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ABSTRACT:

We propose to use a discriminative classifier for outlier detection in large-scale point clouds of cities generated via multi-view stereo
(MVS) from densely acquired images. What makes outlier removal hard are varying distributions of inliers and outliers across a scene.
Heuristic outlier removal using a specific feature that encodes point distribution often delivers unsatisfying results. Although most
outliers can be identified correctly (high recall), many inliers are erroneously removed (low precision), too. This aggravates object
3D reconstruction due to missing data. We thus propose to discriminatively learn class-specific distributions directly from the data to
achieve high precision. We apply a standard Random Forest classifier that infers a binary label (inlier or outlier) for each 3D point in
the raw, unfiltered point cloud and test two approaches for training. In the first, non-semantic approach, features are extracted without
considering the semantic interpretation of the 3D points. The trained model approximates the average distribution of inliers and outliers
across all semantic classes. Second, semantic interpretation is incorporated into the learning process, i.e. we train separate inlier-
outlier classifiers per semantic class (building facades, roof, ground, vegetation, fields, and water). Performance of learned filtering
is evaluated on several large SfM point clouds of cities. We find that results confirm our underlying assumption that discriminatively
learning inlier-outlier distributions does improve precision over global heuristics by up to≈ 12 percent points. Moreover, semantically
informed filtering that models class-specific distributions further improves precision by up to≈ 10 percent points, being able to remove
very isolated building, roof, and water points while preserving inliers on building facades and vegetation.

1. INTRODUCTION

Outlier detection refers to the process of identifying patterns in
data that do not comply with the general or expected behavior of
the data. Outliers can be very different in nature, and the exact
definition depends on the target application and the underlying
assumptions regarding the data structure and the data generat-
ing process. Since outlier definition depends on both, given data
and task, we propose to learn discriminative classifiers for out-
lier removal in point clouds and, further, to model class-specific
distributions. Our goal is to remove most outliers while retain-
ing the large majority of inliers (high precision). For 3D object
reconstruction, missing data (incorrectly removed inliers) is usu-
ally more harmful than some few remaining outliers close to the
true surface. Parts without sufficient data cannot be reconstructed
at all, whereas outliers close to the true object surface are han-
dled with smoothing priors that are built into the 3D reconstruc-
tion approach (Häne et al., 2013, Bláha et al., 2016). In this pa-
per, we thus aim for high precision and assume that few, remain-
ing outliers are handled by regularizers of the 3D reconstruction
pipeline.

The automatic detection and elimination of noise and outliers
in point cloud data sets is a long-standing, active field of re-
search (Cheng and Lau, 2017). Most of these point cloud filter-
ing techniques are dedicated to applications in industrial metrol-
ogy and hence, are tailored to point clouds with a relatively small
proportion of outliers and homogeneous point densities. In con-
trast, point clouds generated by image-based, multi-view stereo
(MVS) 3D reconstruction techniques feature large portions of
outliers and very inhomogeneous point densities across a scene.
A common strategy is trying to avoid outliers already at the depth
map estimation stage through enforcing consistency across views
(Goesele et al., 2007, Furukawa and Ponce, 2010, Wolff et al.,

2016). Still, gross outliers in MVS point clouds pose signifi-
cant challenges to surface reconstruction algorithms. Conven-
tional meshing techniques fail in their presence and require sub-
stantial manual post-processing. Volumetric 3D reconstruction
approaches risk losing many details if regularizers or visibility
constraints are enforced strongly.

Here, we propose to view MVS point cloud filtering as a pre-
processing step that is applied after depth map fusion and before
3D reconstruction. The main idea is to filter outliers in large MVS
point clouds by learning class-specific inlier-outlier distributions
with supervised classifiers. Our target application are semanti-
cally annotated 3D city models generated by MVS using aerial
cameras. We build on recent works (Häne et al., 2013, Bláha et
al., 2016, Bláha et al., 2017) that exploit the multi-view imag-
ing setup to simultaneously reconstruct and segment 3D mod-
els into semantically meaningful 3D entities such as building fa-
cades, roofs, streets, and vegetation, where 3D shape and seman-
tic class-labels are mutually supportive.

