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ABSTRACT: 
 
With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D 
and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs 
and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this 
paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In 
addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching 
point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is 
trained and applied to label façade pixels. Fully connected conditional random field (CRF), capturing long-range spatial interactions, 
is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian 
kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly 
improve classification results. Also, fully connected CRF performs well in correcting noisy pixels. 
 
 

1. INTRODUCTION 

With population explosion in urban areas, detailed 3D city 
modeling is demanded for scientific urban planning, disaster 
management and tourism. Building façade interpretation is a 
subproblem, contributing to the Level of Detail 3 of CityGML. It 
aims to detect building façades and distinguish its components, 
like walls, windows, doors and balconies. However, time-
inefficient human interpretation is the main hurdle in generating 
detailed 3D city models. Therefore, automated façade 
segmentation is required at urban scales.  
 
Machine learning techniques are possible solutions to automated 
interpretation. Random forest (Frohlich et al., 2010), boosting 
scheme (Shotton et al., 2006) and deep convolutional neural 
networks (DCNNs) (Chen et al., 2015) are commonly used in 
scene interpretation, while all of them have few limitations. For 
traditional classifiers, like random forest and boosting scheme, 
results from pixel-wise classification are quite noisy because a 
single label is independently assigned to each pixel without 
considering labels of surrounding pixels. In contrast, DCNNs are 
capable to learn features from data and capture neighboring 
information by convolutional filters while the repetitive use of 
downsampling layers and max-pooling layers lead to large 
receptive fields. This often gives rise to coarse outputs and can 
consequently generate blob-like shapes and non-sharp 
boundaries (Chen et al., 2015). Conditional random field (CRF) 
models show their capabilities to take advantage of contextual 
information and deal with boundaries. 4-connected and 8-
connected CRFs can capture short-range interactions between 
pixel labels and produce smoothed boundaries of façade 
elements. To improve classification accuracy and achieve better 
visualization on object boundaries, fully connected CRF is 
applied to refine outputs from classifiers (Chen et al., 2015). In 
fully connected CRF, both local and global spatial dependencies 
can be modeled. Globally connected structures model long-range 
interactions, to disambiguate object boundaries and figure out 
delicate structures.  

 
Currently, images used for semantic façade segmentation are 
commonly from street views (CMP (Tyleček and Šára, 2013), 
ECP (Teboul, 2010), eTRIMS (Korč and Förstner, 2009)). 
However, when data are required to cover large areas for 3D city 
models, collecting data from terrestrial platforms is time-
consuming. In contrast, acquiring data by airborne equipment is 
more efficient for wide coverage application. In high resolution 
airborne oblique images, building façades are visible. With the 
help of photogrammetric techniques, multi-views of ground 
objects make it possible to generate large coverage point clouds 
in urban areas. Comparing with those traditional datasets that 
only include a single view for each façade, this point cloud 
provides additional 3D geometrical cues to solve the problem. 
Although some previous studies employ multi-view façade 
images for façade segmentation (Gadde et al., 2017; Martinović 
et al., 2015), they only focus on terrestrial images and no 
semantic segmentation has been done from airborne images. This 
work aims to explore the potential of airborne images to address 
the problem.  
 
The main objective of this work is to develop and apply a 
semantic classification method to differentiate different 
components of building façades from airborne oblique images. 
2D and 3D features are integrated and CRF models are used to 
improve classification accuracy and achieve better visualization. 
 
This paper is organized as follows: in Section 2, related works in 
façade interpretation are discussed. In Section 3, methods for 
feature extraction and segmentation are explained. In Section 4, 
model parameters and experimental results are shown and 
discussed. Conclusions and possible future work are described in 
Section 5.  
 

2. RELATED WORK 

In general, façade segmentation approaches can be divided into 
two categories. The first one is top-down method using shape 
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grammar to parse façades. The second one is bottom-up method, 
applying the multi-class classifier to pixels or superpixels and 
then employing CRF or other optimization methods to refine 
classification results. 
 
For top-down methods, a façade is represented by a tree and tree 
nodes keep splitting based on predefined rules and images 
characteristics. These rules or shape grammars are always 
manually defined counting on strong prior knowledge of façade 
structures. Teboul et al., (2010) define six rules to constrain the 
global layout of building façades. The splitting of façades 
considers pixel-wise classification results obtained from the 
random forest. However, their rules only fit Haussmannian style 
buildings in Paris and can fail when they are applied to other 
architectural styles. Instead of relying on prior knowledge, 
Martinović and Van Gool (2013) learn splitting grammars from 
labeled images while their method still focuses on grid-shape 
objects with good alignment and cannot deal with orientated 
façade objects from oblique airborne images. 
 
