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ABSTRACT: 

As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as 

accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and 

infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this 

effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic 

environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data 

streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory 

data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can 

support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting 

pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor 

performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could 

provide essential information on optimizing the choice of geospatial map databases and sensors’ quality to support driverless vehicle 

technologies. The paper reviews the data acquisition and primary data processing challenges and performance results. 

 

1. INTRODUCTION 

Car manufactures, IT giants, and large numbers of start-up 

companies have been developing various technologies for 

autonomous cars at neck braking pace. Theses R&D efforts are 

quite interdisciplinary, and include primarily computer science, 

electrical and mechanical engineering, etc., (Geiger et al., 2012; 

Ibañez-Guzmán et al., 2012) and then social sciences to address 

ethical and legal concerns (Bonnefon et al., 2016; Ibañez-

Guzmán et al., 2012). The mapping community, in particular 

mobile mapping, is also a contributor to these efforts with 

bringing in long-term expertise in sensor integration, 

georeferencing, and mapping of the environment. For instance, 

currently, autonomous driving could greatly benefit from real-

time centimeter level positioning accuracy that cannot be 

achieved only by GPS/GNSS in urban environment. Using 

accurate map of the environment and map matching, the required 

accuracy could be attained. Obviously, the availability of 

centimeter level geospatial data is important as well as the 

detailed representation of all objects along the transportation 

network. 

 

The goals of the data acquisition discussed here are: 

 

 The main objective is to acquire data streams from mobile 

platforms, including vehicles, bicycles, pedestrians, etc. 

These data are essential to testing vehicle sensing and 

maneuvering capabilities, and directly support research and 

development of autonomous vehicle technologies.  

 

 A second objective is to create a high-definition map of the 

test area that includes mobile data collection and additional 

surveying of the area. The availability of such maps has a 

significant effect on autonomous driving by providing a 

detailed description of the object space of and around the 

transportation corridor, greatly improving the reliability of 

the vehicle’s self‐localization and path planning 

capabilities. 

 A third objective is to test the potential of Big Data / Data 

Analytics technology for map production based on highly 

redundant multi-sensor data, including crowdsourcing. 

 

This paper describes the data acquisition platform and the first 

results of primary data processing of the highly redundant sensor 

arrangement, which is essential to create a benchmark data set. 

There are several widely used benchmark datasets that support 

navigation and object space reconstruction research. For 

instance, the KITTI Vision Benchmark Suite provides data from 

a Velodyne HDL-64E, stereo cameras, as well as, accurate 

navigation solution for georeferencing (Geiger et al., 2012). The 

Cityscape dataset contains stereo video sequences from 50 

different cities for semantic analysis (Cordts et al., 2016). 

Researchers has access to 10 hours annotated images from The 

Caltech Pedestrian Detection Benchmark (Dollar et al., 2012). 

The mapping community also has several available data sources 

from mobile LiDAR sensors or images (Serna et al., 2014) that 

might be usable for autonomous research.  

 

In contrast to these benchmark datasets, in this study, the focus is 

on acquiring highly redundant data in a wide range of quality. For 

example, the sensors cover the similar field of view around the 

platform, but they differ in image size, lens quality, sampling 

frequency, etc. This redundant approach allows for assessing to 

cross-reference the performance of different cameras and LiDAR 

scanners for specific tasks. As for any benchmark, a key element 

is to provide accurate georeferencing, and reference sensor 

calibrations, including the boresight and the hardware specific 

calibrations, such as lens distortion parameters for the imaging 

sensors. The paper describes procedures that address a few of the 

problems presented above and the results including the error 

budget analysis. 
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2. DATA ACQUISTION SYSTEM 

2.1 Platform 

A GMC Suburban, customized measurement vehicle, called 

GPSVan (Grejner-Brzezinska 1996), is used as a platform for the 

data acquisition, see Figure 1. The sensors installed on the 

platform can be categorized as navigation and mapping sensors. 

