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ABSTRACT: 
 
Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification 
from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use 
Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a 
separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is 
to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud 
into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN 
designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the 
ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the 
same dataset shows that the proposed method results in 5.22% of total error, 4.10% of type I error, and 15.07% of type II error. 
Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error 
(while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 
4.02% of total error, 2.15% of type I error and 6.14% of type II error. 
 
 

1. INTRODUCTION 

1.1 Background 

Ground point classification (often called filtering) is the task of 
classifying LIDAR point clouds into two classes: ground and 
non-ground. Once point clouds have been classified, a Digital 
Terrain Model (DTM) can be extracted from ground-labeled 
points. 
 
In the past, point cloud classification was done through 
unsupervised classification. Sithole and Vosselman (2004) 
examine several filter algorithms in 15 sites with different 
terrain characteristics. In general, all filters perform well in 
relatively flat terrain in a rural area. However, the accuracies 
dropped significantly when the study area contained steep 
slopes or complex urban areas. Chen et al. (2017) mention that 
many different filters had difficulty when applied to 
complicated and sharply changing landscape. 
 
Deep learning with CNNs has gained popularity for image 
classification and pattern recognition tasks. In contrast to other 
machine learning techniques, features are learned from the data 
itself, not extracted manually. Feature learning is achieved by 
stacking many layers which contain learnable parameters. In the 
beginning, those parameters are defined randomly. Then all 
parameters are adjusted by minimizing the loss function so that 
the networks provide a correct label for every input image. 
 
CNNs have been proven effective for image classification 
(Ciresan et al., 2011). The task of image classification is to 
predict a label for every input image, given many training data.  
 
Following the success of deep learning in many classification 
tasks, Hu and Yuan (2016) proposed to use Deep CNNs to 
classify point clouds into the ground and non-ground. The 

method starts with a point-to-image conversion. The conversion 
is based on the height differences in the neighborhood such that 
there is a clear difference between ground and non-ground 
points in the extracted images, enabling the network to 
discriminate between them. After being trained using 17 million 
points, the method resulted in the lower error rates compared to 
other filter algorithms in the ISPRS dataset (Hu and Yuan, 
2016). 
 
A major limitation of this method is the computational cost. It 
comes as a result of redundant computation during the 
conversion because the conversion needs to be done for every 
single point. This is problematic because if the conversion is 
slow, it is not practical to handle high-density point clouds 
characteristic to modern LIDAR datasets.  
 
Another problem related to the conversion is in sloped terrain. 
Since the conversion relies on the height differences to the 
neighbors, ground and non-ground points show similar patterns 
in steep terrain. This condition is not in line with the idea of 
having high pixel values for a ground point image and low pixel 
values for a non-ground point image. 
 
The method proposed in this work aims to tackle those 
limitations. Instead of converting single point into a single 
image as done by Hu and Yuan (2016), we propose to convert 
all points into a single image. In this method, a point is 
represented by a pixel, not an image. Hence it is more efficient 
and reduces computational time of the conversion and the 
classification. Furthermore, information regarding the intensity 
value and return number are also used to deal with steep slopes 
since both features are invariant to the terrain slope. 
 
In order to classify the pixels, we propose to use Fully 
Convolutional Networks (FCNs) as FCNs architecture is able to 
label each pixel in an end-to-end manner. After each pixel has a 
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label, it is transferred back to the points, so all points in the 
point cloud are labeled. 
 
1.2 Related Work 

In general, there are four methods for filtering based on 
unsupervised classification. Slope-based filtering (Vosselman, 
2000) assumes if there is a large height difference between two 
nearby points, it is because both points are consisted of ground 
and non-ground points where ground point is positioned lower 
than a non-ground point. Progressive densification was 
proposed by Axelsson (2000). It starts with a selection of the 
lowest point in certain areas as seed points, then creates 
Triangulated Irregular Network (TIN). This surface is then 
densified iteratively by adding the remaining points which are 
within acceptable angle and distance tolerances. The process 
gradually builds a more detailed terrain surface. Surface-based 
filtering  (Kraus and Pfeifer, 1998) creates a best-fitted surface 
to all points and gives lower weight for points below the 
surface. Then the surface is updated using these weights. The 
process is repeated iteratively until the change is small. As a 
result, the final surface will represent the terrain. The last 
filtering technique is segmentation (Sithole and Vosselman, 
2005). Unlike the previous methods, this method works on 
segments rather than points. First, point clouds are divided into 
segments based on the assumption that a segment should have a 
smooth surface, then larger and lower segments are selected as 
ground. 
 