Bottom-up methods aim to label façades at pixel or superpixel 
levels by using machine learning classifiers.  Yang and Förstner 
(2011a) use random forest as the classifier for façade 
segmentation. Results are noisy due to the lack of contextual 
information. Rahmani et al. (2017) propose an approach using a 
structured random forest to produce nearly noise-free façade 
segmentation. Schmitz and Mayer (2016) use fully convolution 
network to achieve façade interpretation. As building façade 
components always possess symmetry in shape,  Liu et al. (2017) 
present an approach to incorporate this symmetry in loss function 
when training neural networks. 
 
The conditional random field is commonly used to refine pixel-
wise classification results by modeling contextual interactions. 
Yang and Förstner (2011b) propose a hierarchical CRFs to 
exploit contextual dependencies from local to global for façade 
interpretation using mean shift superpixels at different levels. In 
addition to a unary term from random forest and a pairwise term 
that represents class compatibility between nearby labels, a 
hierarchical term is added to demonstrate segment relationships 
among different scales. Li and Yang (2016) implement fully 
connected CRF to semantic façade segmentation. They choose 
Textonboost to get unary potentials and pick linear combinations 
of Gaussian kernels (Krähenbühl and Koltun, 2011) as fully 
connected pairwise potentials. Their model is not only good at 
enforcing the label consistency but also capable of detecting 
small façade components and delineating crisp boundaries. 
Martinović et al. (2012) propose a three-layered approach to 
solve façade interpretation. In the first layer, a Recursive Neural 
Network is trained to get label probability at superpixel level. In 
the middle layer, object detectors are used to obtain probabilities 
of window and door over the image. This information is 
combined with the output of RNN in a CRF model. In the top 
layer, weak architectural constraints are introduced to achieve 
more structured façade configurations. 
 
All above studies are attempts to interpret façades by using image 
features, while urban scene interpretation also benefits from 
involving 3D data. Vetrivel et al. (2017) use dense matching 
point clouds to facilitate building damage detection in aerial 
oblique images. 3D characteristics are extracted in 3D space, like 
linearity, planarity and scattering. The combination of two types 
of features achieves 3% higher average classification accuracy 
than the approach only using 2D features (Vetrivel et al., 2017). 
Fooladgar and Kasaei (2015) also combine 2D and 3D 
information at image pixel level to achieve semantic 
segmentation of indoor RGB-D images. A CRF model is 

proposed where unary potentials are from random forest and 
Potts model is set to calculate pairwise potentials. Instead of 
assigning labels to image pixels, Martinović et al. (2015) design 
a 3D pipeline to take advantages of 2D images and 3D point 
clouds from Structure from Motion for 3D labeling. Height, 
depth, normal vector and spin image descriptors at different 
scales are 3D features used in a random forest classifier. A 3D 
CRF, considering 4 nearest neighboring points, is used as a post-
processing to smooth results. They find the CRF model that 
utilizes both 2D and 3D features in 3D space and incorporates 
with superpixel and object detectors achieves the best accuracy. 
 
Currently, most of the studies only use single view images for 
façade segmentation and few of them incorporate 3D features 
obtained from multi-view images. Some studies use aerial images 
for scene understanding but studies in semantic segmentation at 
façade level are quite rare. This work explores potentials of 
airborne images to address the problem with a fully connected 
CRF. 
 

3. METHOD 

Figure 1 is the workflow for this paper. Firstly, façades are 
annotated in 2D images and cropped from 3D point clouds and 
the dataset is split into three parts. Then 2D and 3D features are 
extracted and combined. These features are fed into a fully 
connected CRF model. 45 façades are used to train random forest, 
15 façades are used to tune CRF parameters and 45 façades are 
used to test models. More details are explained in the following 
sections. 
 

 
Figure 1 Workflow for this work. 

3.1 Feature extraction 

Here, 2D features for every façade are extracted from images and 
3D features are extracted from crop 3D point clouds. Then, 3D 
features for points are projected back to 2D space and combined 
with image features. 
 