Although supervised approaches have proven to be effective for
many classification tasks, supervised outlier detection approaches
are difficult to realize in practice. First, it is demanding and often
prohibitively expensive to obtain an accurate and representative
training data set which comprises both normal and outlier data in-
stances. Second, the outlier distribution of the data is sometimes
unknown in advance and, third, it can be dynamic in nature. For
MVS point clouds derived from aerial images, the inlier-outlier
distributions are assumed to be static. Labeling inliers and out-
liers for training can be done efficiently by overlaying the raw
point cloud with an already existing semantic 3D city model and
imposing a fixed threshold on the point-to-mesh distances.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-263-2018 | © Authors 2018. CC BY 4.0 License.

 
263



We test two approaches: (i) inlier-outlier distributions are mod-
elled globally regardless of semantic classes and (ii) class-specific
distributions are learned. Both approaches are validated on large
aerial MVS point clouds and compared to a conventional, un-
supervised, heuristic baseline. We find that supervised machine
learning achieves much higher precision than a heuristic baseline
method. Moreover, class-specific filtering further improves re-
sults by retaining more inliers in low-density areas like vertical
building facades, which will allow more accurate 3D reconstruc-
tion. Additionally, we check the generalization capability of our
learned models. We show that once sufficiently trained on a larger
scene, models can be applied to unseen aerial MVS scenarios and
still achieve reasonably good results.

2. RELATED WORK

A large variety of point cloud filtering approaches exists. Point
cloud denoising approaches are typically used in the context of
3D surface reconstruction and do not detect outliers directly. In-
stead, these methods aim at reducing the noise inherent in point
clouds by adapting the position of raw points. In contrast, unsu-
pervised and supervised point cloud filtering approaches are ded-
icated to detecting and removing outliers among the data without
changing the position of raw points. In the following, we try
to roughly classify related point cloud filtering approaches into
these three categories.

Point cloud denoising has been approached in various ways.
The seminal moving least squares (MLS) method of (Levin, 2004)
reduces noise in point clouds implicitly by projecting the points
onto a locally fitted low-degree bivariate polynomial. Several
variants of the traditional MLS approach have been developed,
mainly to reduce the filtering effect near sharp features and to
handle sparse sampling and outliers. The modifications are based
on an iterative refitting scheme to model locally piecewise smooth
surfaces (Fleishman et al., 2005), adjust the polynomial fitting
procedure (Guennebaud and Gross, 2007), introduce a parameteri-
zation-free projection operator (Lipman et al., 2007) or express
the MLS procedure as a kernel regression process including ro-
bust statistics (Öztireli et al., 2009, Öztireli, 2015). Further point
cloud denoising approaches are inspired by filtering techniques
used in image processing (Deschaud and Goulette, 2010, Digne,
2012) or follow concepts developed in the field of differential ge-
ometry (Ma and Cripps, 2011) and spectral analysis (Öztireli et
al., 2010).

Unsupervised outlier detection constitutes the majority of ap-
proaches and can be further subdivided into (i) statistical-based,
(2) clustering-based, and (3) distance-based approaches. Statisti-
cal-based outlier detection assumes that the data is generated by a
stochastic process. Any data instance that is unlikely to be gener-
ated from the estimated stochastic process according to some test
statistic is then reported as an outlier (Barnett and Lewis, 1974,
Eskin, 2000). The statistical outlier removal tool implemented
in the Point Cloud Library (PCL)1 assumes that the average dis-
tance of a point to its nearest neighbors follows a Gaussian distri-
bution and performs statistical hypothesis testing to identify and
discard points whose average distance to their neighbors is out-
side a certain confidence interval (Rusu and Cousins, 2011). Non-
parametric outlier detection methods infer the underlying proba-
bility distribution of inliers and outliers directly from the data us-
ing clustering (He et al., 2003, Yu et al., 2002, Schall et al., 2005,
Latecki et al., 2007). Further, early works often applied distance-
based methods (Knorr and Ng, 1998) to find global outliers using

