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ABSTRACT:

This paper deals with the determination of crack widths of concrete beams during load tests from monocular image sequences. The
procedure starts in a reference image of the probe with suitable surface texture under zero load, where a large number of points is defined
by an interest operator. Then a triangulated irregular network is established to connect the points. Image sequences are recorded during
load tests with the load increasing continuously or stepwise, or at intermittently changing load. The vertices of the triangles are tracked
through the consecutive images of the sequence with sub-pixel accuracy by least squares matching. All triangles are then analyzed for
changes by principal strain calculation. For each triangle showing significant strain, a crack width is computed by a thorough geometric
analysis of the relative movement of the vertices.

1. INTRODUCTION

For the examination of the behavior of concrete structures,
civil engineers conduct load tests on concrete beams. For the
understanding of the evolution of cracks during the process,
the automatic measurement of quantities such as the number
of cracks, crack localization and crack widths is important.
Different measuring systems are used, for instance strain gauges,
inclinometers, inductive displacement transducers or acoustic
emission sensors. In addition to these sensors, photogrammet-
ric methods are applied because they offer their high spatial
resolution and a high accuracy. Several publications deal with
photogrammetry in civil engineering material testing. (Whiteman
et al., 2002) and (Fraser and Riedel, 2000) measured vertical
displacements of targets placed on a line on the specimens
surface with multi-ocular camera systems. There are also
methods that are not based on image comparison to reference
images. For instance, (Dare et al., 2002) computed polygons
along the crack using the fly-fisher algorithm and the route-finder
algorithm. Furthermore, they presented a method for crack width
measurement based on the analysis of profiles perpendicular
to the polygons. (Hampel and Maas, 2003) and (Benning et
al., 2004) used multi-ocular camera systems for displacement
measurement in image sequences of planar plates with a grid of
targets. The advantage of discrete targets is the high accuracy of
the displacement that could be achieved. But due to the distance
between the targets, there is a poor crack location resolution.
(Maas and Hampel, 2006) and (Hampel and Maas, 2009) used
least squares matching (LSM) to determine dense image point
shifts and compared it with target grids. Crack widths were
estimated by the analysis of profiles in x and y direction of the
image coordinate systems. (Benning et al., 2004) and (Lange,
2009) presented an algorithm to compute crack widths for each
square of a grid based on the method of (Görtz, 2004), where
the direction of the crack was considered. (Koschitzki et al.,
2011) computed interest points in a zero load image (reference
image) and tracked them with LSM in an monocular image
sequence. The points were meshed to a triangulated irregular
network (TIN), and the ratio of their areas to the reference were
visualized. The surface of the concrete specimen had to be

textured for matching. (Barazzetti and Scaioni, 2010) presented
three image-based methods for displacement measurement in
civil engineering material testing. They applied the Wallis filter
on natural texture for contrast enhancement. The FAST interest
operator (Rosten et al., 2010) was used to get points that were
tracked with LSM and cross correlation techniques. (Detchev
et al., 2013) used a multi-camera and projector configuration to
measure deformations at loaded concrete beams. (Fedele et al.,
2013) and (Fedele et al., 2014) combined digital image correla-
tion with finite element methods to obtain dense displacement
fields.

The approach presented in this paper continues the work
described in (Liebold and Maas, 2016) and (Koschitzki et
al., 2011). A short overview of this approach is given in the
following chapter. The sections after this concentrate on crack
width determination in triangle meshes. The experimental data
of quasi-static load tests was obtained together with the Institute
for Concrete Structures at Leibniz Universität Hannover and
the Institute for Concrete Structures at Dresden University of
Technology. Comparisons between other sensors were done by
(Schacht, 2014).

2. IMAGE ANALYSIS FOR DEFORMATION
MEASUREMENT

A load test is conducted on a concrete specimen with a planar
surface applying a force F to the beam. The optical axis of the
camera should be perpendicular to the side face of the beam to be
able to analyze the deformations in 2D, see Figure 1.