3.1.1 2D feature extraction  
 
Three different typologies of 2D features have been adopted:  
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Color features In this paper, color information is stored in RGB 
color space. Intensities in red, green and blue channels are used 
as three features to represent spectral information. 
 
SIFT SIFT descriptor is made up of 128 features. These features 
are extracted from grayscale images in a grid region at a fixed 
scale and fixed orientations (Liu et al., 2011). More detailed 
explanation refers to Liu et al. (2011) and Lowe (2004). 
 
LM filter 48 texture features are derived from Leung-Malik filter 
bank (Varma and Zisserman, 2005). The filter bank 1  is a 
combination of 18 first order and 18 second order derivatives of 
Gaussian kernels, 8 Laplacian of Gaussian kernels and 4 
Gaussian kernels.  
 
3.1.2 3D feature extraction  
 
Normal vector and planarity are features extracted from local 
neighbors. Normal vector is helpful to separate points on 
different planes, like points on roof and wall surfaces. Planarity 
is an efficient indicator to assess whether the surface is flat or 
curved and distinguish objects with different kinds of surfaces 
(Vosselman et al., 2017). Planarity is derived from three 
eigenvalues (λ1≥λ2≥λ3) of the covariance matrix which is 
calculated based on local neighbors. In equation (1), three 
eigenvalues are normalized by λ1+λ2+λ3  and therefore 
e1+e2+e3=1. 
 
              𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑒𝑒2− 𝑒𝑒3

𝑒𝑒1
 (1) 

 
As both normal vector and planarity are computed based on local 
neighbors, how to define neighboring points is critical in this 
work. Here ‘k-nearest neighbors’ is the method to search for 
nearby points (Weinmann et al., 2015). Figure 2 shows how 
unsupervised classification results are influenced by scales of the 
search range. Planarity is extracted from 20, 100 and 500 nearest 
points respectively. Although these 3D features extracted from a 
single scale are not sufficient to distinguish objects, the change 
of the planarity in different scales is a signature for different 
classes, especially for those objects on plane surfaces  (Brodu and 
Lague, 2012). Balcony horizontal surfaces on wall and chimney 
vertical surfaces on roofs can be well detected in figure 2 d. Thus, 
instead of extracting normal vector and planarity at a fixed scale 
(4 features), we extract features from 20, 100 and 500 nearest 
points respectively (12 features in total) and then fed them into a 
classifier. 
 

a)  b)  

c)  d)  
Figure 2. Unsupervised segmentation based on 3D features 
extracted from different scales (ground truth refers to figure 
3). Planarity is calculated based on different sizes of 
neighboring points. a): 20, b):100, c):500, d): {20, 100, 500}. 

 
3.1.3 Feature combination  
 

1 This filter bank is available at: http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html  

To combine 2D and 3D features, 3D features are projected back 
to oblique images using PMatrix generated by Pix4D mapper for 
every oblique image. Projected 2D coordinates can be related to 
different patch sizes in 2D images. Pixels within a patch share 
same 3D features. If multiple points fall in a same patch, 
averaged 3D features are assigned to that patch (Johnson & 
Hebert, 1999). With increasing patch size, although the 
percentage of void pixels keeps decreasing, projected 3D features 
are coarser and loss more detailed information as an effect of 
averaging. As we did not use the full resolution point cloud in 
Pix4D, to avoid holes in projected 3D features, 4*4 pixel is 
defined as an optimal patch size when projecting 3D points to 
images. 
 

3.2 Random forest 

A random forest classifier is an ensemble of independent decision 
trees and classification results are votes from those trees. Every 
decision tree is a function of a to get b where a is a sample 
consisting of n features and recursively classified by branching 
down the tree until the sample reaches a leaf node. b is a 
probability distribution for each class assigned by the leaf node 
based on feature values in sample a. For each node, a split 
function is used to decide whether the sample should go left or 
right. Splitting terminates until a leaf node is reached. For each 
node, the split function is learned from training dataset. 
 

3.3 Conditional random field 

Conditional random fields are commonly used to refine noisy 
segmentation results. They combine results from simple 
classifiers with contextual information. In 4-connected and 8-
connected CRFs, neighboring systems are established based on 4 
and 8 nearest points which can only capture short-range spatial 
interactions. In fully connected CRF, pairwise potentials are built 
on all possible pairs of pixels over the whole image and this full 
connection makes it possible to model long-range interactions 
within an image. Inference of fully connected CRF by traditional 
algorithms is computationally expensive. Krähenbühl and Koltun 
(2011) apply a linear combination of Gaussian kernels as the 
pairwise term and use mean field approximation to efficiently 
solve fully connected CRF. 
 