1http://www.pointclouds.org

the k-nearest neighborhood of a data instance to compute its out-
lier score. Typically, the outlier score of a data instance is consti-
tuted by the distance to its k-nearest neighbor (Ramaswamy et al.,
2000) or by the average distance to all other data instances within
the k-nearest neighborhood (Angiulli and Pizzuti, 2002). A strat-
egy to identify local outliers is based on the assumption that local
outliers are located in areas of relatively low density compared
to their k-nearest neighbors. In (Breunig et al., 2000), the outlier
score of a data instance is computed as the ratio of the average
local density of the k-nearest neighbors to the local density of
the data instance itself. Several extensions of this idea have been
proposed, mainly to improve the density estimation procedure for
linearly distributed data sets (Jin et al., 2006) and to better handle
regions of different densities that are not clearly separated (Tang
et al., 2002).

Supervised outlier detection refers to approaches where dis-
tributions are learned with labeled ground truth. One strategy is
to only learn the inlier distribution of points and to view any data
instance that deviates significantly from the trained model as an
outlier. For example, one-class support vector machines (Rätsch
et al., 2002, Amer et al., 2013) or one-class kernel Fisher discrim-
inant analysis (Roth, 2004) have been applied with this strategy.
In our paper, we propose to learn both inlier and outlier distribu-
tions with labeled ground truth from the data. Moreover, we learn
class-specific models to better cope with the varying inlier-outlier
distributions as a function of the object class.

3. OUTLIER DETECTION

Reasons for outliers are manifold. Typical sources are human or
instrumental errors, and natural variations or unexpected changes
in the behavior of a system. In practice, data sets are usually
impacted by multiple types of outliers, and it is subject to the
application whether a particular type of outlier is of interest or
not. For 3D city modeling from aerial images, outlier removal is
an essential pre-processing step to generate a cleaner data set for
3D reconstruction. The nature of outliers is one of the key aspects
that needs to be considered when designing an outlier detection
algorithm. According to (Chandola et al., 2009), outliers can be
classified into the following three main categories:

• point outlier: a single data instance that deviates signifi-
cantly from the remaining data set

• collective outlier: a group or sequence of data instances
that deviates significantly from the remaining data set, even
though the individual data instances may not be anomalous

• contextual outliers: a single data instance that is only anoma-
lous in a specific context (e.g., spatial or temporal context)

The primary type of outliers in point cloud data sets derived from
image-based 3D reconstruction techniques are point outliers. They
are induced by image imperfections (e.g., lens distortion or sensor
noise), matching ambiguities, errors in the camera calibration as
well as in the camera pose and depth map estimation procedure.
In contrast, collective and contextual outliers are not present in
point cloud data sets.

Point outliers can be further subdivided into global and local out-
liers. A global outlier is a single data instance that deviates sig-
nificantly from the entire data set. A single data instance is con-
sidered as a local outlier if it differs substantially from other data
instances within its vicinity. This notion of global and local out-
liers is shown in Figure 1. P1 and P2 can be easily detected
as global outliers, as these data instances exhibit a considerable
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Figure 1: Illustration of the different types of point outliers by
means of a two-dimensional synthetic data set. The data set
encompasses three clusters C1, C2, and C3 of normal data in-
stances, two global point outliers P1 and P2, and one local point
outlier P3. Unlike P3, the data instance P4 is normal and belongs
to cluster C1.

distance to the remaining points. From a global perspective, P3

would be classified as a normal data instance due to its proximity
to cluster C2. However, when examined locally, P3 appears to be
a local outlier because its distance to cluster C2 is relatively large
compared to the spacing between the data instances of cluster C2.
In comparison, data instance P4 should be considered as normal,
although its distance to the nearest cluster C1 is roughly the same
as the distance between P3 and C2. Lastly, the points forming
cluster C3 can be classified as either global outliers or as a small
regular cluster. It depends on the application whether such micro
clusters need to be detected as anomalous or not.