The navigation sensors, i.e. GNSS receivers and IMUs are 

located inside the van. Light frame structure installed on the top 

and front of the vehicle provides a rigid platform for the imaging 

sensors, such as LiDAR and different types of cameras. The final 

sensor configuration consists of two GPS/GNSS receivers, three 

IMUs, three high-resolution DSLR cameras for acquiring still 

images, 13 P&S (Point and Shoot) cameras for capturing videos, 

and seven LiDAR sensors. The location of the sensors on the 

GPSVan is shown in Figure 1 and the main sensor parameters are 

listed in Table 1. The four primary purposes of the various 

sensors are categorized as: 

 

1. Georeferencing and time synchronization: GPS/GNSS 

and IMU sensors provide accurate time as well as position, 

attitude data of the platform, allowing for time 

synchronization and sensor georeferencing. 

2. Optical image acquisition: these sensors are carefully 

calibrated and synchronized in order to derive accurate 

geometric data for mapping; for instance, by using stereo, 

multiple-image photogrammetric and computer vision 

methods. 

3. Video logging: these sensors provide a continuous 

coverage of the environment during the tests. The quality 

of these sensors does not allow for accurate time 

synchronization and accurate calibration, which would be 

comparable to high quality still image sensors. 

Nevertheless, the moderate geometric accuracy combined 

with the high image acquisition rate allows for object 

extraction and tracking, such as traffic signs, road signs, 

and obstacles, etc. In addition, dynamic objects, such as 

vehicles, cyclist, pedestrians, etc., can be tracked. 

4. 3D data acquisition: Velodyne LiDAR sensors allow for 

direct 3D data acquisition that can be used for object space 

reconstruction, and object tracking.  

 

The field of views of the imaging sensors, including the LiDAR 

and cameras, around the vehicle are shown in Figure 2; note the 

sensing range is not shown. The sensor arrangement and field of 

views are designed to acquire highly redundant data that can 

equally support the high definition mapping of the environment 

and the algorithmic research related to driverless vehicle 

technologies. Conventional mobile mapping systems typically 

utilize high-resolution imaging systems, and use narrower 

observation field of view around the platform, and the 

completeness of the acquisition is provided by the details, 

captured incrementally as the platform is moving. Using accurate 

georeferencing, the data is merged during processing to obtain a 

seamless geospatial product. For autonomous driving, the sensor 

system must be aware of the surroundings at all the time, as the 

decision-making has to be done in a fraction of a second. 

Consequently, compared to mapping-orientated data acquisition, 

the arrangement and alignments of the sensors have to be 

designed to cover the entire field of view around the vehicle. 

 

Since affordability is a key element of the sensor design for 

autonomous vehicles, the highly redundant data acquisition 

provides an ideal data set for performance comparisons; mainly, 

by providing information of the geospatial navigation and 

mapping accuracy that can be realistically achieved with simple 

and inexpensive sensors. For example, what is the performance 

difference when image sequences from a smartphone, GoPro or 

a P&S camera are used? Sensor orientation, in particular for 

scanning sensors, is also important and can be evaluated. Also, 

point cloud quality can be compared for photogrammetrically 

derived and LiDAR created data.

  
 

(a) (b) 

 
 

(c) (d) 

Figure 1. The placement of the imaging sensors: (a) front top view, (b) top view, (c) front view, and (d) rear view. 
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Table 1. Overview of the sensors; see explanation in the text.  

Type Sensor Model Sensor ID 
Resolution / 

Ang. resolution1 
Location 

Sampling 

Frequency 
Field of View1 Purpose* 

GPS Septentrio PolaRx5 GPS  SEPT - Top 10 Hz - (1) 

GPS Novatel DL-4 GPS NOVATEL - Top 5 Hz - (1) 

IMU MicroStrain 3DM-GX3 MS - Inside 200 Hz - (1) 

IMU H764G IMU 1 H764G - Inside 200 Hz - (1) 

IMU H764G IMU 2 H764G - Inside 200 Hz - (1) 

Still image Sony Alpha 6000 (ILCE) SON1 6000 x 4000 Front, Right 0.5 Hz 96º x 73º (2) 

Still image Sony Alpha 6000 (ILCE) SON2 6000 x 4000 Front, Left 0.5 Hz 96º x 73º (2) 