In this paper, a random field 𝑿𝑿 is constructed by a set of random 
variables {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁}, where N is the number of pixels over the 
image. For each random variable in 𝑿𝑿, its domain is a set of labels 
ℒ =  {𝑃𝑃1, … , 𝑃𝑃𝑘𝑘}, where k is the number of classes. Random field 
𝑿𝑿  is conditioned on image 𝑰𝑰  which consists of image pixels   
{𝐼𝐼1, … , 𝐼𝐼𝑁𝑁} . This conditional random field (𝑰𝑰,𝑿𝑿)  is a Gibbs 
distribution and written as: 
 

𝑃𝑃(𝑿𝑿|𝑰𝑰) =
1

𝑍𝑍(𝐼𝐼) 𝑒𝑒𝑥𝑥𝑒𝑒(−� 𝜙𝜙𝑐𝑐(𝒙𝒙𝒄𝒄|𝑰𝑰)
𝑐𝑐∈𝑪𝑪𝒢𝒢

) 
(2) 

 
𝐸𝐸(𝒙𝒙) = � 𝜓𝜓𝑐𝑐(𝒙𝒙𝒄𝒄)

𝑐𝑐∈𝑪𝑪𝒢𝒢
 (3) 

 
𝑍𝑍(𝐼𝐼) = � exp (−𝐸𝐸(𝒙𝒙))

𝒙𝒙
 (4) 

 
Here 𝒢𝒢 = (𝒱𝒱,ℰ)  is an undirected graph established on 𝑿𝑿 . 
Potential functions 𝜙𝜙𝑐𝑐(𝒙𝒙𝑐𝑐|𝑰𝑰)  are defined over variables (𝒙𝒙𝑐𝑐 =
 {𝑥𝑥𝑖𝑖  , 𝑃𝑃 ∈ 𝑐𝑐}) within a clique 𝑐𝑐 . 𝑪𝑪𝒢𝒢  is a set of all cliques in a 
graph. 𝐸𝐸(𝒙𝒙)  is a Gibbs energy function to label 𝒙𝒙 ∈ ℒ𝑁𝑁 . 
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𝜙𝜙𝑐𝑐(𝒙𝒙𝑐𝑐|𝑰𝑰)  is simplified as 𝜓𝜓𝑐𝑐(𝒙𝒙𝑐𝑐) . 𝑍𝑍(𝐼𝐼)  is a partition function 
which is a normalization constant. The maximum a posteriori 
(MAP) labeling 𝒙𝒙∗ is defined as below: 
 

𝒙𝒙∗ = 𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑃𝑃𝑥𝑥𝒙𝒙∈ℒ𝑁𝑁𝑃𝑃(𝑿𝑿|𝑰𝑰) (5) 
 
Optimal labeling can be found by minimizing the energy function 
𝐸𝐸(𝒙𝒙). 
 
In this paper, fully connected CRF is a pairwise model. 
Therefore, the energy function can be written as below: 
 

𝐸𝐸(𝒙𝒙) = �𝜓𝜓𝑢𝑢(𝑥𝑥𝑖𝑖)
𝑖𝑖

+ �𝜓𝜓𝑝𝑝�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗�
𝑖𝑖<𝑗𝑗

 (6) 

 
where unary potential 𝜓𝜓𝑢𝑢(𝑥𝑥𝑃𝑃)  is derived from probability 
distribution over labels from classifiers. Pairwise potentials 
𝜓𝜓𝑒𝑒�𝑥𝑥𝑃𝑃, 𝑥𝑥𝑗𝑗�  enforce consistency in pixels that share similar 
features in image space.  
 