Most point outlier detection methods fail to capture both global
and local outliers. Methods tailored to detect local outliers may
be able to identify global outliers as well, provided that global
outliers are sparsely distributed and do not form a micro cluster.
However, methods tailored to detect global outliers can hardly be
applied to detect local outliers (as illustrated in Fig. 1). In gen-
eral, it is more challenging to detect local outliers than global
outliers. First, the definition of locality is a non-trivial task and is
often ill-defined, especially if the data exhibits clusters of vary-
ing densities. Second, statistical properties of a data instance are
strongly affected if its spatial support includes nearby outliers or
normal data instances of different distributions.

4. METHOD

Aerial MVS point clouds generated from nadir and oblique aerial
images inevitably comprise a considerable amount of outliers.
The purpose of point cloud filtering is to reduce outliers while
preserving inliers. We develop a supervised binary classification
scheme to assign each 3D point of a raw, unfiltered point cloud to
one of the following two categories:

• 3D points assigned to the inlier point category are assumed
to be located close to the underlying surface of the captured
scene.

• 3D points assigned to the outlier point category are con-
sidered as either global or local outliers. Global outliers
are caused by systematic deviations or gross errors in the
point cloud generation process (e.g., matching errors or in-
adequate camera calibration), whereas local outliers are in-
duced by random deviations and uncertainties in the camera
pose and depth map estimation procedure (e.g., depth quan-
tization).

Ultimately, the filtered point cloud is derived by discarding all
3D points that are predicted as outliers.

The decision whether a 3D point is deemed as an inlier or an out-
lier is primarily dependent on the local point distribution given by
the 3D points within its vicinity. The neighborhood of inliers can
be characterized by well-defined point distributions, even though
the sampling density may vary locally due to the texture of the
scene and the spatial configuration of the recorded images. In
the context of urban scenes, these local point distributions dis-
play mainly planar (e.g., ground, building facades, and roofs) or
spherical (e.g., vegetation) patterns. In contrast to these char-
acteristic structures, the point neighborhood of global outliers is
typically sparse and does not exhibit a distinct geometric layout.

The characteristic point distribution of inliers and outliers is not
only an intrinsic property of urban point clouds in general but
rather varies across different semantic classes of urban scenes.
In particular, point cloud regions representing building roofs or
ground commonly exhibit a low level of noise, as these scene
structures are well captured by nadir and oblique aerial images.
However, these point cloud regions may be incomplete and show
a varying point density due to the low or missing texture of the
underlying scene. Point cloud regions representing vegetated ar-
eas are usually densely sampled but are impaired by a consider-
able level of noise due to the repetitive texture of the underly-
ing scene. Vertical scene structures like building facades exhibit
more outliers and have often fewer inliers because they typically
show repetitive textures and surface areas (e.g., windows) cor-
rupted by specular reflections – two properties which lead to mis-
matches during image matching within the structure-from-motion
pipeline. Further, the orientation of building facades with respect
to the viewing direction of the (nadir) camera poses additional
challenges to the image matching and depth map estimation pro-
cedure (e.g., invalid assumption of fronto-parallel surfaces).

We follow two approaches for supervised outlier detection in ur-
ban point clouds. In the first approach, a discriminative model
is trained to distinguish between the local point distribution of
inliers and outliers without considering the semantic interpreta-
tion of the 3D points. Thus, the trained model approximates the
average behavior of inliers and outliers across different semantic
classes. The second, class-specific approach postulates that the
local point distribution of inliers and outliers is specific to each
of the semantic classes (building facades, roof, ground, vegeta-
tion, fields, and water) for the reasons described previously. A
discriminative model is trained for each of the semantic classes
to better adapt to the individual inlier and outlier distributions per
class.