Still image Nikon D800 NIKON 7360 x 4912 Front, Center 1 Hz 40º x 40º (2) 

Video Canon PowerShot SX710  CAN1 1920 x 1080 Side, Right 30 Hz 70º x 55º (3) 

Video Canon PowerShot G7 X  CAN2 1920 x 1080 Side, Left 30 Hz 74º x 55º (3) 

Video Casio EX-H20G CAS1 1280 x 720 Back, Right 30 Hz 72º x 57º (3) 

Video Casio EX-H20G CAS2 1280 x 720 Back, Left 30 Hz 72º x 57º (3) 

Video GoPro HERO5 Black GPR1 3840 x 2160 Front, Right 30 Hz 102º x 70º (3) 

Video GoPro HERO5 Black GPR2 3840 x 2160 Front, Left 30 Hz 102º x 70º (3) 

Video GoPro HERO3+ Black GPR3 1920 x 1080 Back, Center 30 Hz 91º x 73º (3) 

Video Point Grey Flea3 8.8 PTGREY0 3840 x 2880 Front, Bottom 5 Hz 45º x 45º (3) 

Video Point Grey Flea3 1.3 PTGREY1 1280 x 960 Back, Center 5 Hz 45º x 45º (3) 

Video Point Grey Flea3 1.3 PTGREY2 1280 x 960 Front, Left 5 Hz 45º x 45º (3) 

Video Point Grey Flea3 1.3 PTGREY3 1280 x 960 Front, Right 5 Hz 45º x 45º (3) 

Video Samsung S5 S5 1920 x 1080 Front, Right 30 Hz 45º x 45º (3) 

Video Samsung S7 S7 1920 x 1080 Front, Left 30 Hz 45º x 45º (3) 

LiDAR Velodyne HDL-32E VHDL H/V: 0.2º/1.33º Front, Top 20 Hz H/V: 360º, 40º (4) 

LiDAR Velodyne VLP-16 VRED H/V: 1.33º/0.2º Front, Bottom 20 Hz H/V: 30º, 360º (4) 

LiDAR Velodyne VLP-16 VGREEN H/V: 0.2º/1.33º Front, Right 20 Hz H/V: 360º, 30º (4) 

LiDAR Velodyne VLP-16 VYELLOW H/V: 0.2º/1.33º Front, Left 20 Hz H/V: 360º, 30º (4) 

LiDAR Velodyne VLP-16 VWHITE H/V: 0.2º/1.33º Back, Left  20 Hz H/V: 360º, 30º (4) 

LiDAR Velodyne VLP-16 VBLUE H/V: 1.33º/0.2º Back, Center 20 Hz H/V: 30º, 360º2 (4) 

LiDAR Velodyne VLP-16 VBLACK H/V: 0.2º/1.33º Back, Right 20 Hz H/V: 360º, 30º (4) 
* – see explanations in the text 
1 – angles defined in the platform’s coordinate system 
2 – rotation plane is declined 30º from the horizon 

 

 

 

 
 

Figure 2. Field of views of the imaging sensors around the GPSVan. 
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3. PROCESSING 

As a standard preprocessing, the sensor orientation must be 

georeferenced and data streams must be transformed from the 

sensor coordinate system to a common or global coordinate 

system prior any further processing. This is a typical problem in 

mobile mapping system. Here, it is assumed that after the raw 

sensor stream is preprocessed, the geometric data are available as 

𝐱𝑠 = [𝜆𝑥, 𝜆𝑦, 𝜆𝑧, 𝜆] ∈ ℝ𝟒, 𝜆 ≠ 0, 3D points with homogenous 

coordinates defined in the sensor coordinate system. LiDAR 

sensors directly provide the 3D point coordinates, while, 3D 

points from cameras can be derived based on stereo or multi-view 

camera equations. To transform 𝐱𝑠 point defined in the sensor 

coordinate system to a common global coordinate system is 

described as: 

𝐱𝑔 = T𝑔,𝑝T𝑝,𝑠𝐱𝑠 .   (1) 

 

where T𝑝,𝑠 is the 4 by 4 time-independent sensor to platform 

homogenous transformation matrix, also called boresighting, and 

the T𝑔,𝑝 is the time-dependent platform to global transformation, 

also known as georeferencing.  

