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ABSTRACT: 

 

An automatic spatio-temporal flow velocity measurement approach, using an uncooled thermal camera, is proposed in this paper. 

The basic principle of the method is to track visible thermal features at the water surface in thermal camera image sequences. 

Radiometric and geometric calibrations are firstly implemented to remove vignetting effects in thermal imagery and to get the 

interior orientation parameters of the camera. An object-based unsupervised classification approach is then applied to detect the 

interest regions for data referencing and thermal feature tracking. Subsequently, GCPs are extracted to orient the river image 

sequences and local hot points are identified as tracking features. Afterwards, accurate dense tracking outputs are obtained using 

pyramidal Lucas-Kanade method. To validate the accuracy potential of the method, measurements obtained from thermal feature 

tracking are compared with reference measurements taken by a propeller gauge. Results show a great potential of automatic flow 

velocity measurement in small rivers using imagery from a thermal camera. 

 

 

*  Corresponding author 

 

1. INTRODUCTION 

Automatic and accurate measurement of flow velocities is of 

large importance for hydrology research. As a non-intrusive and 

continuous implementation, traditional image-based methods 

usually use particles or dye on the free surface as 

distinguishable tracers to track. These particles may be tracked 

by PTV (particle tracking velocimetry) techniques. Using 

neutrally buoyant particles, 3D-PTV systems have been realized 

mainly for laboratory applications (e.g. Maas et al., 1993). 

While PTV requires detecting and tracking individual particles, 

PIV (particle imaging velocimetry) employs area-based 

matching strategies to track groups of particles in densely 

seeded plows (Adrian, 1991). However, the insertion of 

particles to mark a flow is often not desired. Besides pollution 

aspects, a drawback of floating particles is their tendency to 

agglomerate (Weitbrecht et al. 2002). Alternatively, laser-

induced fluorescence (LIF) is a technique based on dyes, which 

are added to a flow at a very low concentration and visualized 

by a thin laser lightsheet. The technique can be extended to 3D-

LIF by illuminating a volume in a flow (Maas and Gruen, 1995). 

A drawback herein is the need of a powerful laser light source, 

which limits outdoor use of the technique. Furthermore, the 

quality of tracking results in optical imagery is severely 

affected by illumination conditions. 

 

A possible solution to these mentioned challenges is the use of 

thermal tracers, which can simply be applied by pouring warm 

(or icy) water onto a river surface. Taking thermal camera 

image sequences of the water surface and tracking warm water 

patterns in thermal imagery is not only environmentally 

friendly but is also completely independent on illumination. 

Therefore, flow velocity measurements using thermography has 

achieved more and more attention. Lima and Abrantes (2014) 

suggested a combined tracer (heated dye) to measure the 

overland and rill flow velocity using leading edge estimation in 

laboratory set-ups. Lima et al. (2015) extended their technique 

to various field experiments. Tauro and Grimaldi (2017) 

utilized ice dices as thermal tracers to monitor the flow velocity 

of a river in Trento, Italy. However, these techniques can only 

measure the mean flow velocity of the whole region or very 

sparsely-distributed velocity field. Therefore, our research 

focuses on accurate, automatic, and densely-distributed flow 

velocity measurement using thermal imagery in field studies. 

 

Regarding the usage of thermal signatures in this study, the 

grid-attached measurements with PIV are less practical due to 

unevenly distributed textures. Instead, we chose PTV which 

tracks each of the detected features individually using the 

pyramidal Lucas-Kanade method (Bouguet, 2001). In order to 

avoid unreliable tracking results in texture-less regions, a 

tracking-quality-assessment feature is introduced in this study. 

In addition, in order to reduce the degree of supervision with 

respect to the detection of tracking features, an object-based 

unsupervised classification method is implemented to 

continuously detect thermal features. 

 

2. DATA ACQUISITION 

The data were acquired at the small river Wernersbach in the 

Tharandter Wald in Saxony, Germany. The basic system to 

measure flow velocity consists of an uncooled thermal camera 

FLIR Ax65. Focal length is 13 mm and pixel size 17 µm. The 

measurement temperature range is -25°C to +135°C. Maximum 

acquisition rate is 30 Hz. The camera is positioned above the 

river, with its optical axis almost perpendicular to the water 

surface (Figure 1b), which helps to maximize the texture details. 

The measurement campaign has been performed on August 9th 
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2017. During the campaign four customized ground control 

points (GCPs), clearly visible on thermal imagery, were 

installed. The GCPs are made of PVC with metal nails located 

in the middle (shown as S in Figure 1a), which makes them 

distinguishable in thermal imagery because of emissivity 

differences between different materials. The points were 

measured with sub-mm accuracy using a total station, which are 

then used to orientate the thermal image sequence. 

