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ABSTRACT: 

 

In this paper, we extend a recently proposed visual Simultaneous Localization and Mapping (SLAM) techniques, known as Layout 

SLAM, to make it robust against error accumulations, abrupt changes of camera orientation and miss-association of newly visited 

parts of the scene to the previously visited landmarks. To do so, we present a novel technique of loop closing based on layout model 

matching; i.e., both model information (topology and geometry of reconstructed models) and image information (photometric 

features) are used to address a loop-closure detection. The advantages of using the layout-related information in the proposed loop-

closing technique are twofold. First, it imposes a metric constraint on the global map consistency and, thus, adjusts the mapping scale 

drifts. Second, it can reduce matching ambiguity in the context of indoor corridors, where the scene is homogenously textured and 

extracting sufficient amount of distinguishable point features is a challenging task. To test the impact of the proposed technique on 

the performance of Layout SLAM, we have performed the experiments on wide-angle videos captured by a handheld camera. This 

dataset was collected from the indoor corridors of a building at York University. The obtained results demonstrate that the proposed 

method successfully detects the instances of loops while producing very limited trajectory errors. 

 

 

1. INTRODUCTION 

Simultaneous localization and mapping (SLAM) is the 

ensemble of techniques for building the globally consistent map 

of the environment and localizing the moving platform within 

that environment. Two other approaches namely visual 

odometry and optical/scene flow, have similar objectives to 

SLAM. The main difference between SLAM and visual 

odometry is that the reconstructed map of the environment is 

used and updated over an extended period with the aim of loop 

closing. Also, in SLAM, the ego-motion of the platform is 

continuously estimated as opposed to the scene flow technique 

which is only concerned with motions at any pixel.  

The sensors used to perform SLAM are multiple. The most 

popular ones include: i) 2D/3D laser scanners (range and 

bearing sensors); ii) perspective cameras in form of monocular, 

stereo, omnidirectional vision (bearing-only sensor); iii) sonar 

and radio frequency beacons (range-only); and iv) depth 

(RGBD) cameras (range and bearing). The focus of this paper is 

on visual SLAM (VSLAM) implemented using monocular 

vision. Compared to range sensors, monocular cameras have the 

benefit of gathering denser visual information from the 

environment using cheaper and lighter sensors. Also, real-time 

detection and recognition of objects are less challenging using 

images compared to sparse point clouds. As such, visual SLAM 

is extensively applied in indoor mapping, augmented reality and 

robotics applications. However, the main drawback of a 

monocular camera is its inability to perceive range directly; 

determining the 3D location of observed points requires at least 

two views as well as the knowledge of the relative motion of the 

camera between the views. Inability to measure range also 

results in scale ambiguity; that is, the built map will be defined 

up to an arbitrary scale. The true scale can only be recovered 

using auxiliary sensors or external measurements from the scene 

(Engel et al., 2014). Another critical issue is the sensitivity of 

VSLAM to irregular camera motions. For instance, if a camera 

is rotated substantially, tracking assumptions used in 

conventional VSLAM will not hold true anymore. In our recent 

work (Baligh et al., 2017), we introduced a new technique based 

on orthogonal vanishing points to provide monocular VSLAM 

with the ability to handle rapid motions of the camera. In the 

case the camera rotates largely between two successive frames, 

a new part of the scene might be captured that has no overlap 

with the immediately previous frames. This necessitates the 

generation of a new part of the map and linking it to the 

previous parts. The “linking” element is essential to ensure the 

global map consistency and allows associating new 

measurements with old “landmarks”; it is realized through loop 

closing. Another objective of loop closing is reducing 

uncertainty, suppressing locally accumulated errors in a global 

way, and improving localization and mapping accuracy.  

In general, loop-closure detection techniques are based on the 

principles of place recognition and can be divided into three 

different categories (Williams et al., 2009): i) image to image; 

ii) image to map; and iii) map to map. The following paragraphs 

shortly review some of the most common techniques of visual 

place recognition. Readers are referred to Lowry et al. (2016) 

for a comprehensive survey of visual place recognition 

techniques and their applications in SLAM loop closing. 