4.1 Feature Extraction

We compute 24 standard features from literature per 3D point Pi

that are either adapted from unsupervised outlier detection meth-
ods or deduced from LiDAR point cloud labeling methods. The
reader is referred to the original works for an in-depth coverage
of the applied features that can be grouped into the following five
categories:

• density-based features (Ramaswamy et al., 2000, Breunig et
al., 2000, Angiulli and Pizzuti, 2002, Kriegel et al., 2008,
Zhang et al., 2009)

• 3D eigenvalue-based features (Weinmann et al., 2013)
• local plane-based features (Chehata et al., 2009)
• height-based features (Weinmann et al., 2015b)
• 2D features (Weinmann et al., 2013)
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The local neighborhood Ni of a 3D point Pi is defined as the
smallest sphere centered at Pi that encompasses the k ∈ N clos-
est 3D points to Pi with respect to the Euclidean distance in 3D
space. 3D points that are located at the same distance to Pi as
its k-nearest neighbor are included in Ni as well. Consequently,
the number of neighbors included in a local point neighborhood
may vary among the 3D points but has a lower limit of at least k
neighbors. Note that the 3D point Pi is excluded from its local
point neighborhoodNi.

Following recent trends in 3D scene understanding and classi-
fication (Brodu and Lague, 2012), the features are extracted at
multiple scales by varying the size k of the local point neighbor-
hood. The rationale behind this approach is threefold: First, it
avoids using heuristic or empiric knowledge on the scene to se-
lect the scale parameter k. Second, the optimal scale parameter k
depends heavily on the local point density and the local 3D struc-
ture of the scene and may thus not be identical for each local 3D
point neighborhood. In particular, it is presumed that the optimal
neighborhood size of both inliers and local outliers is smaller than
of global outliers. Last, the feature extraction at multiple scales
presents additional information of how the local 3D structure be-
haves across scales, which in turn may support the discrimination
between inliers and outliers. Specifically, it is assumed that the
local 3D structure of inliers and possibly of local outliers is stable
over a range of scales, whereas the local 3D structure of global
outliers alters with varying scale.

4.2 Supervised Filtering

We train a Random Forest classifier (Breiman, 2001) using the
features listed in Section 4.1 to learn the average behavior of in-
liers and outliers across all semantic classes. Random Forests
have been shown to yield good results for many point cloud clas-
sification tasks (Chehata et al., 2009, Weinmann et al., 2015a),
run efficiently on large data sets and can cope with redundant
features. The optimal hyperparameters are determined via grid
search and cross-validation. The classifier outputs a binary label
per point indicating whether the respective 3D point is predicted
as an inlier or an outlier. Eventually, the filtered point cloud is
derived by assembling all 3D points that are predicted as inliers.

4.3 Semantically Informed Filtering

In order to allow for different inlier-outlier distributions per ob-
ject category, we make the supervised classification approach pre-
sented in Section 4.2 class-specific. We assume that each 3D point
already comes with a class likelihood, which originates from pre-
vious image labeling and projection to 3D as described in (Bláha
et al., 2016). This additional semantic information per point is
used to train multiple classifiers, where each classifier learns the
inlier-outlier distribution of a specific semantic class.

4.4 Implementation Details

Our point cloud filtering method is implemented in MATLAB.
Initial tests showed that the Random Forest classifier provided in
the MATLAB toolbox is incapable of processing large data sets.
Furthermore, the hyperparameters of the Random Forest classi-
fier cannot be accessed or modified easily. Because of these lim-
itations, the ETH Random Forest Template Library2 is incorpo-
rated into the implemented point cloud filtering routine. It is writ-
ten in C++ and hence, is suited to process large data sets. Beyond
a considerable decrease in computation time, it further enables to
manually set the hyperparameters of the classifier.