 

The thermal tracer in this study is heated water. It has been 

heated above 60°C in the laboratory and stored into thermos 

flask. The tracer has been added in small portions upstream 

close to the measurement area. 

 

  
(a) (b) 

Figure 1. Data acquisition setup: (a) area of interest: GCPs are 

numbered as S and positions of propeller gauge measurements 

are marked as M. (b) Thermal camera on tripod above the small 

river. 

To assess the accuracy of the estimated flow velocities based on 

thermal imagery, reference measurements are necessary. In this 

study, a conventional propeller gauge has been used to achieve 

independent velocity values (Figure 2). 

 

 
 

Figure 2: Flow velocity measurement with a propeller gauge: 

Small image illustrates the propeller gauge from Dyck & 

Peschke (1995). 

 

The device is a propeller that is positioned as close to the 

surface as possible in flow direction. Thereby, rotations of the 

propeller are counted and afterwards converted into flow 

velocity using a calibration function. Measurements have been 

performed at different positions within the area of interest. 

Afterwards, the accurate location of the propeller gauge has 

been determined using a Structure-from-Motion (SfM) tool 

processing several images taken by a RGB camera during the 

measurement from varying perspectives. These referenced 

velocity measurements are subsequently referred to as check 

points (M) (Figure 1a). As an invasive method, the propeller 

measurements would interfere with the image-based 

measurement; therefore reference measurements were not taken 

simultaneously, and a stationary flow has to be assumed in 

order to compare the measurements. 

 

3. CAMERA CALIBRATION 

In order to be able to derive accurate measurements from 

thermal camera image data, the camera has to be calibrated both 

concerning geometric and radiometric aspects. Geometric 

calibration has to be performed to establish a precise geometric 

relation between pixel coordinates and corresponding object 

points. The goal of radiometric calibration in the application is 

mainly to remove the non-uniformity in thermal image 

sequences, while the aspect of converting each pixel value to an 

actual temperature value is of less importance here. 

 

3.1 Radiometric Calibration 

In terms of radiometric calibration, two concerns must be taken 

into consideration: Spatial non-uniformity due to fabrication 

variations and temporal non-uniformity derived by changing 

sensor temperature. On the one hand, a vignetting effect which 

belongs to spatial non-uniformity severely degrades the image 

quality. On the other hand, temporal non-uniformity, which 

stems from the fact that the camera output depends not only on 

the object irradiance but also on the time-variant sensor 

temperature, increases the measurement instability. Therefore, a 

radiometric calibration procedure (Lin et al., 2017a) is carried 

out to address these two non-uniformity problems. 

 

Firstly, a shutter-less temporal non-uniformity correction (NUC) 

(Lin et al. 2017b), which takes advantage of polynomial curve 

fit models and real-time sensor temperatures, is applied to 

stabilize the unstable outputs. Next, multi-point correction 

(Tempelhahn et al. 2016) is implemented to get rid of vignetting 

effect and to improve the contrast in the thermal imagery. 

Finally, radiant temperature could be retrieved using a Planck 

curve after temporal and spatial NUC. However, kinetic 

temperature, which refers to internal or true temperature, would 

still be unknown unless the emissivity of the object is known 

(Vollmer and Möllmann, 2010). 

 

3.2 Geometric Calibration 

In order to ensure high geometric accuracy of the measurement, 

the thermal camera (FLIR Ax65) was calibrated before the flow 

velocity measurement using self-calibrating bundle adjustment 

supported by a RGB camera (Canon 1200D). The geometric 

calibration was performed with a 3D calibration field which 

was designed to permit the circular targets to be clearly visible 

on both RGB and thermal imagery. The thermal targets consist 

of circles made of silver foil placed on black velour foil 

(Westfeld et al. 2015). The calibration field placed outdoor 

warrants for good contrast, as the silver circular targets made of 

heat protective foil reflect most of the global irradiance and 

emit little due to their good specular reflector characteristic, 

while the black velour foil with excellent absorbing property 

emits almost all of the absorbed irradiance (Figure 3). 

 

Coded targets and additional calibrated reference bars (which 

are only sufficiently detectable on the RGB images) were used 

to find the object coordinates of the uncoded thermal targets. 