Many improvements had been proposed such for slope-based 
(Kilian et al., 1993), surface-based (Pfeifer et al., 2001), and 
progressive densification (Nie et al., 2017). Another recent filter 
algorithm called parameter-free also had been developed 
(Mongus and Zalik, 2012). 
 
In supervised classification, geometric and contextual features 
for each point can be extracted to train the classifier. Many 
machine learning classifiers were used such as Random Forest 
(Chehata et al., 2009) and Support Vector Machine (Zhang et 
al., 2013). Conditional Random Field has also been used to 
improve the result from the classifier (Niemeyer et al., 2012). 
Weinmann et al. (2015) provide a thorough summary using 
different classifier, features, and neighborhood definitions. 
Unlike unsupervised filtering techniques, most of these 
supervised classifiers not only classify point clouds into the 
ground and non-ground classes but also classify many other 
classes.  
 
Deep learning was also used to classify point clouds as 
conducted on 3D ShapeNets (Wu et al., 2015), VoxNet 
(Maturana and Scherer, 2015), and PointNet (Qi et al., 2017). 
However, all of them were designed for 3D object recognition 
which gives one label for all points as an object and mostly 
tested on indoor point clouds. For point classification on 
LIDAR point clouds, Hu and Yuan (2016) proposed to use 
Deep CNNs. Even though PointNet can also perform single 
point classification, we prefer to use FCNs approach since we 
want to focus on optimization of computational cost on CNNs 
by using FCNs. 
 

2. METHODOLOGY 

Our proposed method is different to the previous Deep CNNs 
for ground classification by Hu and Yuan (2016) in two aspects. 
Firstly, we propose to convert all points into one large image 
instead of converting every single point into a separate image as 
done by Hu and Yuan (2016). Secondly, we designed a Fully 

Convolutional Network (FCN), to classify each pixel in the 
image into the ground or non-ground class. 
 
2.1 Point Clouds to Image Conversion 

In order to work with CNNs, the method by Hu and Yuan 
(2016) converts every single point into an image of 128 x 128 
pixels. The pixel value was calculated as the height difference 
between a point and its neighbors (Zneighbor – Zpoint), while the 
neighbors were defined as those points within an area of 96 x 96 
meters. The purpose is to represent each point as a feature 
image. It is assumed that ground points are usually lower than 
the neighbors while the non-ground points are usually higher. If 
the assumption is true, most of the pixels in the ground point 
image are high-value pixels, so that ground point images look 
brighter than non-ground point images. 
 

  
a. Ground point images b. Non-ground point images 

 
Figure 1. Feature images from (a) ground point and (b) non-

ground point (Hu and Yuan, 2016). 
 
If the terrain is relatively flat, the typical result of the 
conversion is shown in Figure 1. It is very easy to discriminate 
ground points from non-ground points in those images. 
However, the conversion is slow due to the highly redundant 
calculation. Furthermore, the conversion has difficulty in steep 
terrain when the converted images are no longer different 
between ground and non-ground points. It could happen 
because the assumption of ground points always lower than 
non-ground points is not true anymore. As a result, both ground 
and non-ground points have a similar pattern as can be seen in 
Figure 2. 
 

 
a. Ground point images 

 
b. Non-ground point images 

 
Figure 2. Feature images converted in a steep terrain 

 
In order to overcome the computational cost problem, the 
proposed method does not convert every single point into a 
separate image but converts all points into a single large image. 
In this approach, points are represented by pixels, not by images 
anymore. As a result, the conversion and classification are faster 
than if each point is converted into a separate image. 
 