2http://www.prs.igp.ethz.ch/research/Source_code_

and_datasets.html

5. EXPERIMENTS

We evaluate our approach on three large-scale aerial MVS point
clouds with different structure and semantic classes. Aerial im-
age sets are Enschede (Netherlands)3, Dortmund (Zeche Zollern,
Germany), and Zurich (Switzerland)4. The three aerial image sets
are acquired in the Maltese cross configuration (i.e. one nadir im-
age and four oblique views to the north, south, east, and west per
camera position) to mitigate visibility problems such as foreshort-
ening or occlusion. We use the standard VisualSFM pipeline of
(Wu, 2011) to orient the image blocks and the public implemen-
tation of plane-sweep stereo (Häne et al., 2014) with semi-global
matching as smoothness prior (Hirschmüller, 2008) to estimate
per-view depth maps. Further, we apply a multi-class boosting
classifier (Benbouzid et al., 2012, Bláha et al., 2016) to predict
pixelwise class-conditional likelihoods of the six semantic object
classes building (facades), roofs, ground (impervious surfaces),
vegetation (trees), fields, and water. Given the depth informa-
tion and the class likelihoods at each pixel, we generate the input
point clouds to our algorithm by back-projecting the pixels into
3D space and assigning a semantic label to each 3D point given
by the maximal class likelihood of the corresponding image pixel.

5.1 Data Pre-Processing

Data sets Dortmund, Enschede, and Zurich differ in the num-
ber and resolution of the images. Consequently, generated MVS
point clouds have different point densities. In order to ensure
fair comparisons, point clouds need to have roughly the same av-
erage point density. We thus balance densities among data sets
by adapting the percentage of back-projected image pixels (per
view and site) such that the resulting point clouds exhibit a me-
dian distance of about 0.45m between the points. After this pre-
processing, we have 5.2 million (Dortmund), 14.8 million (En-
schede), and 5.8 million (Zurich) of points, respectively.

5.2 Ground Truth Labeling and Evaluation Strategy

A major shortcoming of the available data sets is their lack of
ground truth, i.e. the actual segmentation of the point clouds into
inliers and outliers is unknown. To generate ground truth la-
bels, we take the semantic 3D models created by the approach
of (Bláha et al., 2016) as a reference, despite them not reflecting
reality perfectly well. For each 3D point of a raw point cloud, we
compare its distance to the corresponding semantic mesh of the
3D model against a manually chosen threshold. If the point-to-
mesh distance is below the threshold, we declare the point an
inlier. A 3D point whose point-to-mesh distance exceeds the
threshold is declared an outlier. We use a two-sided threshold
of 0.6m across all three data sets, which is experimentally deter-
mined through visual inspection and corresponds to three times
the resolution of the semantic 3D models.

We compute confusion matrices and derive the standard measures
accuracy, precision, recall, and F1-score for quantitative evalua-
tion. Since we strive for outlier detection, an outlier correctly de-
tected as such is defined a true positive (TP), whereas a correctly
detected inlier is a true negative (TN). Accordingly, an outlier
incorrectly classified as inlier is a false negative (FN), while an
inlier wrongly detected as outlier is a false positive (FP). We con-
sider our MVS point cloud filtering method as a pre-processing
step to generate a cleaner data set as input to a 3D reconstruction

3data provided by Slagboom en Peeters Aerial Survey: https://

www.slagboomenpeeters.com
4Dortmund and Zurich are from the ISPRS/EuroSDR Benchmark

for Multi-Platform Photogrammetry: https://www2.isprs.org/

commissions/comm1/icwg15b/benchmark_main.html/
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Site Unsupervised filtering Supervised filtering Semantically informed filtering

Precision [%] Recall [%] F1 [%] Precision [%] Recall [%] F1 [%] Precision [%] Recall [%] F1 [%]

Dortmund 71.82 62.30 66.72 79.17 56.52 65.84 82.54 61.64 70.34
Enschede 69.32 69.18 69.25 81.45 70.44 75.53 84.11 71.40 77.22
Zurich 77.47 62.96 69.46 83.66 54.07 65.67 88.02 62.50 72.97

Table 1: Quantitative results (average numbers after 6-fold cross-validation) of the supervised, non-semantic filtering approach and the
semantically informed filtering approach in comparison with the heuristic, unsupervised filtering approach of (Sotoodeh, 2006).