In the approach presented here, the area of the surface of the beam
was about 2.4 m x 0.3 m. For the photogrammetric setup, a Nikon
D300 camera with a focal length of 20 mm was used and the
frame rate was set to 0.5 fps. The observed region of interest was
about 3600 x 1000 px in the image space or 1.1 m x 0.3 m in
the object space and is according to one half of the beam. The
distance between camera and object was about 1 m.

Due to the low contrast texture of concrete, the surface to be ob-
served has to be prepared with a suitable artificial pattern to guar-
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Figure 1. Experimental setup for the load test of a concrete beam

antee a reliable image template matching. During the experiment,
an image sequence is recorded. The probe will develop a crack
pattern with increasing load. The first image of the sequence is
taken as reference image. In this image under zero load, points
are defined on a regular grid or by applying an interest opera-
tor, for instance the Harris operator (Harris and Stephens, 1988).
The points in the subsequent images are tracked by Least Squares
Matching ((Ackermann, 1984); (Förstner, 1984); (Grün, 1985)).
Initial values for the shifts can be obtained with normalized cross-
correlation. The points are triangulated into a mesh using the De-
launay algorithm (Figure 2). Each triangle is tested for changes
in each time epoch by computing principal strains.

Figure 2. Triangle mesh of interest points

In order to calculate the principal strains for each triangle, an
affine transformation is computed with given coordinate pairs
(x̃, ỹ) and (x, y) of the triangle vertices:

(
x̃
ỹ

)
=

(
a11 + a12 · x+ a13 · y
a21 + a22 · x+ a23 · y

)
(1)

where x̃, ỹ = coordinates of the subsequent epoch
x, y = coordinates of the reference epoch
aij = affine parameters

The deformation tensor F is filled with affine parameters (a12,
a13, a22, a23). The translation (a11, a21) is discarded. The matrix
F can be decomposed in a symmetric and rotation matrix (polar
decomposition):

F =

(
a12 a13
a22 a23

)
= V · R (2)

where F = deformation tensor
R = rotation matrix (orthogonal)
V = left strain tensor (symmetric)

The left Cauchy-Green deformation tensor V2 is the product of
the deformation matrix and its transpose:

V2 = V · V = V · VT = F · FT (3)

In text next step, an eigenvalue decomposition of left Cauchy-
Green deformation tensor is conducted.

V2 = C ·Λ · CT (4)

where C = eigenvector matrix (orthogonal matrix)
Λ = eigenvalue matrix (diagonal matrix)

The principal strains are the eigenvalues of V . That is why, the
square root of the eigenvalues of V2 are computed. The corre-
sponding eigenvectors (columns of matrix C) define the direc-
tions of the strains.

The square root of the larger eigenvalue is the principal strain s
that is used for the next steps, see equation 5. The principal strain
is a dimensionless quantity that describes a ratio of a distance to
its reference. Values larger than 1 stand for an extension. The
rotation matrix is discarded because it has no influence to the
strain.

λ1 > λ2

s =
√
λ1

(5)

The principal strains of each triangle can be visualized in color-
coded map, see Figure 3. If a crack runs through a triangle, the
triangle will become extended and will thus have a larger princi-
pal strain.

Figure 3. Color-coded visualization of the principal strains on
the right half of a concrete beam under load

Because of the typical accuracy of the matching algorithm (in
extrem cases 0.10 px and even better, see (Grün, 2012)), some
noise occurs in the principal strain values. To get rid of these
noise effects, a bilateral filter can be applied (Liebold and Maas,
2016). The extended triangles with principal strains larger than
a threshold can be merged to a region and labeled, see Figure 4.
Each region represents one crack.

3. CRACK WIDTHS IN TRIANGLE MESHES

The principal strain represents a ratio of the current distance to
its reference. Whereas crack widths are absolute (metric) values,
the strain depends on the size of a triangle in the images. Hence,
it is easier to interpret crack widths. Therefore, metric crack
widths shall be derived in a next step.
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Figure 4. Labeled regions with triangles with principal strains
being larger than a threshold are merged together.