The conversion is done by converting point cloud features into a 
multi-channel image. LIDAR provides not only a 3-D position 
but also information regarding the intensity and return number. 
All the information can be used as features when converting 
point cloud to image. In the conversion, pixel size is set to 1 x 1 
m based on the point cloud density. If there is more than one 
point within a pixel, then the lowest point was chosen since it is 
assumed that the lowest point has more possibility to be a 
ground point than the upper points. On the other hand, if there is 
no point within one pixel, the pixel value was interpolated from 
the neighbors, and no label was given for that pixel in the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-231-2018 | © Authors 2018. CC BY 4.0 License.

 
232



training image. Figure 3 shows the converted image from point 
clouds and the corresponding labels on one sample area.  
 

    
1 2 3 4 

a. Converted image in (1) elevation, (2) intensity, (3) return 
number and (4) height difference channel 

 

  
b. Point clouds in height 

color coded 
c. Labeled point clouds; 

Red: Ground, Blue: Non-ground 
 
Figure 3. (a) Converted image (b) original point clouds in height 

color coded and (c) corresponding label for point clouds 
 
Elevation, intensity and return number are original data of 
LIDAR point clouds. In addition, more features can be 
extracted. In the literature, height difference was reported as a 
useful feature to discriminate ground and non-ground points 
(Chehata et al., 2009). Therefore the proposed method has also 
used height difference as an additional feature. The feature is 
defined as the height difference between the point itself and the 
lowest point in the neighborhood while the neighborhood is set 
as a window of 20 x 20 m.  
 
Another issue related to the conversion is low point outliers. It 
is common for LIDAR point clouds to have low point outliers. 
Those points usually have extremely low elevation so that many 
filtering algorithms suffer from this type of error. The effect of 
the outliers has also been examined in this study.  
 
2.2 Fully Convolutional Networks (FCNs) 

Common CNN architectures for image classification always 
predict one label per one input image. In this architecture, the 
input image is convolved and down-sampled in a series of 
processing layers which include convolutions, batch 
normalization, activation functions, pooling and fully connected 
layers. The last layer of the network predicts class probabilities. 
Figure 4 illustrates CNN architecture from LeNet-5 for 
handwritten digits classification.  
 

 
 

Figure 4. An illustration of CNN architecture LeNet-5 (Le Cunn 
et al., 1998) 

 
In the illustration above, an input image will have a probability 
for each ten output labels (0 to 9). Then the label with the 
highest probability is taken as a predicted class for the 
corresponding input image. Hu and Yuan (2016) used similar 
CNNs architecture for ground classification; except the final 

layer has two output labels for ground and non-ground. 
Although they also used different network parameters, the 
general structure is similar. 
 
In contrast to the common CNNs architecture, we propose to 
use a different architecture. Since point clouds are converted 
into one image, it means that points are represented by pixels. 
As a consequence, labels need to be computed for each pixel, 
not each image. This task is known as semantic labeling or 
pixel-wise classification. The CNN architecture as illustrated in 
Figure 4 needs to be modified to accommodate this purpose. 
 
Fully Convolutional Networks (FCNs) are a modification of 
CNNs. The architecture is structured in such a way to predict a 
label for each pixel of an input image. Shelhamer et al. (2017) 
proposed to replace fully connected layer on a common CNNs 
architecture with an up-sampling layer. The method works by 
employing deconvolution layer to up-sample the output feature 
maps to the original resolution.  This method was adapted for 
pixel-wise classification of high-resolution remote sensing 
imagery by Maggiori et al. (2017), Volpi and Tuia (2017) and 
Fu et al. (2017). Meanwhile, Badrinarayanan et al. (2015) 
proposed SegNet that uses encoder and decoder layer. Encoder 
plays a role as a down-sample layer while decoder as an up-
sample layer. The decoder works by using the max-pooling 
indices from the corresponding encoder to produce the up-
sampled feature maps. 
 
In contrast to ‘down-sample and up-sample’ FCNs, Sherrah 
(2016) and Persello and Stein (2017) proposed another 
architecture that maintains the size of each layer in the 
networks. Hence the architecture is called no-downsampling. 
Gevaert et al. (2018) adapted the similar no-downsampling 
networks for DTM extraction from Unmanned Aerial Vehicle 
imagery. 
 