 

3.1 Time synchronization 

All data streams are synchronized to the GPS time (GPST). 

However, the accuracy of the time synchronization of the sensors 

varies. Obviously, the GNSS and IMU sensors are very well 

synchronized to the GPST. Similarly, Velodyne sensors are 

accurately synchronized by the 1PPS signal and NMEA 

messages provided by GPS/GNSS receivers.  The time 

synchronization of the high-resolution cameras was accurately 

aligned to the GPST. The two Sony cameras were triggered using 

the 1PPS signals, while the Nikon was using a self-timer for 

image capture. For all the three cameras, the triggering time of 

the images were also logged through a connection between the 

flash output of the cameras and the event input of the GPS/GNSS 

receivers. There was no accurate time synchronization for the 

video camera streams. Coarse time tagging was obtained by 

matching high-resolution images with selected video frames of 

dynamic content. For example, walking pedestrians or runners 

are considered as good objects for the matching because similar 

still images of the same dynamic content can be found in the 

image sequences across the cameras. In addition, for a few 

cameras the images were directly logged by a computer, in which 

case, through the CPU time, the image acquisition time could be 

estimated with respect to the GPS time. In both cases, time 

synchronization accuracy is estimated to be in the range of 0.01 

– 0.1 s. 

 

3.2 Georeferencing 

The T𝑔,𝑝 platform to global coordinate transformation (platform 

georeferencing) is a time dependent transformation that provides 

the position and orientation of the platform. This transformation 

can be obtained with integrating GPS/GNSS and IMU 

observations. The results presented in this study are derived 

based on the data from the Septentrio GNSS receiver and the 

navigation grade H764G IMU, using the loosely coupled 

integration model. The GPS/GNSS trajectory solution was 

derived by PPK (post-processed kinematic) using carrier-phase 

observations. GPS/GNSS signal was lost several times during the 

tests due to “urban canyon” effect. The use of navigation grade 

IMU, however, provided reliable bridging for the gaps in the 

GPS/GNSS observation. 

 

3.3 Sensor Calibration Range 

The goal of the sensor calibration is to determine the position and 

orientation (boresighting) of the sensors in the platform 

coordinate system, expressed in the Tp,s transformation matrix in 

Equation 1. In addition, other sensor related parameters may be 

determined, such as the distortion parameters for the cameras. In 

order to estimate these parameters for the camera and LiDAR 

sensors, a test range was created at the main facility of the OSU 

Center for Automatic Research (CAR), see Figure 3. At a corner 

of the building, 40 optical camera and 5 LiDAR targets were 

attached to the walls, and imaged at various locations and 

orientations, see Figure 4. The target locations were measured by 

total station using triangulation at sub-centimeter accuracy. The 

points are also tied to the global system using GPS/GNSS 

measurements. 

 

 
Figure 3. GPSVan at the calibration range. 

  

(a) Size: 14 cm x 12 cm (b) Size: 50 cm x 50 cm 

Figure 4. Camera (a) and LiDAR (b) targets. 

3.4 Camera Calibration and Boresighting 

The cameras were first laboratory calibrated, and the obtained 

parameters were subject to adjustment during the in-situ 

calibration process (Fraser, 2012). The estimation of the internal 

and external orientation parameters of the cameras consists of 

two steps. First, the cameras position and orientation are 

estimated in the global coordinate system using bundle 

adjustment (McGlone, 2013), and then the estimated parameters 

are transformed into the platform coordinate system using the 

georeferencing solution. During the camera calibration, the 

targets were manually measured in the images, taken from 

various platform positions. Since the global coordinates of the 

targets are known from surveying and the pixel locations of the 

targets are measured, the rotations (R𝑔,𝑠) and positions (𝐭𝑔,𝑠) of 

the cameras in the global frames are estimated using bundle 

adjustment without tie points. The linear calibration parameters 

(i.e., focal length, and principle point coordinates) as well as the 

three radial and two tangential distortion parameters 

(𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2) are also estimated in the bundle adjustment. 