Image to image (appearance based) techniques are mainly based 

on visual bag-of-features models (Ho et al., 2006; Cummins et 
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al, 2008). A visual vocabulary is first built from previous key-

frames (reference images). Constructing the vocabulary consists 

of three main procedures: extracting features and their 

descriptors from reference images, clustering the descriptors, 

and filling the vocabulary with the centroids of these clusters as 

visual words. Then, the features of the new image (query image) 

are matched against the visual words in the vocabulary and a 

histogram is built from the matching outcomes. The peak of the 

histogram determines the place correspondence. To make these 

techniques more robust to appearance and viewpoint changes, 

advanced techniques such as burstiness weighting (Sattler et al., 

2016), spatial matching (Philbin et al., 2007), and convolutional 

neural networks (Sunderhauf et al., 2015) are proposed. 

Image to map techniques perform 2D to 3D matching to identify 

the correspondences of the query image in the existing map 

(Williams et al. 2008). Loop-closure validation can also be 

performed through RANSAC. As a result, these techniques 

deliver the relative 3D similarity transformation between two 

parts of the map (new part and old landmarks). To retrieve the 

scale, the camera is tracked for a while in both map parts 

(Fischler and Bolles, 1981). Map to map techniques are actually 

extended versions of appearance-based techniques, where the 

relative geometric (spatial) distance between features is 

considered as additional constraints to make the matching 

procedure robust (Clemente et al., 2007). Once the 

corresponding features are identified from two sub-maps, the 

maps can be transformed to one another using a rigid body 

transformation. According to (Clemente et al., 2007), using five 

common features from different sub-maps is sufficient for 

closing a large loop. When a loop closure is successfully 

detected and validated (at the SLAM front-end), it means that 

the camera has captured a part of the scene which was 

previously observed from a different perspective. Once this 

occurs, a pose-graph optimization or bundle adjustment (at the 

SLAM back-end) must be applied to adjust the accumulated 

errors of camera poses and map landmarks (Grisetti et al., 2010; 

Schneider et al., 2013).  

In this paper, we propose a new loop closure detection method, 

which relies on top-down knowledge of corridor layout, i.e., 

spatial decomposition of corridor face topology graph, for 

making a keyframe matching performance robust. This model-

based loop closure detection method allows a global adjustment 

of indoor corridor model parameters generated by our previous 

Layout SLAM method (Baligh et al., 2017).  

 

2. LAYOUT SLAM OVERVIEW 

Layout SLAM (Baligh et al., 2017) is EKF-based SLAM 

pipeline, which aims to continuously generate and update 3D 

indoor maps with Manhattan World constrained models. Layout 

SLAM employed the principles of state-vector configuration as 

well as the filtering procedure (feature prediction and updating) 

from Davison (2003) and Civera et al. (2010). However, we 

made substantial modifications to the initialization, feature 

selection, and feature matching schemes compared to their 

original visual SLAM algorithm. In order to stay away from 

self-repetition, the details of these procedures are not addressed 

in this paper, and readers are referred to our previous 

publication (Baligh et al., 2017). The following paragraphs 

summarize the core concepts of our previous work. Figure 1 

shows the overall workflow of our current Layout SLAM. 

In the front-end of our SLAM algorithm, the scene layout is 

initialized by detecting and reconstructing structural corner 

points (scene layout corners). Then, this layout is progressively 

improved and expanded through Extended Kalman Filtering 

(EKF). The state vector of our system comprises the camera 

state and the feature state. More specifically, the camera state 

vector (xv) includes: the 3D position of the perspective center 

(rw), unit quaternions representing the camera rotation w.r.t. to 

the object space coordinate system (qwc), camera’s linear 

velocity vector (vw) and its angular velocity vector (𝜔w). The 

superscripts w and c represent the world and the camera frames, 

respectively. The feature state vector (y) includes: the 3D 

position of identified key points, which include both visual 

features and layout structural corner points. Normal visual 

features are extracted and tracked by the original method of 

Davison (2003). However, layout structural corner points are 

extracted and matched using additional constraints such as the 

local image orientations and global cues of indoor structures. 

The benefits of using layout-specific features are twofold. First, 

the layout corner points are robustly detectable even in texture-

less environments; cases where most visual feature detection 

algorithms naturally fail. Second, the amount of relative rotation 

between two consecutive frames is calculated directly by 

measuring and matching vanishing directions on the Gaussian 

sphere. In conventional monocular SLAM, the success in 

tracking visual features highly depends on the linearity and 

smoothness of motion prediction. If tracking the features fails, 

then updating the camera pose will fail and vice versa. This 

issue is of great concern when the camera abruptly rotates in 

between two frames. Our orientation prediction algorithm using 

vanishing points, addresses this problem smartly (Baligh et al., 

2017).  