The no-downsampling architecture maintains the output feature 
map to have the same size as the input image. It can be achieved 
by using stride = 1 for both convolutional and pooling layer. If 
F = filter size, then adding pad = (F/2) + 1 is also mandatory to 
ensure there is no down-sampling in the output feature map. 
Unlike CNNs architecture, the final layer of FCNs architecture 
provides the class probabilities of each pixel.  
 
The FCN_DK network by Persello and Stein (2017) was chosen 
to be adopted in this work to avoid the up-sampling used in the 
deconvolutional FCNs. The proposed FCN architecture for 
ground classification is shown in Figure 5. The architecture can 
consume input images of different sizes. It uses dilated 
convolutions  to increase receptive field size without drastically 
increasing the number of parameters (Yu and Koltun, 2015). A 
small modification to FCN_DK networks was taken in order to 
fit the networks for ground classification purpose. The max-
pooling layers were removed, the number of filters and the filter 
size was changed. 
 

 
Figure 5. Proposed FCN architecture for ground classification
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Layer Filter 
Size 

(pixels) 

# filters Dilation Receptive 
field size 
(pixels) 

DConv1  5 x 5 16 1 5 x 5 
Batch Norm     
ReLU     
DConv2  5 x 5 32 2 13 x 13 
Batch Norm     
ReLU     
DConv3  7 x 7 32 4 37 x 37 
Batch Norm     
ReLU     
DConv4  7 x 7 64 5 67 x 67 
Batch Norm     
ReLU     
Conv 1 x 1 2 1 67 x 67 
Batch Norm     
Dropout     
Softmax     

  
Table 1. Filter number and receptive field size 

 
As can be seen in Figure 5 and Table 1, the size of the output 
feature map on each layer is always the same as the input 
image, while the receptive field is small in the earlier layers but 
gradually increases in the next layers. A larger dilation factor in 
the deeper layer causes a larger receptive field. In ground 
classification, it is important to have a large receptive field so 
that the network can capture both ground and non-ground 
features especially when large buildings are present in the area.  
 
2.3 Training and Testing 

Training and testing follow the common procedure of CNNs. In 
general, training was conducted by forward passing the input 
image through all layers so that each input unit (pixel) has a 
prediction label. Then it back propagates to learn the parameters 
of the network. The process is repeated until the prediction label 
is close to the true label. Testing was performed by forward 
passing input units through all layers which contain learned 
parameters from the training stage. 
 
Forward passing on the network is done based on the same 
schema as used on many CNNs architectures. For input unit (x), 
weights (W), bias (b), non-linear activation function (g), then 
the output unit (h) is computed based on Equation (1). 
 
 ℎ = 𝑔𝑔(𝑊𝑊𝑇𝑇𝑥𝑥 + 𝑏𝑏) (1) 
 
In the CNNs architecture using Rectified Linear Unit (ReLU) as 
an activation function, the output unit (h) of input image (x) 
with depth (D) is computed as 
 
 ℎ = 𝑚𝑚𝑚𝑚𝑥𝑥{0,∑ 𝑊𝑊𝑇𝑇

𝑑𝑑 ∗ 𝑥𝑥𝑑𝑑 + 𝑏𝑏𝐷𝐷
𝑑𝑑=1 } (2) 

 
In a forward pass, every input unit (pixel) is passed through all 
layers. Next, the probability is computed in the final layer using 
a softmax classifier as defined in Equation (3). For j = 1…K, 
softmax turns K-dimensional vector of h in the range [0,1]. 
 

 𝑃𝑃(ℎ)𝑗𝑗 = 𝑒𝑒ℎ𝑗𝑗

∑ 𝑒𝑒ℎ𝑘𝑘𝐾𝐾
𝑘𝑘=1

 (3) 

 
After that, a loss function is introduced. A common loss 
function used in the modern neural network is cross entropy 
(Goodfellow et al., 2016). It calculates the negative log-
likelihood between the prediction from the network and the true 

label from training data. The loss function is defined in 
Equation (4). 
 
 𝐿𝐿(𝑥𝑥,𝑦𝑦;𝜃𝜃) = −∑ 𝑦𝑦𝑗𝑗𝑗𝑗 𝑙𝑙𝑙𝑙𝑔𝑔 𝑝𝑝 (ℎ𝑗𝑗|𝑥𝑥) (4) 
 
Once the loss function has been calculated, learning is 
performed by minimizing the loss with respect to all parameters 
in the network as defined in Equation (5). 
 
