling layer reduce the 

size of the stacked images from the previous layer, where max 

pooling refers to recording the maximum value of the pixel 

within the window size. The pooled images will become the 

input of the next convolution layer. Dense, or full connections 

between nodes in two layers describes a fully-connected layer. 

The fully connected layer (Fc1 and Fc2) is a layer where the 

feature values vote for different classes in classification. The 

last step, the Softmax layer produces probabilities for the 

genera labels. We use the following equation to calculate loss 

function 𝐿𝑔𝑒(𝒘): 

 

Let (𝒙𝑖 , 𝑙𝑔𝑒,𝑖), 𝑖 ∈ {1, ⋯ , 𝑁} be the 𝑖th data in the training set, 

where 𝐱𝑖  is the 𝑖th input data which is 48 pixels × 48 pixels × 2 

channels and 𝑙ge,𝑖 ∈ {1, ⋯ , 𝑀} is the label for 𝐱𝑖  in the form of 

one-hot vector for the tree genera. The base network is trained 

to minimize the loss 𝐿𝑔𝑒(𝒘) where: 

 

 

𝐿𝑔𝑒(𝒘) =
1

𝑁
∑ 𝒞(𝒙𝑖 , 𝑙𝑔𝑒,𝑖; 𝒘)𝑁

𝑖=1    (1) 

 

Where 𝒞(𝒙𝑖 , 𝑙𝑔𝑒,𝑖; 𝒘) = cross-entropy between predicted label 

                probability and field-validated label  

        𝒘 = weights in the network 

 

3.4 Multi-task Network (MTN)  

Inspired by the work of Ruder (2017) and Liao et al. (2017), we 

extended the STN into MTN. In order to get the benefit from 

both tree genera classification and coniferous-deciduous 

classification, the proposed multi-task network is built to 

perform two tasks: 1) tree genera classification (major task), 

and 2) coniferous-deciduous classification (auxiliary task). 

Similar to STN described in section 3.3, MTN has the three 

convolution layers (Conv1, Conv2 and Conv3), with the 

difference of splitting into fully-connected layers that generate 

the outcome for each task. A summary of MTN is shown in 

Figure 5. The three convolution layers are shared among the 

two tasks Conv1, Conv2 and Conv3 with the same setting as 

STN described in Figure 4.  

 

 

 
Figure 5. Summary of MTN network 

 

On top of the loss 𝐿𝑔𝑒 introduced in STN, we proposed two 

additional losses for training the MTN. The first one is 𝐿𝑐𝑑, the 

loss for coniferous-deciduous binary classification (auxiliary 
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task).  It is defined as the average cross-entropy of the predicted 

probability for the classification and field validated labels. The 

second is 𝐿𝑐𝑛, which we named as concurrence loss. The 

purpose of 𝐿𝑐𝑛 is to minimize the inconsistencies between the 

outcome of the two tasks. We achieve the minimization by 

transforming the outcome for tree genera classification (major 

task) into coniferous-deciduous probabilities through the 

function 𝑓ge2cd (Figure 5). Then, we compared these derived 

probabilities with the probabilities obtained by the auxiliary 

task. The objective of the network is to minimize the difference 

by introducing 𝐿cn, the average cross-entropy between these 

probabilities and the probabilities from the auxiliary task. 

 

The proposed MTN is trained to minimize 𝐿𝑡𝑜𝑡𝑎𝑙(𝒘) which 

comprises of three losses 𝐿𝑔𝑒 , 𝐿𝑐𝑑(𝒘) and 𝐿𝑐𝑛(𝒘) 

 

𝐿𝑡𝑜𝑡𝑎𝑙(𝒘) = 𝐿𝑔𝑒(𝒘) + 𝐿𝑐𝑑(𝒘) + 𝐿𝑐𝑛(𝒘)   (2) 

 

𝐿𝑔𝑒(𝒘) =
1

𝑁
∑ 𝒞(𝒙𝑖 , 𝑙𝑔𝑒,𝑖; 𝒘)𝑁

𝑖=1   (3) 