 

Figure 1. The pipeline of Layout SLAM with model-based loop 

closing. 

 

The main issues that challenge the mapping consistency with 

Layout SLAM include: i) the lack of a robust loop closure 

detection technique in order to identify parts of the scene that 

are previously observed by the camera; and ii) the lack of global 

adjustment at the back-end of SLAM to apply the loop closure 

information for re-adjusting the map and the trajectory. The 

former is specifically a very difficult task in texture-less 

corridors since the images do not produce adequately 

distinguished features. Therefore, conventional visual place 

recognition techniques will fail to detect loop closures 

successfully. As such, in this paper, a model-based technique is 

proposed to address this specific challenge. The details of this 

technique are presented in Section 3.  
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3. MODEL-BASED LOOP CLOSING 

The proposed loop closure detection algorithm enables 

adjusting errors associated with indoor models generated by 

Layout SLAM by robustly detecting a global loop closure. The 

proposed loop closure method comprises three steps: 1) 

selecting a keyframe which contains sub-corridors, 2) 

generating a corridor topological graph, spatially decomposing a 

keyframe with wall faces, and 3) matching paired keyframes for 

detecting a global loop closure.  

 

3.1 Side Corridor Model Generation 

One of key elements of Layout SLAM is to generate multiple 

cuboid models representing not only a main corridor, but also 

side corridors, which intersect the main corridor if the presence 

of side corridors is recognized in a given image frame. The 

presence of the side corridors is identified in the image space by 

comparing the geometric features of the estimated indoor 

corridor layout to the ones detected in the current image. A 

significant amount of differences between two geometric spaces 

will trigger a side corridor model generation process. Measuring 

a degree of visibility of side corridors from a given image frame 

is one of factors to govern an objective function for selecting a 

keyframe. In this section, a side corridor model generation is 

discussed, while the contribution of this process to the keyframe 

selection will be explained in the next section.  

The side corridor model generation process was adopted by our 

previous work (Baligh and Sohn, 2016). With given image 

frame, two appearance cues are extracted, where visual cues 

indicate orientation context of planar wall surface driven in a 

supervised learning manner, while geometric cues measure the 

same orientation context, but using lines extracted from the 

image. If a combinatory integration of these two cues from an 

image frames indicates their excessive presences beyond 

coverage of a single corridor, a model generation process to 

represent a secondary corridor is initiated; this process 

continues to generate multiple side corridors until a certain 

termination condition is met. 

 

 
 

Figure 2. The orientation map of the projected scene layout 

compared to the current image orientation map to identify side 

corridors. 

 

Figure 2 shows the workflow of side corridor generation for 

each image. First, the extracted edges in the current frame will 

be grouped into straight line segments considering their 

parallelism, orthogonality, and convergence to common 

vanishing points. Second, the orientation map will be generated 

from the grouped straight line segments. Third, another 

orientation map will be generated using the straight line 

segments of the current indoor corridor layout. Forth, the two 

generated orientation maps will be overlaid to identify the 

regions which have orientation conflict. The orientation conflict 

is counted in pixels and the number of pixels must be more than 

a predefined threshold chosen intuitively. Fifth, if these regions 

of conflict reside on the right or left side walls of the estimated 

major indoor corridor layout, then cubic side corridor layouts 

will be generated by intersecting structural planes which are 

created using vanishing points and line segments of different 

directions. It should be noted that the best fitted side corridor 

layout will be generated by volume maximization and also 

considering the orthogonality of the created side corridor 

layouts to the estimated major corridor layout. The same 

rational has been applied in (Baligh and Sohn, 2015). 

The success of the side corridor generation method is highly 

dependent on the detection of orthogonal vanishing points 

which contribute to creation of the side corridor layouts. 

Therefore, considering the Manhattan rule assumption in the 

image space will play a great role in the success of this method. 

The applied method intends to simplify the scene layout by 

considering it to be formed of integrated cubical structures. 

Hence, this method only intends to form key structural planes in 

the image space and identify a cubical structure in right or left 

sides of the major corridor layout by intersecting orthogonal 

lines originated from vanishing points.  