 θ∗ = argminθ ∑ L(xn, yn;θ)N

n=1  (5) 
 
Then all parameters are adjusted using a stochastic gradient 
descent with momentum. 
 
Image patches were created to train the network. Each patch has 
a size of 105 x 105 pixels. The training was done by feeding the 
image patches to the networks. The MatConvNet 
(http://www.vlfeat.org/matconvnet/) framework was used for 
the implementation. The networks were trained for 50 epochs 
with learning rate of 0.0001. The momentum is 0.9 and the 
weight decay is 0.0005. Each mini-batch has 32 samples. The 
dropout layer has rate of 0.5. After the networks have been 
trained, the testing samples were classified by passing testing 
images through the network to label each pixel as ground or 
non-ground. 
 
2.4 Selecting ground points 

The output of FCNs is a predicted label for each pixel while 
what is needed is a predicted label for each point in the point 
cloud. As mentioned earlier, a pixel is a representation of point 
so that the predicted label can be transferred to the 
corresponding points. In case a pixel has more than one point, 
the label is transferred to the lowest point within that pixel. It 
was done because the lowest point is chosen if there is more 
than one point in a pixel when converting point clouds to an 
image. Once the label was transferred to the lowest point, a 
surface is created connecting all points labeled as ground. 
 
Then points are labeled as ground points if their elevation is 
within a threshold to the surface. The threshold was chosen 
based on the typical vertical accuracy of LIDAR point clouds, 
in this study the threshold is set to 15 cm. 
 

3. DATASET 

Two datasets were used for the experiment: ISPRS Filter Test 
and Actueel Hoogtebestand Nederland (AHN). The two datasets 
have different characteristics in terms of point density and 
multiple-return ability. 
 
3.1 ISPRS Filter Test Dataset 

The ISPRS dataset has 15 sample areas. From the 15 samples, 
ten sample areas were chosen for training and five sample areas 
for testing. Figure 6 shows the five testing samples. 
 
The dataset has a low point density. This causes the terrain to be 
poorly represented, especially on a combination of steep terrain 
and low vegetation. There are only two returns, first and last, in 
contrast to five multiple returns on a typical modern LIDAR 
point cloud. Fewer returns mean less information is available to 
separate vegetation from the ground. This situation makes the 
dataset more challenging for ground classification. 
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a. Sample 11 b. Sample 12 c. Sample 21 

   

  
d. Sample 53 e. Sample 61 

 
Figure 6. ISPRS testing samples: (a) steep terrain, (b) dense 

buildings, (c) bridge, (d) height discontinuity and (e) 
embankment and data gap 

 
 
3.2 AHN Dataset 

In contrast to ISPRS dataset, AHN dataset offers very high 
point density and high penetration from the multiple returns. It 
has more than 20 points per square meter and records up to 5 
returns. The dataset already has reference labels for all points. 
The labels are ground, vegetation, building, water, and bridge. 
In this work, all labels except ground are re-labeled as non-
ground. AHN dataset covers the entire area of The Netherlands, 
although the latest dataset, AHN-3 (can be accessed on 
https://www.pdok.nl/nl/ahn3-downloads), only covers half of 
the Netherlands. The dataset has relatively flat terrain which is 
the typical terrain in The Netherlands. Twelve sample sites were 
selected. Each sample has a size of 500 x 500 meters. Nine 
samples were chosen for training, two for validation and one for 
testing. Figure 7 shows the testing sample which includes small, 
medium and large buildings.  
 

 
 

Figure 7. AHN-3 Testing sample 
 

4. RESULTS AND DISCUSSIONS 

This section explains the results from hyper-parameters tuning, 
accuracy assessment, and computational cost comparison. The 
optimum hyper-parameter configuration was used in the testing 
data and compared to the results from Deep CNN-based ground 
classification (Hu and Yuan, 2016) and unsupervised 
classification from LAStools software. 
 