𝐿𝑐𝑑(𝒘) =
1

𝑁
∑ 𝒞(𝒙𝑖 , 𝑙𝑐𝑑,𝑖; 𝒘)𝑁

𝑖=1   (4) 

𝐿𝑐𝑛(𝒘) =
1

𝑁
∑ 𝒞(𝑓𝑔𝑒2𝑐𝑑(𝒔𝑔𝑒,𝑖), 𝒔𝑐𝑑,𝑖; 𝒘)𝑁

𝑖=1  (5) 

where   𝑓𝑔𝑒2𝑐𝑑(𝒔𝑔𝑒,𝑖) = {𝑠𝑐,𝑖 , 𝑠𝑑,𝑖} 

            𝑠𝑐,𝑖 = ∑ 𝒔𝑔𝑒,𝑖
(𝑗)

𝑗∈𝐶       

            𝑠𝑑,𝑖 = ∑ 𝒔𝑔𝑒,𝑖
(𝑗)

𝑗∈𝐷  

 𝒞(𝑓𝑔𝑒2𝑐𝑑(𝒔𝑔𝑒,𝑖), 𝒔𝑐𝑑,𝑖; 𝒘) = cross-entropy between  

                  𝑓𝑔𝑒2𝑐𝑑(𝒔𝑔𝑒,𝑖) and 𝒔𝑐𝑑,𝑖 

 𝒔𝑔𝑒,𝑖 = the M-dimensional vector, indicating the

         softmax output (predicted probability) for

         the tree genera classification of the 𝑖th data 

 𝒔𝑔𝑒,𝑖
(𝑗)

 = the 𝑗th element of 𝒔ge,𝑖, e.g. if 𝑗 = 1    

       corresponds to 'maple', 𝒔ge,𝑖
(1)

 is the 

       probability of the 𝑖th input data being the 

      'maple'. 

 𝒔𝑐𝑑,𝑖 = 2-dimensional vector (𝒔cd,𝑖
(1)

 is for     

       coniferous,𝒔cd,𝑖
(2)

 is for deciduous), indicating 

       the softmax output (predicted probability) 

       for the binary classification of the 𝑖th data 

 

Both STN and MTN were implemented using Tensorflow Ver. 

1.3 (Abadi et al., 2016) with NVIDIA GeForce GTX 1080 Ti. 

We are using Adam optimization (Kingma et al., 2014) with 

learning rate of 5.0 × 10-5, dropout at 0.7 and mini-batch size of 

100 for both learning networks.  

 

4. RESULTS AND DISCUSSION 

We process the classification for both STN and MTN and 

provided the confusion matrices for the classification in section 

4.2. The overall genera classification accuracy of STN is 88.7% 

and the overall genera classification accuracy of MTN is 

91.0%. The improved classification accuracy indicates there is a 

future potential use of MTN for larger amount of data as well as 

increased number of genera. To illustrate the performance of 

MTN, Section 4.1 will show the results of the classification 

accuracies over various epoch for MTN and section 4.2 will 

shows the results of classification performance (STN and MTN) 

with confusion matrices.  

 

4.1 Loss over Epoch for Multi-task Network 

It has been shown in the previous research by Krizhevsky et al. 

(2012) that STN converges to minimum loss as epoch increases. 

One of our goals is to investigate if MTN will also perform the 

same way. To illustrate the performance of MTN, Figure 6 

shows the loss functions   

 
Figure 6. 𝐿𝑔𝑒, 𝐿𝑐𝑑, 𝐿𝑐𝑛 and 𝐿𝑡𝑜𝑡𝑎𝑙 over Epoch 

 

From the figure, we can see that all the loss functions (𝐿𝑔𝑒, 𝐿𝑐𝑑, 

𝐿𝑐𝑛 and 𝐿𝑡𝑜𝑡𝑎𝑙) converge when epoch reached 300. Also, the 

loss for genera classification is higher than the coniferous-

deciduous classification, meaning the binary classification 

generally has higher classification accuracy (a relatively easier 

task). Also, 𝐿𝑐𝑛 decreases as epoch increases, meaning the 

inconsistencies between the predictions also decreases when 

epoch increases. 