Figure 5. Separated triangle caused by a crack

Figure 5 shows a triangle that is separated because a crack
runs through it. ~n describes the direction of the crack normal.

As a first idea, it seems obvious that the crack normal is parallel
to the principal strain direction. Based on this assumption, the
following two sections show two ways how to compute the crack
width in a triangle. Later on, shifts along the crack direction are
also taken into consideration that leads to systematic errors in the
assumption.

3.1 Crack widths with differences of the distances in crack
normal direction

If a crack runs through a triangle, there will be one vertex on one
side and two vertices on the other side of the crack. For the first
presented algorithm, the vertex on the first side of the crack is
kept fixed. Because of that, the other two vertices are shifted, see
Figure 6.

Figure 6. (a): crack through the reference triangle; (b): new
triangle in the deformed state; (c): both triangles, vertex p1ref in

reference and deformed state have the same position

A line is defined by p1 and the crack normal and is intersected
with the edge s12. The difference of the distances between the
intersection point f and p1 and its corresponding value in the
reference state is the crack width, see Figure 7.

First, the edge vectors in the deformed triangle are calculated:

~s12 = ~p2 − ~p1
~s13 = ~p3 − ~p1
~s23 = ~p3 − ~p2

(6)

Figure 7. Reference and deformed triangle, vertex p1ref in
reference and deformed state have the same position

It is also done for the reference state:

~s12ref = ~p2ref − ~p1ref
~s13ref = ~p3ref − ~p1ref
~s23ref = ~p3ref − ~p2ref

(7)

The vector of the crack normal ~n should be normalized:

|~n| = 1 (8)

The following equation for the deformed state can be set up with
simple vector algebra, see Figure 7.

d · ~n = ~s12 + v · ~s23 (9)

where d = distance between p3 and f
v = second unknown, factor of the edge ~s23

Equation 9 can be reordered and can be considered as a linear
system:

~n · d+ ~s23 · (−v) =
(
~n ~s23

)
·
(
d
−v

)
= ~s12 (10)

Cramer’s rule (Cramer, 1750) is used for the computation of the
distance d between p1 and the edge ~s23 in the deformed state:

d =
det
(
~s12 ~s23

)
det
(
~n ~s23

) (11)

The factor v for the edge ~s23 can also be calculated with Cramer’s
rule:

v = −
det
(
~n ~s12

)
det
(
~n ~s23

) (12)

The length factor v for the edge ~s23 should be constant for the
reference and the deformed state:

vref = v (13)

Hence, the intersection point of the crack normal and the edge
~s23 can be determined as follows:

~fref = ~p2ref + vref · ~s23ref = ~p2ref + v · ~s23ref (14)
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The distance between p1ref and the edge ~s23ref in reference state
is computed in the next step:

dref = |~p1ref − ~fref | (15)

The crack width r corresponds to the difference between the dis-
tances in the deformed and the reference state:

r = d− dref (16)

3.2 Crack widths with differences of the altitudes of the tri-
angles

In the following algorithm, one edge (~s12) of the triangle is con-
sidered as constant. Because of that, the third point (p3) is shifted,
see Figure 8.

Figure 8. (a): crack through the reference triangle; (b): new
triangle in the deformed state; (c): both triangles, where the

edges ~s12 and ~s12ref in reference and deformed state are
identical

As one can see in Figure 9, the crack width can be computed with
the help of the heights in the triangles and the angle between the
crack normal and altitude:

Figure 9. Crack width, the constant edge ~s12ref is shifted to
edge ~s12

At first, the perpendicular foot ~f is calculated with the projection
of edge ~s13 on egde ~s12:

~f = ~p1 + |~s13|
~sT13 · ~s12
|~s13| · |~s12|

= ~p1 +
~sT13 · ~s12
|~s12|

(17)

The same is also be done for the reference state:

~fref = ~p1ref +
~sT13ref · ~s12ref
|~s12ref |

(18)

The altitude vector in the deformed (~h) and the reference ( ~href )
triangle is the difference between p3 and the foot point f :