3.3.1 Unary Potentials 
 
Feature extraction is explained in section 3.1. Taking those 2D 
and 3D features, random forest mentioned in section 3.2 gives 
multi-class label prediction. For every pixel 𝑃𝑃 , probability 
distribution over label set ℒ, 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑰𝑰), is independently generated 
by classifiers. Unary potentials for pixel 𝑃𝑃  are defined as the 
negative log of probability, shown as below: 
 

𝜓𝜓𝑢𝑢(𝑥𝑥𝑃𝑃) = −𝑃𝑃𝑙𝑙𝑎𝑎𝑃𝑃(𝑥𝑥𝑃𝑃|𝑰𝑰) (7) 
 
3.3.2 Pairwise Potentials 
 
The pairwise term in fully connected CRF is formed by a linear 
combination of Gaussian kernels (Krähenbühl and Koltun, 2011), 
defined as below: 
 

𝜓𝜓𝑝𝑝�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗� = 𝜇𝜇(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)� 𝑤𝑤(𝑚𝑚)𝑘𝑘(𝑚𝑚)
1

𝑚𝑚
(𝒇𝒇𝑖𝑖 ,𝒇𝒇𝑗𝑗) 

(8) 

 

𝜇𝜇�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = {
0 𝑃𝑃𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗,
1 𝑙𝑙𝑃𝑃ℎ𝑒𝑒𝑃𝑃𝑤𝑤𝑃𝑃𝑒𝑒𝑒𝑒,

 (9) 

 

    𝑤𝑤(1)𝑘𝑘(1)�𝒇𝒇𝑖𝑖 ,𝒇𝒇𝑗𝑗� = 𝑤𝑤(1) exp �− �𝑝𝑝𝑖𝑖− 𝑝𝑝𝑗𝑗�
2

2𝜃𝜃𝛼𝛼2
− �𝐼𝐼𝑖𝑖− 𝐼𝐼𝑗𝑗�

2

2𝜃𝜃𝛽𝛽
2 �       (10) 

 

 𝑤𝑤(2)𝑘𝑘
(2)

(𝒇𝒇𝑃𝑃, 𝒇𝒇𝑗𝑗) = 𝑤𝑤(2) exp�−
�𝑒𝑒𝑃𝑃− 𝑒𝑒𝑗𝑗�

2

2𝜃𝜃𝛾𝛾2
� 

(11) 

 
𝑘𝑘(𝑚𝑚) are Gaussian kernels and 𝑤𝑤(𝑚𝑚) are weights of kernels. 𝒇𝒇𝑖𝑖 
and 𝒇𝒇𝑗𝑗  are feature vectors taking color values and positions for 
neighboring pixels 𝑃𝑃  and 𝑗𝑗 . Here, 𝜇𝜇(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) , a Potts model, is 
applied as a label compatibility function. It assigns penalties 
when two neighboring pixels have different labels. Two kernel 
potentials, 𝑘𝑘1�𝒇𝒇𝑖𝑖 ,𝒇𝒇𝑗𝑗�  and 𝑘𝑘2(𝒇𝒇𝑃𝑃, 𝒇𝒇𝑗𝑗) , make the Potts model 
contrast-sensitive. 𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑗𝑗  are position vectors and 𝐼𝐼𝑖𝑖 , 𝐼𝐼𝑗𝑗  are color 
vectors using RGB values. 𝑘𝑘1�𝒇𝒇𝑖𝑖 ,𝒇𝒇𝑗𝑗� is an appearance kernel 
encouraging two pixels, which are close in position and have 
similar colors, to have a same label. In other words, a high penalty 
will be introduced when two pixels with different labels have 
similar features vectors and this penalty should be minimized to 
achieve coherency between pixels. 𝜃𝜃𝛼𝛼 and 𝜃𝜃𝛽𝛽  are used to control 

the extents of nearness and color similarity when determining 
penalties. 𝑘𝑘2(𝒇𝒇𝑃𝑃 , 𝒇𝒇𝑗𝑗) is a smoothness kernel to clean small and 
isolated parts. 
 
3.3.3 Inference 
 
According to Krähenbühl and Koltun (2011), an approximate 
CRF distribution is applied for Maximum Posterior Marginal 
labeling. This alternative distribution Q(X) is obtained based on 
the mean field approximation to an exact distribution P(X). Q(X) 
which is a product of independent marginals, can be computed 
by minimizing the KL-divergence D(Q||P) , the difference 
between P(X) distribution and Q(X) distribution. Following the 
update equation (equation 12), the inference is calculated by 
iterative message passing, compatibility transform and local 
update within the approximate field until convergence.  
 