Figure 5 shows a result for one camera; blue dots depict the 

targets, blue lines are the rays, and the camera planes are shown 

in red. 
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The orientations (R𝑔,𝑠) and positions (𝐭𝑔,𝑠) of each camera 

defined in the global frame are known from the bundle 

adjustment. In the next step, these parameters have to be 

transferred to the platform coordinate system. The GPS/IMU 

integrated navigation solution can be used to obtain the R𝑔,𝑝  and 

𝐭𝑔,𝑝  rotations and translations between the platform and the 

global coordinate system, described by the following equations: 

 

R𝑝,𝑠 = R𝑔,𝑝
−1 R𝑔,𝑠, 

 𝐭𝑝,𝑠 = 𝐭𝑔,𝑝 − 𝐭𝑔,𝑠.  
(2) 

 

where R𝑝,𝑠 and 𝐭𝑝,𝑠 are the platform to sensor rotation matrix and 

the translation vector, respectively. Since these transformations 

are different for each platform position, the average of the 

estimated orientation and translation parameters is calculated to 

obtain the final transformation parameters. In addition, the 

statistical evaluation of distribution of the camera positions 

allows for assessing the accuracy of the final solution that 

includes the errors of the bundle adjustment and the 

georeferencing.   

 

 
Figure 5. Result of the bundle adjustment: targets (blue dots), 

ray (blue lines), camera plane (red). 

 

3.5 LiDAR Boresighting  

The center of the Velodyne VLP-16 and HDL-32 sensors is well 

defined, and thus, the positions of these sensors in the platform 

coordinate system can be easily measured with measuring tape. 

For the sensor orientations, one can simply manually position the 

sensor to be in coincidence with the platform’s local coordinate 

system. The accuracy of this direct approach, however, is modest, 

and it can only provide an approximate or nominal sensor 

alignment. Indirect methods provide better accuracy, and use 

object space information for estimating the sensor boresighting, 

for examples, see Glennie and Lichti, 2010; Atanacio-Jiménez et 

al., 2011 or Guindel et al., 2017. 

 

The approach used in this study is based on the idea presented by 

Csanyi and Toth, 2007. The LiDAR specific targets are extracted 

from the point cloud, and their surveyed coordinates are used to 

calculate the sensor orientation; the final step of the computation 

is similar to the photogrammetric indirect georeferencing. Csanyi 

and Toth applied this concept to airborne LiDAR. The 

determination of the orientation parameters using this concept for 

the Velodyne sensors is different due to the limited angular 

resolution and field of view along the rotation axis. 

Consequently, less number of points can be captured from the 

target; in particular, as the object-sensor distance increases. 

Nevertheless, several points can be captured from the 50 x 50 cm 

targets from a range of 3-7 m, and thus used for estimating the 

boresight parameters. Figure 6 shows a position with three targets 

seen by the HDL-32E scanner; the targets are highlighted in the 

figure.  

 

 

 

Figure 6. Target points (magenta color) in the point cloud 

captured by Velodyne HDL-32E scanner. 

After segmenting the target points from the background, the next 

step is to find the center of the targets, based on the captured 

points. First, the captured target points are transformed to a local 

plane, defined as the best fitting plane to the points. Figure 7 

shows the captured points of a target on this local plane; the 

colors represent the intensity values of the points. High intensity 

values (bright colors) are assumed to be captured from the white 

inner circle of the target, while low intensity indicates that the 

points are captured around the edges of the target. The center of 

the white circle can be found by fitting a circle (light blue) with 

the known radius to the points. 