3.2 Finding Keyframes 

As mentioned above, the presence of a side corridor can be 

examined in the image space by comparing the geometrical 

features of both current video frame and the back projected 

layout from the previous video frame. As the camera moves 

forward in an indoor corridor scene, side corridors may appear 

gradually in many of the captured video frames. Side corridors 

are providing additional topological information to the current 

layout. Obviously, using all of the captured video frames for 

pinpointing a side corridor is not optimal. Also, identifying the 

optimal video frames for benchmarking the Layout SLAM 

trajectory would be very important for loop closing. Here, this 

optimal video frame is called the keyframe. In order to handle 

loop closing instances, we propose choosing keyframes which 

reduce the possibility of matching ambiguity and increase the 

efficiency of the structural point features detection. In other 

words, an optimal subset of reference video frames must be 

selected as keyframes which together they can approximate the 

whole corridor space. 

Obviously, the selected video frames must contain as many 

salient structural point features as possible while having normal 

point features uniformly distributed in the scene as well. Here, 

the problem is defined as following: given 𝑛 number of video 

frames which side corridors are appeared in them 𝐼 =
{𝐼𝑖|𝑖 = 1, 2, 3, … 𝑛} , the optimal keyframe set 

𝐹 = {𝐼𝑘|𝑘 = 1, 2, … 𝑚}  must be computed that minimizes the 

cost function defined as 𝐶(𝐹, 𝐼) . Here, the proposed cost 

function includes two terms: 𝐶𝑐(𝐹) which is modeling the 

completeness of the indoor corridor layout and 𝐶𝑣(𝐹) which is 

modeling the visibility of the same layout. Hence, the following 

equation can be defined: 
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𝐶(𝐹, 𝐼)  =  𝛼 ×  𝐶𝑣(𝐹) +  𝐶𝑐(𝐹)                                           (1) 

In the above equation, α is the weight value. Here, the visibility 

term is introduced to identify the optimum view of the side 

corridors in the video frames under question. The visibility term 

can be simply defined by comparing the number of pixels 

covering a side corridor 𝑃𝑆  in the image space to the total 

number of pixels 𝑃𝑇 ; 𝐶𝑣(𝐹) = 1 − 
𝑃𝑆

𝑃𝑇
. When the number of 

pixels covering a side corridor goes higher, the visibility of this 

area would be more as well. 

The completeness term is introduced to guarantee that the 

chosen keyframes contain the maximum number of structural 

point features (indoor layout corner points) and normal point 

features (Harris corner points) as possible. In order to improve 

the performance of the proposed Layout SLAM system, these 

features must appear in different video frames which lead to 

accurately localizing these features in 3D space. Here, the 

features which are matched during the data capturing procedure 

are grouped. The incoming feature groups can be denoted as 𝑌, 

which represents a series of matched features in various frames; 

𝑌 =  {𝑦𝑖|𝑖 ∈ 𝑔(𝑌)} where 𝑔(𝑌) represents the reference video 

frame set with respect to 𝑌.  

If |𝑔(𝑌)| = 0, this means an initialized feature in one frame 

does not have any corresponding match in the other frames. 

Hence, a threshold is defined to guarantee that the selected 

features were appeared in at least a minimum number of video 

frames: |𝑔(𝑌)| ≥ 35. Considering this fact, the saliency of a 

feature 𝑆(𝑦) can be defined as the match count of this feature in 

the other video frames |𝑔(𝑌)| divided by the number of times 

the feature is predicted by EKF: |𝑝(𝑦)|; 𝑆(𝑦) =
|𝑔(𝑌)|

|𝑝(𝑦)|
 . Finding 

insufficient matches for a feature may result to unreliable 

positioning of this feature in the environment. Hence, the other 

factor which can be considered here is the distribution of 

features in the image space which affect the quality of feature 

real time tracking in the proposed Layout SLAM.  