𝑄𝑄𝑖𝑖(𝑥𝑥𝑖𝑖 = 𝑃𝑃)

=
1
𝑍𝑍𝑖𝑖
𝑒𝑒𝑥𝑥𝑒𝑒 �−𝜓𝜓𝑢𝑢(𝑥𝑥𝑖𝑖)

− � 𝜇𝜇(𝑃𝑃, 𝑃𝑃′) � 𝑤𝑤(𝑚𝑚) �𝑘𝑘(𝑚𝑚)(𝒇𝒇𝑖𝑖 ,𝒇𝒇𝑗𝑗)𝑄𝑄𝑗𝑗(𝑃𝑃′)
𝑗𝑗≠𝑖𝑖

𝐾𝐾

𝑚𝑚=1𝑙𝑙′𝜖𝜖ℒ

� 

(12) 

 
In fully connected CRF, direct message passing computation is 
intractable because, for every pixel, the sum of all other pixels is 
supposed to be evaluated (Krähenbühl and Koltun, 2011). The 
complexity of this problem is quadratic to the number of pixels 
in images. Thus, high dimensional Gaussian filtering is applied 
to reduce the complexity from quadratic to linear. The 
transformed message passing algorithm is shown as below: 
 

� 𝑘𝑘(𝑚𝑚)

𝑗𝑗∈𝒱𝒱
�𝒇𝒇𝑖𝑖 ,𝒇𝒇𝑗𝑗�𝑄𝑄𝑗𝑗(𝑃𝑃) −𝑄𝑄𝑖𝑖(𝑃𝑃)

= �𝐺𝐺∧(𝑚𝑚) ⊗𝑄𝑄(𝑃𝑃)�(𝒇𝒇𝑖𝑖) − 𝑄𝑄𝑖𝑖(𝑃𝑃) 

(13) 

 
Message passing algorithm expressed as 
∑ 𝑘𝑘(𝑚𝑚)
𝑗𝑗∈𝒱𝒱 �𝒇𝒇𝑖𝑖 ,𝒇𝒇𝑗𝑗�𝑄𝑄𝑗𝑗(𝑃𝑃) − 𝑄𝑄𝑖𝑖(𝑃𝑃) , is converted into a function 

where all pixels are summed up by convolutions 𝐺𝐺∧(𝑚𝑚) but sum of 
𝑄𝑄𝑖𝑖 is excluded (Krähenbühl and Koltun, 2011). Here, 𝐺𝐺∧(𝑚𝑚) is a 
low passing filter. Based on sampling theorem, the function can 
be reconstructed and the convolution can be achieved by 
downsampling 𝑄𝑄(𝑃𝑃), applying 𝐺𝐺∧(𝑚𝑚)  to sampled 𝑄𝑄(𝑃𝑃) and then 
upsampling results in feature space (Krähenbühl and Koltun, 
2011). Gaussian kernels 𝐺𝐺∧(𝑚𝑚) can be approximately converted to 
truncated Gaussians, where values are turned to zero if they are 
not within two standard deviations. As sample spacing is in 
proportion to standard deviations, there are fixed number of 
samples in truncated kernels. Therefore, by summing over 
limited number of nearby pixels, convolution can be 
approximately calculated. This suggests that the inference can be 
completed in O(N) time. Permutohedral lattice, an efficient 
convolution data structure, is applied to simplify the calculation 
to be O(Nd) time. By Cholesky decomposition, high dimension 
kernels are separated into 1 dimensional kernels that allows the 
inference tractable (Krähenbühl and Koltun, 2011).  
 
3.3.4 Learning 
 
Features mentioned in section 3.1 are extracted from 45 façades 
and used to train random forest. 15 façades are used as validation 
dataset to tune parameters in fully connected CRF. 
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4. EXPERIMENTS 

Airborne images used in this paper were acquired by an IGI 
Pentacam system over the city of Dortmund (Germany) on July  
7th, 2016.  Average ground sampling distance for oblique images 
is 4.5 cm. High-resolution images have been oriented and used to 
generate the point cloud in Pix4D. 
 
In this paper, 3 classes of building components are defined 
regarding functionality, namely, roof, wall and opening. Roof is 
defined as a structure horizontally covering a building and wall 
is an element vertically covering a building. In this scenario, 
balconies on façades are divided into roof segments and wall 
segments (figure 3 Left)) and chimneys are also separated into 
two parts (figure 3 Left)). Opening includes windows and doors 
because both structures allow air, sound and light to pass. Also, 
in urban areas, especially for commercial buildings, doors are 
made of glass, the same material as windows. Online annotation 
tool LabelMe is used to delineate component boundaries on 
building façades. Façades of interest are manually cropped from 
dense matching point clouds.  
 