Ellipse fitting is used to measure the center image coordinates 

of the targets. Afterwards, the interior orientation parameters 

(including focal length, principle point, lens distortion 

parameters) of the thermal camera could be determined by self-

calibrating bundle adjustment. 
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(a) 

 
(b) 

Figure 3. 3D Geometric Calibration Field: (a) RGB Image (b) 

Thermal Image 

 

 

4. ACTUAL DATA PROCESSING 

The core of actual thermal image sequence processing is 

tracking features through subsequent images. In order to 

translate the image measurements from pixel-space to metric 

surface-related measurements, the exterior orientation of the 

camera above the water surface has to be determined. This is 

realized by a spatial resection on the basis of ground control 

points (GCPs). We developed an automatic detection procedure 

of GCPs and tracking points on thermal image sequences. The 

main role is to detect new tracking points every several images 

automatically. Besides the use of orientating the thermal image 

sequence, another benefit for automatic detection of GCPs in 

each image is to detect possible camera motion and correct the 

velocity vectors for this effect. 

 

4.1 Image Segmentation 

The primary role of performing image segmentation is to 

extract interest regions (control point regions and hot water 

regions) matched objects, which helps to automate detection of 

GCPs and tracking points. Multi-resolution segmentation (MRS) 

has proven its ability to capture meaningful image objects, 

which maximize internal homogeneity while preserving 

external discontinuity (Benz et al. 2004). Thus, an unsupervised 

classification approach, based on MRS, is implemented on the 

corrected images after temporal and spatial NUC.  

 

 
(a) 

 
(b) 

Figure 4. 1st Image Segmentation Result: (a) Best SP Selection 

(b) Segmentation Result under Best SP 

 

MRS uses a scale parameter (SP) to control the maximum 

allowed heterogeneity and the size of image objects while SP is 

calculated by a weighted function of spectral and shape 

information of objects. However, the automatic selection of the 

user-defined SP in MRS is still a big problem. Drǎguţ et al. 

(2010) proposed a hypothesis as follows: When the size of an 

object grows, its local variance (LV) value increases 

continuously up to the point that it matches the object in the 

real world. Thus an ascendant trend is expected when plotting 

LV against SP graph, with break points shown as optimal SP 

value. Under this hypothesis, an optimal SP estimation method, 

which searches for the peaks in the rate of change of LV (ROC-

LV) graph inside the initial SP range as the most appropriate 

segmented manner, is used to find the best SP for each image. 

Furthermore, considering that SP value mainly indicates the 

spectral difference between the interest regions and the 

background, the initial SP range can be obtained by roughly 

estimating the gray value subtraction between hot water and 

river water as well as the subtraction between GCPs and river 

water in the images. All the images, which are used to acquire 

new tracked features, are segmented with the above workflow. 

For example, for the first image, LV and ROC-LV values 

change via SP and segmentation results under best SP are 

shown in Figure 4. 

 

Note that the initial SP range is roughly determined by simple 

manual estimation in the first image (60-90), which is then 

applied to all of the sequential images. The delineated relevant 

objects provide the basic results for further interest regions 

extraction. 
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Figure 5. Workflow of Interest Regions Extraction 

 

 

4.2 Interest Regions Extraction 

Interest regions extraction (including control point regions and 

hot water regions) is implemented using the workflow shown in 

Figure 5. On the basis of image segmentation results, candidate 

objects, which have higher gray values than the mean value of 

all the objects, are extracted firstly because the control point 

regions and hot water regions are recorded brighter than the 

background. Regarding the control point regions, a border index 

(BI) feature is used to extract them considering that they are 

equipped with approximate rectangular shapes. BI is calculated 

as the ratio between the border length of an image object and 

the perimeter of its smallest enclosing rectangle, which is 

expressed in equation (1). 

 

 
(1) 

 

Where   = border length of image object v 

 = length of the smallest enclosing rectangle 

 = width of the smallest enclosing rectangle 

 

BI describes the smoothness and rectangular similarity of an 

image object. The more similar an image object is to a rectangle, 

the lower is its BI. Therefore, each image object whose BI is 

less than the threshold a is classified as a control point region. 

The threshold can be determined by quantile statistical analysis 

shown in equation (2), which extracts a specified percentage p 

of the candidate objects with relatively low BI feature. 

 

 
(2) 

 

Where   = a-prior number of control point regions 

 = number of candidate image objects 

 

Afterwards, the remaining candidate image objects are 

classified as hot water regions only if their standard deviation 

(SD) values are higher than the mean SD value of all the 

candidate objects, because only regions with rich texture 

contain well-trackable features. 