4.1 Hyper-parameters tuning 

Different FCN architectures were carried out to find the 
optimum configuration. Due to the limited number of samples, 
all experiments were done with 2-fold cross-validation data. 
Ten training samples were divided into two folds.  
 

Three experiments with a different number of convolutional 
layers were conducted. The first experiment had three 
convolutional layers, the second experiment had four 
convolutional layers, and the third experiment had five 
convolutional layers. The results in Table 2 below indicate that 
having more convolutional layers results in higher accuracy. In 
this architecture, having more convolutional layers increases not 
only the number of weights but also the receptive field size 
since it involves dilated convolution. Adding more weights 
solves more complex problems while the larger receptive field 
size allows the networks to learn on a bigger area. Deeper 
networks also usually achieve higher accuracy on many data 
sets (Simonyan and Zisserman, 2014; Sherrah, 2016; and 
Persello and Stein, 2017).  
 

Validation set Number of Convolutional layers 
3 4 5 

ISPRS 84.98 83.97 86.22 
AHN 95.09 95.31 95.46 

 
Table 2. Results from a different number of convolutional layers 
 
Others experiments were performed to find out the effect of 
pooling layer. The first experiment had max-pooling layer while 
the second experiment had no max-pooling layer. The results in 
Table 3 show that removing pooling layer in the networks gives 
better accuracy for ISPRS validation set but slightly reduces the 
accuracy of AHN validation set. Another advantage of 
removing pooling layer is that it simplifies the network and 
faster computation.  
 

Validation 
set 

Pooling layer 
Yes No 

ISPRS 85.44 88.54 
AHN 95.35 95.09 

 
Table 3. Results of employing pooling layer and not 

 
Although the pooling layer is important in image-wise 
classification task because it makes networks invariant to small 
translation (Goodfellow et al., 2016), it seems that it is better to 
remove it in a pixel-wise classification. The nature of pooling 
layer is summarizing value in a small spatial unit thus reduce 
the output for each layer. In other words, pooling layers down-
sample the output feature maps. Hence it becomes irrelevant in 
a no down-sampling architecture as used in this work. 
 
Besides hyper-parameter tuning, experiments were also 
conducted to see the effects of adding height difference features 
and removing outliers. Experiments indicate that adding the 
height difference feature improves the accuracy by 1.31% while 
cleaning low point outliers before the point-to-image conversion 
improves the accuracy by 2.62%. 
 
4.2 Accuracy assessment and comparison to other methods 

The optimal architecture from the hyper-parameter tuning was 
selected to test the five testing samples. The architecture with 
five convolutional layers without max-pooling layer was 
chosen. The accuracy value was examined from the total error 
(percentage of misclassified points), type I error (rejection of 
ground points) and type II error (acceptance of non-ground 
points as ground points). Deep CNN-based ground 
classification (Hu and Yuan, 2016) and LAStools software (that 
uses progressive TIN densification) were chosen for 
comparison.  
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For faster point-to-image conversion, a modification is carried 
out on the Deep CNN approach. Every point is converted into 
32 x 32 pixels, instead of 128 x 128 pixels as originally 
proposed by Hu and Yuan (2016). However, the window size is 
still the same 96 x 96 m. As a consequence of having a smaller 
image, the output feature maps are smaller for each layer. But 
the number of layers and filter size were still the same. Table 4 
shows the difference between the Deep CNN architecture used 
here and the original version. The networks were trained using 
the same training set as used by the proposed method to have a 
fair comparison. 
 

Layer Original Modified 
W H Depth W H Depth 

Input 128 128 3 32 32 3 
CONV, BN, RELU, Pool 64 64 64 16 16 64 
CONV, BN, RELU, Pool 32 32 128 8 8 128 
CONV, BN, RELU 16 16 256 4 4 256 
CONV, BN, RELU 16 16 256 4 4 256 
CONV, BN, RELU 16 16 256 4 4 256 
CONV, BN, RELU, Pool 16 16 128 4 4 128 
FC, BN, RELU 1 1 4096 1 1 1028 
FC, BN, RELU 1 1 4096 1 1 1028 
FC 1 1 2 1 1 2 

 
Table 4. A small modification of Deep CNNs architecture in 

terms of width, height and depth of the layers. 
 