 

 

 
 

Figure 7. Captured points from a target. The color depicts the 

intensity: dark: high, and light: low intensity; blue circle 

represents the best fitting circle around the points. 
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As opposed to the Csanyi and Toth approach, where they applied 

a grid-based search to find the center of the circle, here, we solve 

the following quadratically constrained quadratic program 

(QCQP) to find the location of the “best” fitting circle that 

satisfies the condition presented above (Boyd and Lieven, 2004):  

 

minimize       
1

2
𝐱T𝐱 

subject to       
1

2
𝐱THi𝐱 + 𝐤i

T𝐱 + 𝑑𝐢 ≤ 0, 𝑖 = 1. . 𝑛 

(3) 

 

where 𝐱 = [𝑥, 𝑦]T is the unknown center of the disc, and 𝑛 is the 

number of the captured points. The Hi, 𝐤i, 𝑑𝐢 elements of the 

constraints depends on whether the constraint equation is written 

for a point that is on the white disc or outside. For a (𝑥𝑖 , 𝑦𝑖) point 

lie inside the disc, Hi = I, 𝐤i = −[𝑥𝑖 , 𝑦𝑖]T, and 𝑑i =
1

2
(𝑥𝑖

2 +

𝑦𝑖
2 − 𝑟2), and for a (𝑥𝑗 , 𝑦𝑗) point outside of the disc, H𝐣 = −I, 

𝐤j = [𝑥𝑗 , 𝑦𝑗]
T

, and 𝑑𝐣 = −
1

2
(𝑥𝑗

2 + 𝑦𝑗
2 − 𝑟2), where 𝑟 is the 

radius of the disc. 

 

After solving Equation 3, for instance, following Mathworks 

Team, 2018, the circle center is transformed back from the local 

plane to the sensor coordinate system. An 𝐱𝑠 target center defined 

in the sensor coordinate system can be transformed to the global 

coordinate system with applying first a sensor to platform 

transformation (T𝑝,𝑠), and then, a platform to global system 

transformation (T𝑔,𝑝), see Equation 1. The T𝑔,𝑝 transformation 

can be determined from the GPS/IMU integrated navigation 

solution, and the T𝑝,𝑠 homogenous transformation is the LiDAR 

boresighting, that has to be estimated. The 𝐱𝑔 target centers in the 

global reference frame are known from surveying, and thus the 

rigid body rotation parameters of the T𝑝,𝑠 transformation matrix 

can be obtained with least squares: 

minimize (w.r.t. T𝑝,𝑠) ‖𝐱𝑔 − T𝑔,𝑝T𝑝,𝑠𝐱𝑠‖
2

2
. (4) 

Note that the unknown parameters of the T𝑝,𝑠 transformation are 

only the three rotation parameters, because the position of the 

sensor is already measured, see above. Thus, three or more 

targets have to be measured in order for estimating the unknown 

boresight parameters.  

 

4. DATA ACQUISTION 

Two test sites were selected for the pilot data acquisition; both 

located at the campus of The Ohio State University. The first 

route is located at west campus and connects two research 

facilities, see Figure 8a. This route has moderate vehicle and low 

pedestrian traffic, and data was acquired in completing 9 loops in 

about one hour. The second route is on main campus, see Figure 

8b. This area is heavily used by students and cyclists, and 

therefore, this dataset can be used for investigating complex 

scenarios; for example, testing various pedestrian, cyclist or other 

object detection algorithms, or visual navigation methods with 

rapidly changing dynamic content. In addition, this area is a 

partially GPS/GNSS-challenged area due to tall buildings located 

along the route. This dataset contains 15 loops, acquired in about 

4 hours. The two datasets represent about 5 TB raw data. 

5. DISCUSSION 

The results of the camera calibration for the Nikon, Sony and 

GoPro cameras showed that the reprojection errors are under 0.6 

pixel. The a posteriori accuracies are 2-3 cm and 0.2-0.3° for the 

camera positions and orientations, respectively. These 

parameters have to be transferred from the global to the platform 

coordinate system based on Equation 2 using the georeferencing 

solution. After this transformation, the standard deviation of the 

camera coordinates is 1-2 cm for X-Y direction, and slightly 

larger in the Z direction (3-4 cm). The accuracy of the orientation 

parameters is also slightly larger (0.2-0.3°). Note that only 

approximate boresight parameters are provided for the rest of the 

cameras.  