 

4.3 GCPs and Tracking Features Detection 

GCPs show up as strong corner features and are located at the 

approximate geometric center of the homogeneous control point 

regions. Therefore, Shi-Tomasi algorithm (Shi and Tomasi, 

1994) is implemented in 10 10 pixels search windows within 

the control point regions to find the strongest corner features as 

initial positions. Then, these positions are iteratively refined to 

sub-pixel accuracy using a gradient-based search in OpenCV 

(Bradski et al. 2005). 

 

Local hot points are taken as interest features to be tracked 

because of their texture with high thermal gradients. Pixels in a 

hot water region are determined as interest points when they 

fulfill the following two conditions: their gray values are local 

maximum values in a 10 10 pixel spatial window, and their 

gray values are higher than the average value of hot water 

region. 

 

4.4 Tracking in Thermal Image Sequences 

The actual tracking procedure includes four main stages: 

 

Adding New Tracking Features: The thermal river surface 

texture is changing continuously due to mixing of inserted hot 

water and river water. Therefore, it is necessary to detect new 

trackable features when previous features lose their contrast. In 

this study, we added new detected features after every 10th 

image. 

 

Tracking Method: The Lucas-Kanade tracker (Equation (3)) is 

used here for tracking detected features between subsequent 

images. The tracker uses a 6 parameter affine transformation to 

iteratively minimize the sum of the squares of the gray value 

differences between candidate patches in every two consecutive 

images. In order to handle large motions, a pyramidal Lucas-

Kanade implementation (Bouguet, 2001) is utilized here. Only 

the 2 shift parameters of the affine transformation are used for 

velocity vector determination, the other parameters only serve 

for patch adaption. 
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(3) 

 

Where   = reference image 

     = search image 

 = integration window size 

 = affine transformation matrix 

 = image velocity at location  

 

Deleting Bad Tracking Features: The accuracy of the tracked 

features tends to decrease over time because of decreasing 

contrast between them and their surroundings. A tracking-

quality-assessment feature, described by minimum eigenvalue 

of spatial gradient matrix (Tommasini et al., 1998), is calculated 

as a criterion to remove poor tracking results caused by low 

contrast. Any tracking point whose feature is lower than a 

threshold b is eliminated. 

 

Flow Velocity Estimation: The exterior orientation parameters 

of the pre-calibrated camera are obtained by a spatial resection 

using the four GCPs. Final flow velocity measurements (m/sec) 

are calculated using collinear equation and the assumption of a 

planar water surface. The orientation parameters are also used 

to project check points (M) onto the image sequence. Thus, 

image-based velocity values (pixel/sec) at each check point are 

calculated by inverse distance weight interpolation of candidate 

tracked points within a 5 5 pixel spatial window around its 

location. 

 

5. RESULTS AND DISCUSSIONS 

A pilot study was conducted at a small river to show the 

performance of the camera calibration (radiometric calibration, 

geometric calibration) procedure as well as to validate results of 

actual data processing (interest regions/points extraction, 

features tracking). 

 

5.1 Calibration Performance 

Results of the radiometric calibration are shown in Figure 6. As 

shown in (b), vignetting effect in the original images (a) is 

removed after temporal and spatial NUC. Corresponding 

radiant temperature images are shown in (c). The kinetic 

temperature of inserted hot water can be regarded as similar to 

its radiant temperature considering that the emissivity of water 

is close to 1.0 and that reflected radiation under the condition of 

nadir view is negligible. Thereby, a temperature decrease to 

around 24 degree is indicated when the hot water passes 

through the camera measurement area, whereas the original 

river water reveals a kinetic temperature of about 18 degree. 

For other objects such as rock and vegetation, the kinetic 

temperature is unknown because of undiscovered emissivity 

values. 

 

On the other hand, the interior orientation parameters, 

calculated by geometric calibration allow for the calculation of 

undistorted images for accurate feature tracking. Although a 

low impact of distortion is given for the images (e.g. in terms of 

the distortion effect for all the check points, maximum change 

is 1.06 pixel for M4), geometric calibration is still 

recommended to ensure highest position accuracy, because an 

inaccurate determination of focal length and principle point 

may lead to larger position error. 

 

  
(a) (b) 

 
(c) 

Figure 6. Radiometric Calibrated Results: (a) 31st Original Image 

(b) NUC Corrected Image (c) Radiant Temperature Image 

 

5.2 Interest Points Detection Performance 

 
Figure 7. Interest Regions Extraction Results of 61st Image: 

blue regions refer to control point area, while pink region 

represents hot water area. 

 

 
Figure 8. Detected GCPs and tracking features on 61st image: 

blue points refer to GCPs while red points represent tracking 

features 
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(a) (b) 

  
(c) (d) 

Figure 9. Tracking Results: (a), (b), (c) and (d) show velocity measurement results on 97th, 143rd, 181st and 212nd image respectively, 

white arrows show the magnitude and direction of all the velocity vectors, red arrows show the candidate results selected by the 

threshold b. 