~h = ~p3 − ~f

~href = ~p3ref − ~fref
(19)

In the next step, the difference of the lengths of the altitude vec-
tors is computed:

∆h = |~h| − |~href | (20)

The cosine of the angle α between the crack normal and altitude
can be determined with the dot product of the altitude vector and
the crack normal in the deformed state:

cosα =
~hT · ~n
|~h| · |~n|

(21)

The crack width r is then computed with the trigonometric func-
tion:

r =
∆h

| cosα| (22)

3.3 Crack width considering shift effects along the crack

Additional considerations are required if there are mechanical
shear forces along the crack (Figure 10). The shifts in this di-
rection cause a change in the principal strain directions obtained
from the triangles, in a way, that the principal strain direction is
not parallel to the crack normal anymore. Therefore, the crack
normal has to be obtained in another way.

Figure 10. Triangle mesh, red: extended triangles; blue:
triangles without strains; shear forces affect along crack

direction in opposite direction; the principal strain vector ~s is not
parallel to the crack normal ~n anymore

3.3.1 Determination of the crack normal: The crack normal
in the deformed state under the presence of shear effects can be
obtained as follows: At first, only triangles with principal strains
larger than a threshold are considered as crack candidates. For
each triangle in this crack region, the second order neighbor tri-
angles are determined. Triangles are considered as neighbors if
they share at least one vertex. Second order neighbors are neigh-
bors of neighbors. If the triangles of the second neighborhood
also belong to the crack region, their geometric centers are used
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for a weighted Principal Component Analysis (PCA, (Pearson,
1901)). The direction of the second principal component corre-
sponds to the crack normal direction. This method can be seen as
a local line fit, see also Figure 11.

Figure 11. Crack triangle (bright red) and its second order
neighbors (red), non-extended triangles (blue), second principal

component direction (blue arrows), fitted line (green)

Each neighbor triangle center j, that is used for the PCA of trian-
gle i, gets a Gaussian weight ω′

ij that penalizes greater distances:

ω′
ij = exp (−|~mj − ~mi|2

σ2
) (23)

where ~mi = geometric center of triangle i
~mj = geometric center of a neighborhood triangle j
σ = distance where the weight gets 1

e
e = Euler’s number

The weights ωij are normed for each neighbor triangle j:

ωij =
ω′
ij

1 +
∑

j∈Ni

ω′
ij

(24)

In the next step, the weighted barycenter~b is computed:

~b = ~mi +
∑
j∈Ni

ωij · ~mj (25)

Then, the weighted covariance matrix Z can be computed:

Z = (~mi−~b) ·(~mi−~b)T +
∑
j∈Ni

ωij ·(~mj−~b) ·(~mj−~b)T (26)

Next, an eigenvalue decomposition is applied on the covariance
matrix Z:

Z = C ·Λ · CT (27)

where C = eigenvector matrix (orthogonal matrix)
Λ = eigenvalue matrix (diagonal matrix)

The second principal component is the column of eigenvector
matrix C that corresponds to the smallest eigenvalue. It is re-
garded as the direction of the crack normal ~n.

3.3.2 Crack widths and translation: The two methods for
the crack width determination shown in 3.1 and 3.2 will not work
correctly if there are significant shifts along the crack direction.
Shifts along the crack direction can be incorporated by using vec-
tor algebra, see Figure 12 and Figure 13.

Figure 12. (a): crack through the reference triangle with a shift
in crack direction; (b): new triangle in the deformed state; (c):
both triangles, where the edges ~s12 and ~s12ref in reference and

deformed state are identical

Figure 13. Reference triangle and deformed triangle with shifts
along crack direction, the edge ~s12ref is shifted to the edge ~s12

in the deformed state

First, the coordinates of the triangle in the reference state have to
be transformed in a way, that the base edges of the reference and
the deformed state have the same orientation. Therefore, p1ref
should have the same coordinates as p1. Because of that, p1ref
has to be transformed:

~p1ref,t = ~p1ref (28)