Dortmund Supervised filtering Semantically informed filtering

Precision [%] Recall [%] F1 [%] Precision [%] Recall [%] F1 [%]

Building 80.39 53.17 63.82 91.09 60.93 72.58
Fields 80.50 57.11 66.70 80.53 63.61 71.00
Ground 79.70 57.20 66.57 81.85 62.73 70.80
Roof 83.17 55.40 66.38 87.20 66.62 75.13
Vegetation 77.14 56.25 64.88 82.16 59.62 68.59

Enschede Supervised filtering Semantically informed filtering

Precision [%] Recall [%] F1 [%] Precision [%] Recall [%] F1 [%]

Building 79.81 66.35 72.42 86.11 65.38 74.21
Ground 82.52 70.49 76.02 83.71 74.35 78.75
Roof 83.23 71.53 76.92 80.84 76.72 78.69
Vegetation 79.53 73.81 76.55 88.38 68.65 77.10

Zurich Supervised filtering Semantically informed filtering

Precision [%] Recall [%] F1 [%] Precision [%] Recall [%] F1 [%]

Building 79.02 57.42 66.47 84.98 61.17 70.96
Ground 80.00 49.26 60.95 81.81 59.37 68.64
Roof 81.78 48.74 61.07 86.66 56.09 67.82
Vegetation 85.63 58.54 69.50 91.23 64.69 75.38
Water 95.45 62.94 75.83 99.41 79.41 88.24

Table 2: Quantitative results per semantic class (average numbers after 6-fold cross-validation) of the supervised, non-semantic filtering
approach and the semantically informed filtering approach.

algorithm. Hence, we particularly aim at attaining high precision
values as we do not want to erroneously remove inliers and lose
valuable information for subsequent processing steps.

5.3 Results

The optimal hyperparameters of the Random Forest classifiers
and optimal neighborhood sizes for feature extraction are deter-
mined through maximization of the F1-score via grid search and
cross-validation. We find 20 decision trees with maximum tree
depth of 15 as optimal parameters for our application, where the
Gini index is used as splitting criterion. For feature extraction,
we test various single scales k and multiple scale combinations.
We consider a single neighborhood size of k = 100 as a good
compromise between computation time and classification accu-
racy.

Supervised filtering vs. unsupervised filtering Table 1 com-
pares quantitative results of the supervised, non-semantic filtering
approach to the unsupervised baseline (Sotoodeh, 2006). Note
that (Sotoodeh, 2006) uses the local outlier factor proposed by
(Breunig et al., 2000) as feature to encode the relative local den-
sity of a point. Segmentation into inliers and outliers is done
by simple thresholding of the feature values. Compared to this
baseline, the supervised approach improves precision between 7

and 11 percent points, albeit at the cost of lower recall. A visual
comparison of the results in Figure 3 reveals that unsupervised fil-
tering (second column from left) removes way too many inliers.
Especially facades with low density are almost entirely removed,
which would make 3D reconstruction impossible. Although this
can also happen in particular cases with the supervised approach
(see third column from left, third row), facade points are usu-
ally better retained. Furthermore, geometric structures of roofs
and vegetation are better preserved with the supervised filtering
approach. These results indicate that trading recall for precision
is indeed necessary to ensure reconstructability while rejecting
most outliers.