The results from ISPRS dataset as seen in Table 5 show that the 
proposed method using FCN has a lower total error and type I 
error, but it has higher type II error. The results are consistent in 
the five testing samples; no matter whether it consists of flat or 
sloped terrain.  
 

Sample Total Error 
FCN CNN LAStools 

Sample 11 14.54 19.47 17.67 
Sample 12 3.97 7.99 6.97 
Sample 21 1.55 2.23 6.66 
Sample 53 4.89 5.67 14.37 
Sample 61 1.16 4.20 17.24 
Average 5.22 7.91 12.58 

 
Sample Type I Error 

FCN CNN LAStools 
Sample 11 12.86 27.10 26.94 
Sample 12 3.03 13.92 12.87 
Sample 21 0.20 1.63 7.98 
Sample 53 3.88 4.44 14.84 
Sample 61 0.55 3.95 17.85 
Average 4.10 10.21 16.10 

 
Sample Type II Error 

FCN CNN LAStools 
Sample 11 16.80 9.20 5.18 
Sample 12 4.96 1.75 0.77 
Sample 21 6.43 4.39 1.87 
Sample 53 29.10 34.79 3.24 
Sample 61 18.04 11.06 0.40 
Average 15.07 12.24 2.29 

 
Table 5. A comparison between the accuracies obtained by the 
proposed method, the previous CNNs approach, and LAStools. 

Compared to previous deep learning algorithm using CNN 
proposed by Hu and Yuan (2016), FCN approach gives a lower 

total error. 
 

It should be noted that Hu and Yuan (2016) reported better 
results on the ISPRS datasets (0.67% type I error, 2,26% type II 
error and 1.22% total error on all samples) based on a large 

training dataset of 17 million points in mountainous terrain. 
What can be deducted is that the use of more representative 
training data improves the test results, so it is worth to train our 
FCN with more training data in future work. Qualitative 
evaluation was also conducted by visual inspection. Figure 8 
shows labeled point clouds from the proposed method for five 
testing samples. Green points mean correctly labeled ground 
points. Blue points correspond to correctly labeled non-ground 
points. Yellow points (type I error) are misclassified as non-
ground, where the true label is ground. Red points (type II error) 
are misclassified as ground but should be non-ground.   
 

 a. Sample 11 
 

b. Sample 12 
 

c. Sample 21 
   

  
d. Sample 53 e. Sample 61 

 
Figure 8. Labeled point clouds on five ISPRS testing samples 
(Green: correctly labeled of ground, Blue: correctly labeled of 
non-ground, Yellow: ground misclassified as non-ground, and 

Red: non-ground misclassified as ground). 
 
Sample 11 is the most difficult area to handle compared to other 
samples. It has steep terrain combined with low vegetation and 
buildings. It can be seen that the proposed method using FCN 
can correctly remove buildings and vegetation in the upper and 
middle area without losing ground points. However, some 
buildings cannot be correctly removed in the bottom area. 
 
Sample 12 is flat terrain with dense buildings. In general, FCN 
can perform well in this type of area. Sample 21 has a bridge 
and one large building. The proposed method also works well in 
this area especially as it removed the bridge and the large 
building. 
 
Sample 53 has height discontinuity in the terrain while sample 
61 has an embankment object. Ground points in both samples 
could be easily misclassified as non-ground points due to their 
shape. In sample 53, almost all break-line terrains were captured 
correctly by the proposed method. This kind of terrain is usually 
difficult to capture especially for filters that assume higher 
points in the local area are a non-ground object. The same result 
can be seen in sample 61. Most of the ground points were 
correctly classified. However, the FCN fails to classify a small 
number of non-ground points in both sample 53 and 61. Since 
both samples only have a few non-ground points (1,388 points 
for sample 4 and 1,247 for sample 5) compared to ground points 
(32,989 points for sample 53 and 34,563 points for sample 61), 
the type II error is relatively large. 
 
Samples 11 and 53 have sloped terrain. Total errors in both 
samples are lower than CNNs-based approach. It proves the 
proposed method solves the problem of CNNs-based approach 
on sloped terrain as mentioned in the beginning. 
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Tested on AHN dataset, the proposed method has 4.02% of total 
error, 2.15% of type I error and 6.14% of type II error. Figure 9 
shows the labeled points from AHN testing samples. 
 