The edge ~s12ref should have the same direction as ~s12:

~s12ref,t =
|~s12ref |
|~s12|

· ~s12 (29)

The x-coordinate dx13ref,t of the edge ~s12ref,t can be deter-
mined by projecting the edge ~s13ref onto the edge ~s12ref :

dx13ref,t = |~s13ref | · cos (∠~s12ref , ~s13ref )

=
~sT12ref · ~s13ref
|~s12ref |

(30)

The x direction ~ex,t is set parallel to ~s12ref,t:

~ex,t =
~s12
|~s12|

(31)
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The y component is computed with the help of the Pythagorean
theorem:

dy13ref,t =
√
|~s13ref |2 − dx213ref,t (32)

The y direction ~ey,t is set perpendicular to ~s12ref,t:

~e
′
y,t =

1

|~s12ref,t|
·
(
−s12ref,t,y
s12ref,t,x

)

~ey,t =

{
~e
′
y,t, for det

(
~s12ref ~s13ref

)
>= 0

−~e
′
y,t, else

(33)

The transformed edge ~s13ref,t is composed of its x and y compo-
nents:

~s13ref,t = dx13ref,t · ~ex,t + dy13ref,t · ~ey,t (34)

The third vertex ~p3ref,t is computed by adding the edge vector
~s13ref,t to the first vertex:

~p3ref,t = ~p1ref,t + ~s13ref,t (35)

As one can derive from Figure 13, the crack width r is calculated
as follows:

r = |~p3 − ~p3ref,t| · | cosβ| = |(~p3 − ~p3ref,t)T · ~n| (36)

Optionally, the translation ~t along the crack can be determined by
vector subtraction:

~t =

{
(~p3 − ~p3ref,t)− r · ~n, for ~nT · ~s13 >= 0

(~p3 − ~p3ref,t) + r · ~n, else
(37)

4. EXPERIMENTAL RESULTS

First, the algorithms are numbered due to an easier description:

number of algorithm corresponding section
1 3.1
2 3.2
3 3.3

Table 1. Numbering of algorithms

For each extended triangle, a crack width can be computed and
displayed in a color-coded map, see Figure 15. The visualizations
of the three algorithms look very similar. In the center of the
right crack, some differences of the crack widths can be seen.
Applying algorithm 3, translations in crack direction could also
be computed and the length of the vector could be visualized.
There exist some shifts of up to 1.5 px in crack direction in the
center of the right crack.

One could expect that algorithm 1 and algorithm 2 have identi-
cal results. To prove this, the residuals between them are com-
puted (equation 38) and analyzed, see Table 2 and Figure 14.

Considering the average and median, the values are nearly the
same because the values are almost zero. But looking at the his-
togram in Figure 14, there is a small tendency to the negative
side. ralgorithm1 seems to be a little bit larger due to the one-
sided histogram, the negative median and average. The RMS12

is 0.11 px.
ε12 = ralgorithm2 − ralgorithm1 (38)

where ε12 = residual between algorithm 1 and 2
ralgorithm1 = crack width with algorithm 1
ralgorithm2 = crack width with algorithm 2

RMS max |ε12| Median Average
0.11 1.16 -0.01 -0.04

Table 2. Statistical values of the residuals between algorithm 1
and algorithm 2 in px

Figure 14. Histograms of the residuals between algorithm 1 and
algorithm 2

To verify the results, some points were set manually next to the
crack in a way that the line between these points is perpendicular
to the crack direction. In Figure 16, these points are white. The
colored points between the white were set on the crack in order
to find the corresponding triangle.

This can only be done in the deformed image where the crack
is visible. The shift of the points to the reference image is de-
termined with LSM. With the help of this, the crack width can
be determined as the difference of the distances between these
points in the deformed and the reference state (equation 39). The
corresponding triangle can be found by a nearest neighbor query
of the center points of the triangles in the deformed state.

rmanual = ∆dmanual = ddeformed − dreference (39)

where rmanual = crack width of the manual method
dreference = distance between the points (reference)
ddeformed = distance between the points (deformed)

As this procedure comes with its own error budget, it rather has
the character of a plausibility check. A procedure for providing
rigorous reference measurements to verify the accuracy potential
of the crack width determination procedure yet has to be devel-
oped.