 

The results of the orientation estimation for the LiDAR sensors 

are listed in Table 2. The table also shows the number of detected 

targets and platform positions. It is noteworthy that this error is 

calculated based on the Jacobian matrix, numerically 

approximated from Equation 4. The results indicate worse 

orientation estimation than it was for the cameras; the �̂�R a 

posteriori errors are around 1.1°. Here, the main issue is the low 

point density. The impact of the point density on the boresight 

accuracy can be seen in the table. The HDL-32E sensor, also 

tagged as VHDL, is able to capture denser point clouds than the 

VLP-16, consequently, the reported a posteriori error is 0.41° 

degree as opposed to the VLP-16 error of 1.1°. It is noteworthy 

that these errors already include the georeferencing error, since 

the T𝑔,𝑝 matrix is used in Equation 4. For example, the VHDL 

attitude errors results in an 8 cm error, perpendicular to the ray at 

10 m distance. The attitude errors for the VLP-16 sensors are 

larger, and thus, the point clouds obtained from these sensors may 

need to be aligned to the points captured by the HDL-32E sensor 

to increase accuracy. 

 

The GPS/IMU solution can be seen in Figure 8a and 8b. Note that 

GPS/IMU integration provides a seamless trajectory solution in 

Figure 8b. The positioning accuracy is under 1.5 cm after the 

filter has converged. The estimated attitude standard deviation is 

under 0.01° for the roll, pitch and under 0.02° for the yaw 

components. Figure 9 shows a sample from the synchronized 

camera streams, LiDAR and GPS/GNSS. Finally, Figure 10a 

shows the georeferenced HDL-32E LiDAR data for a section of 

the main campus loop, and Figure 10b shows the same area with 

all LiDAR sensors’ data combined. 

 

Table 2. Results of the LiDAR orientation estimation. 

Sensor ID Sensor type 
# of 

Targets 

# of 

Position 
�̂�R [º] 

VHDL HDL-32E 9 3 0.41 

VRED VLP-16 5 3 1.19 

VGREEN VLP-16 4 2 1.68 

VWHITE VLP-16 7 4 1.12 

VBLUE VLP-16 3 3 1.15 

VBLACK VLP-16 4 1 1.42 
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(a) (b) 

Figure 8. GPS/IMU trajectory solutions for the two test routes: (a) west campus, and (b) main campus loop. 

 

Figure 9. Data streams from GoPro (video, top left), Nikon (high resolution still images, top center), Sony (high resolution still 

images, top right), Canon (P&S, video, middle left), Velodyne HDL-32E (LiDAR, middle center), Samsung (mobile phone, built-in 

camera, middle right), GPS/GNSS (bottom left), PointGrey (video, bottom center), and Casio (P&S, video, middle right). 

  
(a) (b) 

Figure 10. A sample from the georeferenced HDL-32E data (a), and all LiDAR sensors’ data combined (b); points with 5 m above 

the road surface are removed, height is color-coded. 
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6. SUMMARY AND CONCLUSION 

The paper describes a data acquisition effort to collect highly 

redundant geospatial data to support driverless vehicle 

technology research. A measurement vehicle was equipped with 

a high performance georeferencing system, multiple still and 

video cameras, and several LiDAR sensors. Data was acquired in 

multiple sessions at two locations at The Ohio State University 

campus.  

 

The acquired data can be used to obtain high definition map of 

the test areas, and to serve as benchmark data for algorithmic 

research to support autonomous driving. The sensors 

simultaneously acquired data around the vehicle with high 

redundancy, meaning that multiple sensors collected data from 

the same and/or overlapping areas around the platform. This 

dataset allows for not just comparing the performance of sensors 

with different imaging qualities/capabilities, but also to evaluate 

the algorithms in terms of robustness against various types of data 

streams. Selected aspects of the platform georeferencing and 

calibration of the camera and LiDAR sensors are discussed in the 

paper. The achieved georeferencing and sensor modeling 

accuracy provides a good reference solution for algorithmic 

evaluation. 

 

Currently, a software tool is developed to provide a simple 

interface for visualizing, editing, combining and exporting the 

various data streams. The ultimate goal is to share the collected 

data along with the developed tools and documentations through 

a webpage, and thus, to make it available as benchmark dataset.  
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