Density of a feature 𝑑(𝑦𝑗) can be defined by considering each 

pixel 𝑥 in the image 𝑗. The density of a feature can be related to 

its position in the image space, examined by the number of 

pixels which are residing in a predefined window while the 

feature is at the center. If the feature is fully surrounded by 

image pixels in the predefined window, then the value of the 

respective density would be one, and zero otherwise. The size of 

this window can be adopted by considering the size of video 

frames (here window size is 61×61). Hence, we can define the 

density of a feature set as: 𝑑(𝑌) =
1

𝑛 × |𝑔(𝑌)|
 ∑ 𝑑(𝑦𝑗) 

𝑛

𝑗∈𝑔(𝑌)
, 

where 𝑑(𝑦𝑗) expresses the density of a feature 𝑦 in image 𝑗 and 

𝑛  is the number of features in a set. Eventually, the 

completeness term can be defined as: 

𝐶𝑐(𝐹) = 1 − (
∑

𝑆(𝑌) + 𝑑(𝑌)

2+𝛾 𝑌∈𝐹

∑
𝑆(𝑌) + 𝑑(𝑌)

2𝑌∈𝐼

 )                                     (2) 

Here γ controls the sensitivity to feature saliency and density. 

Also F and I denote the keyframe set and the video frame set, 

respectively. The exact solution to the selection of keyframes 

would be an exhaustive search of all possible subsets of 𝐼 in the 

reference video frames considering the above equation. 

However, in the case of Layout SLAM this approach would be 

computationally expensive. It should be noted that a constraint 

can be applied here, which bounds the maximum number of 

keyframes in a set. The maximum number is equal to the 

number of detected side corridors in the whole scene. For the 

selection of keyframe set, the procedure starts with an empty set 

and then the frames will be added progressively. At each step, a 

new keyframe will be added to the set if it produces the less cost 

for the system, and consequently it will be added to the 

keyframe set. The process stops when the incoming cost cannot 

be reduced any longer. Following this scenario, the complexity 

of the computations will be reduced to some extent. Considering 

the incoming results, keyframe based feature matching is 

possible which is essential for Layout SLAM loop closure 

algorithm. 

3.3 Loop Closure Detection 

Loop closure detection is one of the main features of any SLAM 

system which makes it distinctive of the other similar systems 

such as visual odometry. Loop closure detection in visual 

SLAM systems is a big challenge especially in robotics 

applications, since camera is the only sensor in these systems. 

The classical loop closure problem can be defined as 

recognising when the SLAM system has visited a previously 

mapped environment. In such cases, two parts of the map are 

found to belong to the same environment. However, these two 

map parts may have incompatible position and orientation even 

by considering the map uncertainty estimate. Therefore, the 

SLAM system has to apply the appropriate transformation 

which is required to align these two map parts and allegedly 

close the loop. 

In this paper, both model information (topology and geometry 

of reconstructed model in image space) and image information 

(radiometry) are used to address loop closure detection. In order 

to ease the problem of loop closing in the proposed Layout 

SLAM architecture, independent local maps were generated 

after detecting and closing each individual loop. The idea of 

hierarchical map creation by integration of independent local 

maps is proposed by Estrada et al. (2005). Since the back-end 

section of the proposed layout SLAM system is based on EKF, 

dividing the whole map of the environment into several local 

sub-maps provides benefits to both front-end and the back-end 

sections. One of the major benefits is related to EKF update 

processing time which increases when the number of map 

features increases too. The other benefit comes by limiting EKF 

cumulative linearization errors within the local map which 

happens through poor data association and leads to 

overconfident state estimates. The only issue arises here is the 

scale problem which is not observable through monocular 

vision. Hence, various local maps may have inconsistent scales 

which can be handled through a scale invariant matching 

scheme. 

Here the main influential factor is to build accurate sub-maps 

after identifying and closing the loops for all corridors and then 

matching local sub-maps which may contain high or low 

localization uncertainty. To apply the aforementioned method, 

once the camera enters a previously visited corridor and the 

loop closing is accomplished, the current map freezes and the 

next local map will be initialized. The next local map will use 

the last camera location as its initialization position. Here, the 

previous sub-map features which are currently visible in the 

scene should be initialized in the new sub-map through their 

image locations. These features will be common in adjacent 

sub-maps and they can provide information for integrating sub-

maps. Through these common features the scale variations 

between adjacent sub-maps can be handled. It should be noted 
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that for preserving the statistical independence among sub-

maps, no other information will be inserted from the previous 

sub-map to the current sub-map.  

3.4 Keyframe Matching 

In the previous sections, the generation of side corridors and 

selection of keyframes were presented. These two tasks can play 

a great role in the proposed loop closing algorithm. Hence, the 

best solution would be matching a test frame to the set of 

available keyframes for examining the occurrence of a loop 

closure. It should be noted that the test frame itself is a 

keyframe and it would be the last keyframe created on the run. 