Table 3 shows some statistical analysis concerning the residuals.
The RMS is about 0.3 px. The corresponding histograms are plot-
ted in Figure 17. For algorithm 3, two residuals are computed.
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(a)

(b)

(c)

(d)

Figure 15. (a): crack width visualization with algorithm 1; (b):
crack width visualization with algorithm 2; (c): crack width

visualization with algorithm 3; (d): visualization of the absolute
values of translations of algorithm 3

Figure 16. White points: manually set points being
perpendicular to the crack; colored points: points set on the

crack manually; color-code is computed by the differences of
distances between the white points compared to the reference

Concerning the values marked with algorithm 3a, the translation
is ignored for the residual. In case of algorithm 3b, the translation
~t along the crack is included in the difference because the manual

measurement should contain both movements, see equation 40.

ε1 = rmanual − ralgorithm1

ε2 = rmanual − ralgorithm2

ε3a = rmanual − ralgorithm3

ε3b = ∆dmanual −
√
r2algorithm3 + t2algorithm3

(40)

where ε1,2,3a = residual of algorithm 1, 2 and 3a
ε3b = residual of algorithm 3b

Some outliers appear in the histograms. The reason for this might
be points of discontinuities or path nodes. The 3σ-rule is used for
the outlier detection. If the outliers are eliminated from the data,
the RMS value drops to about 0.25 px, see Table 4. The residuals
of the three algorithms are very similar. Overall, the obtained
precision is a about five times worse than the LSM accuracy
(0.05 px). This can partly be explained by variance propagation
and some uncertainties of the normals concerning algorithm 3.
An independent measuring system with a higher precision would
be required for a better analysis of the accuracy.

RMS max |ε| Median Average
algorithm 1 0.31 1.42 -0.08 -0.11
algorithm 2 0.30 1.35 0.01 0.02
algorithm 3a 0.26 1.05 -0.04 -0.03
algorithm 3b 0.37 1.46 -0.11 -0.16

Table 3. Statistical values of the residuals to the manual
measurements in px

RMS max |ε| Median Average
algorithm 1 0.25 0.79 -0.08 -0.10
algorithm 2 0.23 0.63 0.00 0.02
algorithm 3a 0.21 0.67 -0.04 -0.03
algorithm 3b 0.27 0.75 -0.10 -0.12

Table 4. Statistical values of the residuals to the manual
measurements in px without outliers

Figure 17. Histograms of the residuals to the manual crack width

5. CONCLUSION AND OUTLOOK

An algorithm for crack detection in image sequences was intro-
duced in this paper. The method is based on the analysis of trian-
gle changes with principal strains. Different algorithms for crack
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width computation based on a thorough geometric analysis of de-
formed triangles were presented. First results are visualized in
color-coded maps. The crack widths can be determined with sub-
pixel accuracy. Future work should concentrate on further tests
and evaluations including other independent measuring methods
with a higher precision. In addition, the method could extended
towards handling 3D meshes.

ACKNOWLEDGEMENTS

The research work presented in the paper has been performed
within the DFG-funded research training group GRK-2250 at TU
Dresden. The practical experiments have been realized in cooper-
ation with the Institute of Concrete Structures at Technische Uni-
versität Dresden and with the Institute of Concrete Structures at
Leibniz Universität Hannover in a project funded by the German
Federal Office for Building and Regional Planning (BBR).

REFERENCES

Ackermann, F., 1984. Digital image correlation: Performance
and potential application in photogrammetry. The Photogram-
metric Record 11(64), pp. 429–439.

Barazzetti, L. and Scaioni, M., 2010. Development and imple-
mentation of image-based algorithms for measurement of defor-
mations in material testing. Sensors 10, pp. 7469–7495.

Benning, W., Lange, J., Schwermann, R., Effkemann, C. and
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