 

4.2 Confusion matrices for STN and MTN 

To have a better understanding on the classification results, we 

present the confusion matrices of STN for genera classification 

and MTN for both coniferous-deciduous classification and 

genera classification. Table 2 shows the confusion matrix for 

genera classification for STN and Table 3 shows the confusion 

matrix for coniferous-deciduous classification for STN. 

Although the goal for STN is genera classification, we produce 

results for Table 3 to show classification accuracy improves for 

both our prime goal (genera classification) as well as the 

secondary goal (coniferous-deciduous classification). Table 4 

shows the confusion matrix for genera classification for MTN 

and Table 5 shows the confusion matrix for coniferous-

deciduous classification for MTN. 

 

    Predicted   

 

  Maple Poplar Pine Omission error 

M
ea

su
re

d
 

Maple 1553 76 35 0.07 

Poplar 0 2788 28 0.01 

Pine 171 555 2474 0.23 

Commission Error 0.10 0.18 0.02   

Overall Accuracy = 88.7% 

Table 2. Confusion matrix for genera classification for STN 
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Predicted 
M

ea
su

re
d

 

  Deciduous Coniferous Omission error 

Deciduous 4417 63 0.01 

Coniferous 726 2474 0.23 

Commission Error 0.14 0.02   

Overall accuracy = 89.7% 

Table 3. Confusion matrix for coniferous-deciduous 

classification for STN 

 

    Predicted   

 

  Maple Poplar Pine Omission error 

M
ea

su
re

d
 

Maple 1538 67 59 0.08 

Poplar 0 2752 64 0.02 

Pine 115 384 2701 0.16 

Commission Error 0.07 0.14 0.04   

Overall Accuracy = 91.0% 

Table 4. Confusion matrix for genera classification for MTN 

with use of  𝐿𝑐𝑛 

 

Predicted 

M
ea

su
re

d
 

  Deciduous Coniferous Omission error 

Deciduous 4357 123 0.03 

Coniferous 499 2701 0.16 

Commission Error 0.10 0.04   

Overall accuracy = 91.9% 

Table 5. Confusion matrix for coniferous-deciduous 

classification for MTN with use of  𝐿𝑐𝑛 

 

By comparing Table 2 and Table 4, we can see that the overall 

classification accuracy for genera increases from 88.7% to 

91.0%. The omission error of pine decreases from 23% to 16% 

and the commission error of poplar decreases from 18% to 14% 

from STN to MTN. Although the classification of coniferous 

and deciduous is not our prime goal, the classification accuracy 

also increases from STN to MTN (89.7% to 91.9%). The 

omission error of coniferous trees decreases from 23% to 16% 

and the commission error of deciduous trees decrease from 14% 

to 10%. 

 

We have some insights to the results obtained from Table 2 to 

Table 5. STN derived classification features that are designed 

explicitly for genera classification while MTN derived the share 

classification features for both tasks. The shared features are 

more generalized and perhaps had reduced some of the 

overfitting problems compared to STN and therefore has higher 

classification accuracy (Table 2 and Table 4). The improved 

classification accuracies for the coniferous-deciduous 

classification (Table 3 and Table 5) show that the proposed loss 

function 𝐿𝑐𝑛 plays an important role in constraining the 

inconsistencies between the two tasks in MTN network. We 

think this constraint is particularly successful because of the 

nature of the hierarchical classification of tree genus.  

 

5. CONCLUSION 

Our paper has two major conclusions; the first is the use of 

existing CNN tools for processing LiDAR 3D data in 2D space. 

The advantage of such approach is that the classification 

features are automatically derived from the network and 

without human intervention. We had overcome the problem of 

insufficient training data by generating additional data though 

multi-view data augmentation. The second conclusion can be 

drawn from the successful results obtained from Multi-task 

Network (MTN). The genera classification accuracy had 

increased from 88.7% to 91.0%. The introduction of the 

constraint term 𝐿cn has shown to be useful in improving 

classification accuracy. In the near future, we will obtain more 

LiDAR trees with higher number of classes and we would like 

to process a higher complexity set of data with the same MTN. 

This paper has provided us a strong foundation for the future 

work.  
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