4.1 Model parameters 

4.1.1 Random forest 
 
For random forest, a larger number of decision trees can achieve 
better results but it takes longer time to train those trees. To 
achieve the balance between time and accuracy, 50 trees are used 
in our work. Minimum leaf size is the minimum number of 
observations in each leaf. If it is small, branches are likely to go 
deep. Although out of bag prediction error is small in this case, 
the forest can be overfitting and have poor performance on testing 
images. Thus, minimum leaf size is set to be 50. This creates 
shallow trees but avoids overfitting. Number of predictors to 
sample defines how many features are selected at random to feed 
to each node. If it is too large, the strength of an individual tree 
increases and the correlation between different trees increases. 
As reliable performance of a random forest counts on the 
independence between individual decision trees, the high 

correlation is not allowed (Breiman, 2001). As a result, the square 
root of the total number of features is calculated to be the value 
of the number of predictors to sample (in this case: 14). 
 
4.1.2 Fully connected CRF 
 
Parameter setting tuned by 15 validation façades are shown as 
below: 
 

𝑤𝑤(1) = 1,  𝜃𝜃𝛼𝛼 = 4,  𝜃𝜃𝛽𝛽 = 11,  𝑤𝑤(2) = 2,   𝜃𝜃𝛾𝛾 = 1  
 

In our case, the optimal spatial standard deviation 𝜃𝜃𝛼𝛼 is 4 pixels 
and the optimal value for color standard deviation  𝜃𝜃𝛽𝛽 is 11. The 
influence of  𝜃𝜃𝛼𝛼 and  𝜃𝜃𝛽𝛽  on overall pixel accuracy are assessed 
qualitatively (figure 4) and quantitatively (figure 5). For this 
assessment, 𝑤𝑤(1)  is kept as 1 and 𝑤𝑤(2)  is set to be 0. As  𝜃𝜃𝛼𝛼 
increases, the accuracy increases at first and then steadily 
decreases. Long-range connections cause some failures (figure 
5). In contrast to what is mentioned in Krähenbühl and Koltun's  
experiment (2011), most of spatial standard deviations larger 
than 35 pixels, relatively short-range connections are more 
suitable for façade interpretation from aerial oblique images. 
 

4.2 Accuracy assessment 

Performances of random forest and the fully connected CRF 
model are evaluated by annotated testing façades and 
classification results are estimated by 3 measures. Overall pixel 
classification accuracy for entire images and averaged pixel-wise 
accuracy for each class are two standard measures. Intersection 
over union (IoU) score (Everingham et al., 2010) is calculated for 
each class and then averaged. These three measures are computed 
in terms of true positives (TP), false positives (FP) and false 
negatives (FN). Followings are equations: 
 
Overall accuracy: ‘𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁)’ is calculated over the whole 
image. 
Average accuracy: ‘𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁) is calculated for every class 
and then averaged. 

 

  

Figure 3 Example of our dataset. Left: annotated façade, Middle: façade image, and Right: cropped façade point cloud. 
 

 

Figure 5 Quantitative assessment  
of the influence of connections 

in fully connected CRF. 

θα = 1 θα = 4 θα = 7 θα = 10 θα = 16 

 
 θβ = 1  θβ = 11  θβ = 21  θβ = 31  θβ = 41 

Figure 4 Qualitative assessment of the influence of connections in fully connected CRF 
(ground truth refers to figure 3). 
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IoU score: ‘𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑃𝑃) is calculated for every class 
and then averaged. 
 

4.3 Results and discussion  

We used 45 façades to test models. Statistical results got from 
three models are demonstrated in table 1. Performance of the 2D 
feature classifier is worst in terms of all accuracy indicators. 
Although many studies show that color, SIFT and Texton 
features are capable to describe and distinguish different classes 
in terrestrial view dataset, like eTRIMS (Li and Yang, 2016), 
results from our work indicate that these 2D features are 
insufficient to distinguish roof, wall and opening in aerial view 
dataset with various architectural styles. It can be seen from table 

2 that, based on 2D features, wall and opening pixels are likely 
to be misclassified as roof pixels.  
 