Extracted interest regions are shown in Figure 7. As shown in 

Figure 7, control point regions and hot water region are 

extracted correctly, which helps to narrow the searching scope 

for the detection of GCPs and tracking features. While detected 

GCPs and tracking features are shown in Figure 8. GCPs are 

extracted as strong corner features (correctly based on visual 

evaluation). New detected tracking features are reliably 

extracted due to local high contrast, which ensures the accuracy 

and stability of the tracking results within dozens of frames. 

 

5.3 Tracking Performance 

Examples of reconstructed surface flow velocity fields are 

displayed in Figure 9. As shown in (a) and (b), most of the 

tracking results are reliable due to high contrast at the beginning 

stage of inserting hot water into the river. However, 

increasingly more unreliable results, which are shown as ‘fixed 

points without movement’ in (c) and (d), occur because of 

decreasing contrast over time. If no criterion is implemented to 

remove these inaccurate results, outliers may occur in the 

velocity fields. Therefore, threshold b plays an important role in 

removing unqualified tracking features. 

 

Reference results provided by propeller gauge and image-based 

results for different threshold values b are displayed in Figure 

10. Furthermore, statistical analysis of comparative results is 

shown in Table 1. 

 

Taking the results achieved by the propeller gauge as a 

reference, in general, image-based results are in agreement with 

reference results measured with the propeller gauge. As shown 

in Figure 10 and Table 1, in terms of the results provided by 

‘Measurements under automatic selection of b’, most of the 

deviations between both approaches (except for M3) are below 

0.03 m/sec. M3 reveals the largest differences (more than 0.08 

m/sec).  

 

In addition, for most of the check points, the accuracy of image-

based measurement increases when rising the threshold b. 

However, too high thresholds would lead to a lack of results. 

Thus, an automatic determination method of b is to select the 

possible maximum value which ensures that all of the check 

points are measurable (e.g. 0.004 shown in Figure 10). 

Furthermore, maximum cut-off b values of different check 

points largely depend on the surrounding tracking density. For 

example, in terms of check points M2, M4 and M8 which are 

located in a dense tracking environment, their cut-off b values 

are much higher than others with sparse particles (M3, M7). 

 

Highest accuracies in regard to comparing thermal image 

tracking results and propeller velocities are achieved at M2 and 

M4 (Figure 10 and Table 1). The main reason for this is that 

these 2 CPs are located very near to the position where hot 

water was inserted and thus very rich textures pass through 

these two areas.  

 

Deviations between propeller and image based velocity 

measurements are highest at M3 (Figure 10 and Table. 1). 

Although M3 is also positioned next to the water-added spot, it 
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is believed that something hinders the textures from passing 

through this area. Thus only very sparse textures pass through 

the area where M3 is positioned, which leads to few candidate 

velocity measurements available and clearly decreases the 

reliability of the measurement. 

 

Another possible explanation for larger deviations here is the 

location of M3, which is surrounded by lower water level areas 

due to underlying stones. This might create diverse velocity 

fields in different vertical depths due to turbulences over 

varying river bed roughness. Thus, different flow velocities are 

measured because the propeller gauge has to be placed under 

the water while the hot water only floats at the water surface. 

However, this is a common drawback for image-based methods 

because no vertical velocity profiles can be acquired and thus 

limiting the transferability of the propeller gauge measurements 

to the image based results. In general, comparison between 

image-based results and propeller gauge results should be 

interpreted with care. 

 

 
 

Figure 10. Velocity measurements via threshold b 

 

GCPs M2 M3 M4 M7 M8 

Reference 

(m/sec) 
0.24 0.13 0.21 0.10 0.22 

Best 

Measurement 

(m/sec) 

0.242 0.079 0.209 0.116 0.239 

Measurement 

under 

automatic 

selection of b 

(m/sec) 

0.261 0.048 0.195 0.138 0.248 

 

Table 1. Statistical Analysis of Measurement Results 

 

6. CONCLUSIONS 

In this paper, a method for automatic flow velocity 

measurement using thermal image sequences is introduced. In 

order to avoid the problem of particle clustering, heated water is 

preferred over other thermal tracers, such as ice dices. The main 

advantage is that this method is not affected by natural 

illumination conditions and could provide dense tracking results 

automatically. While the main disadvantage is its limitation to 

close-range applications with small rivers. The introduced 

approach provides a field suitable method to measure flow 

velocities with minimal labour and material cost. 
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