 
 

Figure 9. Labeled point clouds on AHN testing sample.  
(Green: correctly labeled ground, Blue: correctly labeled non-
ground, Yellow: ground misclassified as non-ground, and Red: 

non-ground misclassified as ground) 
 
From Figure 9, it can be seen that most ground points were 
classified correctly. Buildings and vegetation were also 
removed correctly. However, there are noticeable type II errors 
(red points) in the result. In most cases, those type II errors 
come from points on the water. It seems that no automatic 
classification can handle the situation perfectly. Manual editing 
is needed. If misclassification of water is not considered as an 
error since it does not affect the geometry for DTM extraction, 
then type II error reduces to 5.85%. Another noticeable type II 
error is on a building on the right side of the area. That is a large 
building with 65 x 35 m in size. It looks like the receptive field 
size of FCN still not large enough to handle this building.  
 

 
 

Figure 10. Error on point clouds inside building (red points) 
 
Another error source is points inside buildings as seen in Figure 
10. Due to the point cloud density, many laser pulses penetrated 
inside building through the small gaps on the roof, window, or 
wall. It can be seen many points inside building on the ground 
floor. Those points were misclassified as ground. This error is 
due to the similarity between the elevation of those points and 
the surrounding terrain. If this is considered to be a problem, 
manual editing using building footprints is needed. 
 
Overall, the proposed method works well for minimizing total 
error and type I error, but it has higher type II error than the 
other methods. The conversion is an important step, but on the 
other hand, the conversion leads to some errors. It could happen 
since data conversion always loses some information. For 
instance, if there is more than one point within a pixel, the 

conversion only takes the lowest point while ideally the 
conversion should manage all points.  
 
4.3 Computational cost 

Computational cost is the main motivation behind proposing 
this method. Table 6 shows the computational time compared to 
the previous Deep Learning approach and LAStools software in 
the ISPRS dataset. The comparison was performed on Intel 
Core i7-6700HQ 2.6GHz, 16 GB RAM, and Nvidia Quadro 
M1000M 2GB.  
 

Method 
Point to image  

conversion (15 samples) 
Training 

(10 samples) 
Testing 

(5 samples) 

FCNs ± 36 minutes ± 12 hours 7.8 sec 
CNNs ± 47 hours ± 2.5 hours 126 sec 

LAStools - - 3.85 sec 
 

Table 6. Time Comparison 
 
The proposed method was significantly faster when converting 
the point cloud to image as the conversion does not convert 
each point into a separate image as done in previous work. 
Testing was also faster because fewer numbers of images were 
involved. Training was slower, but once the networks have been 
trained, it can be used to classify another dataset without the 
need to train the network anymore. 
 

5. CONCLUSIONS AND FUTURE WORK 

The motivation of this work is to improve the performance of 
ground classification using deep learning in terms of 
computational cost. Previously, deep learning was used by 
classifying feature images which were created from every point. 
This approach is slow, especially when converting points to 
feature images. The proposed method is more efficient because 
all points were converted into one image; it avoids redundant 
calculation as in the previous approach. As a result, conversion 
is 78 times faster while classification is 16 times faster. 
Furthermore, the proposed method gives a better accuracy; the 
total error is 2.69% lower than the previous deep learning 
approach based on the same limited training data set. The use of 
more representative training data may improve the test results, 
so it is worth to train our FCN with more training data in future 
work. The proposed method performs better because it has more 
features rather than one height difference feature as used in the 
previous method.  
 
In the future, the point-to-image conversion could be more 
thoroughly investigated since the conversion is a critical step in 
the proposed workflow. Different parameter settings such as 
pixel size might affect the results. A better approach is also 
needed to handle cases of more than one point within a pixel. 
 
Finally, all deep learning schemas here are based on CNN 
architectures. The drawback is that it needs to convert point 
clouds into an image before CNNs can consume the data. 
Recently, an architecture that allow the network to process the 
point cloud directly has been proposed (Qi et al., 2017).  It can 
be implemented for ground classification if point-to-image 
conversion is to be avoided.   
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