In order to examine the possibility of matching an individual 

test frame to any of the previously created keyframes, some 

specific definitive terms must be introduced first. 

 

 

 

Figure 3. Top: The image of a test frame with all of its specified 

corridors; Bottom: The respective corridor topological graph of 

the same test frame. 

 

Considering the indoor corridor environments, a model M can 

be denoted as a set of corridors M = {Ci|i = 1, 2, … n} with n 

number of corridors. Each corridor consists of m numbers of 

faces C = {Fj|j = 1, 2, … m}  representing front, left, right, top 

and bottom sides of a Manhattan type cubical corridor. It should 

be noted that the main corridor (major corridor) is always 

represented by five faces 

Cmain = {Ffront, Fleft, Fright, Ftop, Fbottom}  while sub-corridor 

(side corridor) has three faces Csub
left = {Fleft, Ftop, Fbottom}  or 

Csub
right

= {Fright, Ftop, Fbottom} . Here, left and right are 

determined based on the attached position of the sub-corridor to 

the main corridor. Figure 3 shows a test frame with its specified 

corridors in the image space, and its respective corridor 

topological graph for the model. It should be noted that the sub-

corridor numbering always start at the furthest position with 

respect to the camera. Therefore, the same sub-corridors would 

have similar numbering for their graph representation in the 

other keyframes. 

In order to examine the possibility of having a match between a 

test frame and the selected keyframe, the first step is to 

geometrically transform the test frame into the keyframe in the 

image space. Here, the 6 parameters affine transformation is 

applied as following: 

X = 𝑎0 +  𝑎1𝑥 + 𝑎2𝑦                                                            (3) 

Y = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦                                                             (4) 

In the above equations, X and Y represent the image coordinates 

of the indoor corridor layout specified vertices on the key frame 

while x and y represent the same layout vertices coordinates on 

the test frame. Also, a0 , a1 ,  a2 ,  b0 , b1  and b2  are the affine 

transformation parameters. These parameters are calculated 

using the least square method.  

In order to identify the corresponding vertices between the test 

frame and the keyframe, we first compare two corridor 

topological graphs derived from those models. If faces of one 

corridor topological graph match ones of the other graph, the 

vertices belonging to the faces are considered as corresponding 

vertices. For example, Csub1
left  of the test frame is always 

corresponds to Csub1
left  of the keyframe and not to Csub2,..,n

left . 

Therefore, the corresponding vertices are used to estimate the 

affine transformation parameters using the least square method.  

After transforming the test frame indoor corridor layout into the 

selected keyframe through the affine transformation, a newly 

designed scoring function is used to evaluate the optimal match. 

Here, the proposed scoring function includes three terms which 

are measuring the resemblance of the two indoor corridor 

layouts by considering their topology, geometry, and 

radiometric similarities. The proposed scoring function is as 

following:   

𝑆𝑐𝑜𝑟𝑒 = (𝑤𝑇 × 𝑆𝑇) + (𝑤𝐺 × 𝑆𝐺) + (𝑤𝑅 × 𝑆𝑅)                     (5) 

where ST, SG, and SR represent topological similarity, geometry 

similarity and radiometric similarity, respectively.  wT, wG, and 

wR are weight parameters for ST, SG and SR respectively. These 

weight parameters are considered as equal in the experiments 

(𝑤𝑇 = 𝑤𝐺 = 𝑤𝑅 = 1
3⁄ ) . Based on the generated topological 

graphs, the topological similarity 𝑆𝑇(𝑡, 𝑘)  is calculated by 

comparing the number of common faces 𝐹𝑡 ∩ 𝐹𝑘 between a test 

frame and a keyframe as follows: 

𝑆𝑇(𝑡, 𝑘) =  
𝑛𝑢𝑚(𝐹𝑡∩𝐹𝑘)

𝑛𝑢𝑚(𝐹𝑡∪𝐹𝑘)
                                                     (6) 

The geometric similarity 𝑆𝐺(𝑡, 𝑘)  is calculated by measuring 

distances between the corresponding vertices belonging to 

common faces. If the measured distance 𝑑𝑡𝑘  between two 

corresponding vertices 𝑉𝑡 ∩ 𝑉𝑘  is less than a predefined 

threshold (𝑇1=100 pixel in this paper), indicator function 𝛿𝐺  for 

the geometric similarity is one, and zero otherwise.     
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𝑆𝐺(𝑡, 𝑘) =
∑ 𝛿𝑉𝑡∩𝑉𝑘 𝐺