Involvement of 3D features significantly corrects confusions 
between roof and pixels on vertical surfaces like wall and 
opening (table 3) and leads to an increase in IoU by 26.36% (table 
1). This is because normal vector can efficiently separate roof 
pixels from wall and opening pixels. Gadde et al. (2017) also 
combine 2D and 3D features for image labeling in a terrestrial 
view dataset and there is an increase from 60.5% to 62.7% in IoU 
by adding 3D geometrical features to 2D features. Compared 
with results from Gadde et al. (2017), aiming to delineate detailed 
façade objects (window, wall, balcony, door, roof and shop), our 

 

   

   

   

   

   

 
Figure 6 Examples from our dataset. First row: cropped façade images from oblique aerial images. Second row: ground truth. Third 

row: results from random forest using 2D features. Fourth row: results from random forest using 2D and 3D features. Fifth row: 
results from fully connected CRF and the unary term is obtained from random forest using 2D and 3D features. 
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experiment suggests that 3D features play an essential role in 
façade interpretation (roof, wall, opening) from aerial oblique 
images. However, there are still confusions between wall and 
opening pixels to be solved (table 3).  

In our experiment, fully connected CRF refines results from 
random forest using both 2D and 3D features. It improves the IoU 
by 4.67% (table 1) and reduces noise to achieve better 
visualization (figure 6).  

Our work suggests that 3D features are critical in façade 
interpretation from aerial oblique images. Inaccurate point clouds 
produced by poor image dense matching cannot solve 
misclassification. Figure 7 gives an example where classifier 
using 2D features misclassifies wall pixels as roof pixels (figure 
7 d). In figure 7 e, 3D features can correct most of the wrongly 
labeled wall pixels, while there are still few roof pixels on the 
wall. By checking the corresponding point cloud in figure 7 b, 
few wall points have similar normal vectors to roof points. This 
unsolved misclassification in random forest cannot be corrected 
by adding fully connected pairwise potentials. 

Class 2DRF 2D3DRF FCRF 
Roof 91.66% 93.30% 96.11% 
Wall 39.75% 81.56% 85.56% 
Opening 35.78% 57.89% 60.20% 
Average  55.73% 77.59% 80.62% 
Overall  60.59% 82.42% 85.63% 
IoU 39.64% 66.00% 70.67% 

 
Table 1 Quantitative results got from 3 models (45 façades for 
testing). 2DRF represents the random forest trained by 2D 
features. 2D3DRF represents the random forest trained by both 
2D and 3D features. FCRF is a fully connected CRF using 
outputs from 2D3DRF as the unary term. 
 

        Predict 
True 

Roof Wall Opening 

Roof 91.66% 6.60% 1.74% 

Wall 57.13% 39.75% 3.11% 

Opening 50.58% 13.64% 35.78% 

 
Table 2 Pixelwise accuracy of random forest using only 2D 

features. 
 

         Predict 
True 

Roof Wall Opening 

Roof 93.30% 6.05% 0.65% 

Wall 11.22% 81.56% 7.22% 

Opening 8.32% 33.79% 57.89% 
 
Table 3 Pixelwise accuracy of random forest using both 2D and 

3D features. 
 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we explored the semantic façade segmentation from 
airborne oblique images. It is an alternative investigation on 

state-of-the-art works which perform façade segmentation from 
terrestrial views. Different from traditional semantic image 
segmentation, 3D geometrical features were extracted from 
dense matching point clouds and then projected back to 2D space 
to facilitate image façade segmentation based on images features. 
Instead of extracting 3D features at a fixed scale, for each point, 
normal vector and planarity were extracted at different scales, 
taking as signatures for different classes. These 3D features 
contributed to a significant increase in IoU from 39.64% to 
66.00%. Although the accuracy of semantic segmentation 
strongly relied on the quality of point clouds and errors in point 
clouds led to misclassification, in most of the cases, current 
photogrammetric algorithm allowed to generate reliable points 
and some confusions were solved by using CRF model. Fully 
connected CRF, a state-of-art model, was used to consider 
contextual information. It improved the IoU by 4.67%. The main 
limitation of this study was that we only implemented a three-
class classification (roof, wall, opening). In the future, more 
classes could be identified, making contributions to more detailed 
3D city modeling. Also, inspired by the huge application of deep 
learning in semantic image segmentation (Chen et al., 2015), 
CNN frameworks will be explored to perform semantic façade 
segmentation in our future research.  

 
a) b)  

 

 

c) 

 
d) e) f) 

 

 
Figure 7 Misclassification caused by inaccurate dense matching 

point cloud. a) façade image, b) façade point cloud, color 
representing the angle (o) between normal vector and z-axis, c) 

ground truth, d) results from random forest using 2D features, e) 
results from random forest using 2D and 3D features, f) results 

from fully connected CRF. 
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