Supervised filtering vs. semantically informed filtering Ta-
ble 1 and Table 2 compare quantitative results of the semantically
informed filtering approach versus supervised filtering without
explicit semantic knowledge (see Fig. 3 for a visual comparison).
Semantic filtering performs best regarding precision, recall, and
F1-score in almost all cases. Precision for class building, which
mainly comprises vertical facades, is consistently better for all
cases if filtered with the semantic approach. A visual compari-
son in Figure 3 shows that semantically informed filtering (right
column) keeps a much larger proportion of the inliers on facades
compared to both baselines. These results indicate that an av-
erage classifier trained over all semantic classes is not able to
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Figure 2: Cross-validated precision-recall curves of the supervised, non-semantic filtering approach (dashed lines) and the semantically
informed filtering approach (solid lines). The colors indicate the semantic classes building, roof, ground, vegetation, fields, and water.

separate inliers and outliers equally well as a class-specific one.
While this effect is smaller for classes that show similar point
distributions like vegetation and fields of Dortmund, it becomes
apparent for classes with very different inlier-outlier distributions
like building. Roofs, ground, fields, vegetation, and water bod-
ies are mainly horizontally oriented. In contrast, building facades
are mostly vertical and dense matching is hampered by texture-
less regions, repetitive textures, and surface parts corrupted by
specular reflections. As a result, building points exhibit a fun-
damentally different inlier-outlier distribution, which is only in-
accurately captured by a classification model averaged over all
semantic classes.

We provide precision-recall curves in Figure 2. Semantically in-
formed filtering consistently outperforms supervised, non-seman-
tic filtering in terms of both recall and precision. The most strik-
ing improvement is observed for the building class (red lines).

Qualitative comparison Figure 3 shows detailed views of the
raw, unfiltered point clouds and their filtered versions. Points
located in free space are removed correctly by all filtering ap-
proaches. However, the quality of the filtering is improved in
three different ways if inlier-outlier distributions are learned in
a class-specific way. Firstly, isolated building, roof, and water
points are correctly removed. Secondly, clustered outliers lo-
cated between building fronts and erroneous building points in
the vicinity of dense roof areas are successfully discarded, too.
Thirdly and most importantly, considerably more inliers are re-
tained in low-density areas like vertical building facades.

Generalization capability A general drawback of supervised
methods compared to unsupervised ones is that a new model usu-
ally has to be trained from scratch per scene. To verify the extent
to which our learned models generalize across different scenes,
we train two data sets and test on the third (results are shown in
Tab. 3).

Class-specific models consistently outperform average ones across
scenes regarding precision and F1-score. An interesting finding
is that precision (and F1-scores) of all classes are high compared
to the unsupervised, heuristic baseline (c.f . Tab. 1). This indi-
cates that a supervised outlier filter trained on a different scene
might still work better than an unsupervised heuristic. However,
this has to be taken with a grain of salt due to the limited number
of data sets, similar acquisition properties, and scene content. As
soon as point cloud distributions vary strongly across scenes, this
might no longer hold. However, re-training a pre-trained clas-
sifier on a very small portion of the new scene might solve the
problem. We leave this for future work.

6. CONCLUSION

In this paper we propose to formulate outlier filtering in MVS
point clouds as a supervised classification problem. Further, given
point-wise class likelihoods, we show that incorporating class-
specific knowledge for outlier detection significantly improves
precision while keeping inliers in low-density areas like build-
ing facades. Main insights of this work are that (i) inlier-outlier
distributions in aerial MVS point clouds are class-specific, (ii)
training supervised classifiers per class improves over learning
average distributions across all classes, (iii) once classifiers have
been trained on a sufficiently large amount of training data, mod-
els generalize relatively well to new scenes under the assumption
that these have been acquired and pre-processed similarly.

Despite the generic nature of the developed point cloud filter-
ing algorithm, a bottleneck is transferability of a trained model
to a new scene and modality. As with any supervised classifier,
learned inlier-outlier distributions are directly related to the ac-
quisition technique (e.g., active or passive measurement method,
sensor type, aerial or terrestrial data acquisition, flight plan, etc.)
as well as the scene content. Application to entirely new scenes
that contain a very different set of classes or that have been ac-
quired with a different sensor type need labeled reference data.

In future work we will investigate this transfer learning problem
in more detail. We will experiment with point clouds of different
modalities (e.g., LiDAR) and replace the traditional classification
pipeline with a 3D deep learning approach.
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