∑ 1𝑉𝑡∩𝑉𝑘

  , 𝛿𝐺 =  {
1     𝑖𝑓   𝑑𝑡𝑘 ≤ 𝑇1

0     𝑖𝑓   𝑑𝑡𝑘 > 𝑇1
   (7) 

The radiometric similarity 𝑆𝑅(𝑡, 𝑘) is calculated by comparing 

average colour values of corresponding faces 𝐹𝑡 ∩ 𝐹𝑘. For each 

individual layout face, the average values of pixels in three 

different bands (R, G, B) are calculated and assigned to the 

selected layout face. If the sum of colour differences in the three 

bands 𝑟𝑡𝑘 between 𝐹𝑡 and 𝐹𝑘 is less than a predefined threshold 

(𝑇2=50 in this paper), indicator function 𝛿𝑅 would be one and 

zero otherwise as follows:   

𝑆𝑅(𝑡, 𝑘) =
∑ 𝛿𝐹𝑡∩𝐹𝑘 𝑅

∑ 1𝐹𝑡∩𝐹𝑘

  ,  𝛿𝑅 = {
1      𝑖𝑓      𝑟𝑡𝑘 ≤ 𝑇2

0      𝑖𝑓      𝑟𝑡𝑘 > 𝑇2
   (8) 

After scores for all keyframes are calculated, the optimal 

keyframe for the test frame is determined by selecting a 

keyframe which maximize the scoring function as following: 

𝑀∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥∀𝑀𝑘
𝑆𝑐𝑜𝑟𝑒(𝑀𝑘)                                   (9) 

If the maximum score is less than a user-defined threshold 

(𝑇3=0.9 in this paper), the test frame is considered not to be 

matched with keyframes. Note that in this paper, thresholds 

values, weights and control parameters are chosen empirically, 

and how the algorithm will work in other conditions will be 

examined in future works.  

3.5 Updating Layout after Loop Closing Detection 

In the previous section, the matching of a test frame to a 

keyframe is explained which provides the base for associating 

the current measurements in the system with the previously 

built components of the map at an earlier time. Once the 

appropriate match is found, the loop closure would be possible. 

Here, we followed Newman and Ho (2005) to handle this issue. 

Since the back-end section of the proposed Layout SLAM 

system is built on EKF framework, the loop closing issue could 

be handled through robust data association in the system. If the 

data association can be performed accurately, then the indoor 

layout update would be possible through EKF update procedure. 

In other words, the implementation of the Layout SLAM 

algorithm provides the opportunity of loop closing in an easy 

way. Once the system finds the corresponding layout structural 

point features in both the test frame and the selected keyframe, 

the current features 𝐹𝑐 in the state vector can be related to the 

previously estimated features 𝐹𝑝  (perhaps at the beginning of 

the run). Since the whole structural point features were stored in 

the state vector during the run, all of their states will be adjusted 

with respect to their uncertainty. It should be noted that the 

orthogonality of the scene layout structural planes may not 

preserve after implementing this loop closing scenario. Hence, 

the orthogonality constraint is applied for the estimated indoor 

corridor layout. 

4. EXPERIMENTS 

To evaluate the performance of Layout SLAM algorithm, we 

prepared an indoor corridor test dataset. We chose our own 

dataset over the other available benchmarks due to the chance of 

evaluating generated indoor layouts in future experiments. Our 

dataset was collected with GoPro HERO5 camera over Ross 

Building at York University in Toronto, Canada.  

 

Figure 4. Camera trajectory schematic view accompanied with 

selected keyframes and a test frame in red. 

 

Since the captured images from the camera have significant 

distortion, MATLAB calibration toolbox is used to perform 

camera calibration and undistort the incoming images. The Ross 

Building video dataset was captured at the rate of 24 frames per 

second while applying a stabilization technique. In this study, 

the experiments were performed on video sequences of the 

highest resolution (3840×2160 pixels). This data set was used 

for examining the key frame matching and loop closing 

techniques. 

   

 

Figure 5. Test frame layout (bottom image) and keyframe layout 

(top images) matching. Here, layouts are projected on original 

(distorted) images. 
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A 356s video covering 7 integrated corridors at Ross Building 

was selected from the prepared dataset. From the selected video, 

the first 3627 video frames exploring the first loop are 

considered for testing. The first loop covers 6 integrated 

corridors. The hand held camera started recording while 

residing at the first corridor and after crawling 5 other corridors, 

it visited the first corridor again. Figure 4 shows the schematic 

view of the camera trajectory along with the selected keyframes. 

In this paper, experiments were performed in offline mode and 

real time processing will be experimented in the future. 

 

Test Frame #3375 𝑆𝐺 𝑆𝑇 𝑆𝑅 𝑆𝑐𝑜𝑟𝑒 

 

 

Key 

Frame 

#0221 0.941 1.000 1.000 0.980 

#0690 0.143 0.600 0.000 0.248 

#0914 0.000 0.500 1.000 0.500 

#1822 0.000 0.600 0.750 0.450 

#2621 0.000 0.833 0.000 0.278 

#3217 0.333 0.833 0.000 0.389 

Table 1. Quantitative assessment of matching a test frame 

(#3375) to the selected keyframes. 

 

One of the major contributions of this paper is the introduction 

of a new method for matching test frames to a collection of 

keyframes for loop closure. The proposed keyframe matching 

method was applied by transforming the test frame indoor 

layout into the selected keyframe and then by calculating 

matching score based on the newly designed score function.  

Figure 5 shows the transformed test frame layout (blue lines) 

overlaid with the selected keyframe layouts (red lines) while 

test 1 shows the corresponding matching scores. As shown in 

Table 1, key frame #0221 is well matched with a test frame 

#3375 showing 0.98 of matching score. The scoring function 

considers topology, geometry, and radiometric similarities for 

evaluating the possible frame matches. 

 

 

Figure 6. Trajectory results produced by Layout SLAM (unit 

meter) with no loop closing (red), and Mono SLAM (blue). 

Table 1 presents the scores of matching a test frame (#3375) to 

the selected key frames on the first loop. Here the threshold 𝑇3 

(𝑆𝑐𝑜𝑟𝑒 ≥  𝑇3 = 0.9) is applied for accepting a match between 

two frames. 

As mentioned before, the proposed Layout SLAM method is 

tested on the prepared dataset and compared to the original 

Mono SLAM method of Civera et al., (2010) for trajectory 

evaluation. Here, the incoming trajectory results of both Layout 

SLAM and Mono SLAM methods are plotted together with the 

same starting point to make the qualitative assessment possible. 

The incoming trajectory results are shown in Figure 6. As it can 

be seen in this figure, the proposed Layout SLAM method 

produces small orientation errors. However, the position and 

scaling errors along the first loop are considerable which 

necessitates the implementation of a loop-closing algorithm. 

 

Figure 7. Generated layout top view for first loop (unit meter). 

Top: estimated layout with no loop closing. Bottom: adjusted 

layout through loop closing. 

 

In addition to the above camera trajectory comparison, the 

generated layouts before and after implementing the proposed 

loop closing algorithm are presented here. Figure 7, shows the 

successful implementation of this algorithm for closing the first 

loop. It should be noted that after the EKF update phase is 

completed for updating all structural layout point features in the 

state vector, the estimated structural planes of the generated 

layout is no longer orthogonal. Therefore, the layout 
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orthogonality constraint is applied to the generated floor plan in 

2D space to adjust the incoming results. Once the layout floor 

plan is adjusted in 2D space, the 3D layout can be retrieved by 

considering the average heights of the adjusted structural points 

on the ceilings. 

 

5. CONCLUSIONS 

In this paper, we presented a modified version of our recently 

proposed Layout SLAM algorithm. The main focus of Layout 

SLAM updated architect is on loop closure. Loop closure 

detection is necessary in visual SLAM framework due to the 

high possibility of errors accumulation during the run. Correct 

data association of the previously visited landmarks can play a 

great role in implementing a loop closure technique. Here, a 

new loop closure technique is presented which makes use of 

topology, geometry and image information of reconstructed 

indoor corridor layouts for accurate data association. The 

unique way of keyframe selection and matching distinct the 

newly designed architect from the state of the art techniques. 

The proposed technique is examined on the newly prepared 

dataset. The incoming results show the ability of this technique 

to successfully identify video frames taken from the same 

environment at different times and detect loop closure instances. 

Using the proposed loop closure technique enables the Layout 

SLAM algorithm to produce very limited mapping errors. 
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