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ABSTRACT:

Continuous monitoring of climate indicators is important for understanding the dynamics and trends of the climate system. Lake ice
has been identified as one such indicator, and has been included in the list of Essential Climate Variables (ECVs). Currently there are
two main ways to survey lake ice cover and its change over time, in-situ measurements and satellite remote sensing. The challenge
with both of them is to ensure sufficient spatial and temporal resolution. Here, we investigate the possibility to monitor lake ice with
video streams acquired by publicly available webcams. Main advantages of webcams are their high temporal frequency and dense
spatial sampling. By contrast, they have low spectral resolution and limited image quality. Moreover, the uncontrolled radiometry and
low, oblique viewpoints result in heavily varying appearance of water, ice and snow. We present a workflow for pixel-wise semantic
segmentation of images into these classes, based on state-of-the-art encoder-decoder Convolutional Neural Networks (CNNs). The
proposed segmentation pipeline is evaluated on two sequences featuring different ground sampling distances. The experiment suggests
that (networks of) webcams have great potential for lake ice monitoring. The overall per-pixel accuracies for both tested data sets
exceed 95%. Furthermore, per-image discrimination between ice-on and ice-off conditions, derived by accumulating per-pixel results,

is 100% correct for our test data, making it possible to precisely recover freezing and thawing dates.

1. INRODUCTION

Climate change and global warming significantly impact the envi-
ronment and human livelihoods. Hence, there is a need to monitor
and understand the climate system and its important parameters.
While there is not yet an exhaustive list of parameters that must be
recorded to characterize the global climate, lake ice is known to
closely follow the temporally integrated air temperature and has
long been recognized as an important indicator of climate change
(Robertson et al., 1992, Latifovic and Pouliot, 2007, Brown and
Duguay, 2010). To support climate research, the World Meteoro-
logical Organization and other related organizations have estab-
lished a database termed the “Global Climate Observing System”
(GCOS), with the aim of providing world-wide records of the
most significant physical, biological and chemical variables, the
so-called Essential Climate Variables (ECVs). Lake ice cover is
one such variable within the category “lakes”, with the key mea-
surements being the spatial extend of ice coverage along with its
temporal changes, i.e., freezing and thawing dates. The work de-
scribed in this paper forms part of a project to identify suitable
sensors and processing methods for automatic ice monitoring on
Swiss lakes, initiated by the Federal Office of of Meteorology and
Climatology (MeteoSwiss).

Directly measuring temperature close to the water surface is per-
haps the most intuitive way to survey lake ice. However, measure-
ments of sensors placed very near to the water surface are heavily
biased by the temperature of the ambient air. Probes placed be-
low water level do not allow for a reliable retrieval of ice coverage
at the surface. Another challenge is the installation and mainte-
nance of a dense sensor network, which is costly and in many
cases impractical due to the harsh environment and conflicts with
the use of water bodies, e.g., for shipping. Lake ice monitoring by
satellite remote sensing is based on either optical or microwave
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imagery. For an overview of sensors and methods used to sur-
vey river and inland ice, refer to (Duguay et al., 2015). The main
disadvantage of remote sensing is its limited spatial and temporal
resolution. In particular, there is a trade-off between high spatial
resolution (only possible with small sensor footprints) and high
temporal resolution (requiring frequent revisits). For optical sen-
sors, temporal resolution is further impaired by cloud coverage.
While some promising work exists, e.g., (Siitterlin et al., 2017,
Tom et al., 2017), lake ice monitoring with satellite data strug-
gles to fulfill even the current ECV specifications, which demand
daily observations at 300 meter GSD.

On the contrary, ground-based webcams provide excellent spatial
and temporal resolution, and are cheap and easy to install. More-
over, a rather dense network of cameras already exists, many of
which allow access to the data streams via public web services.
Note that in some parts of the world (including Switzerland) this
is particularly true for lakes, due to their value for recreation,
tourism, energy production, etc. Potential drawbacks of webcams
are the incomplete coverage of many lake surfaces, as well as
temporal data gaps due to dense fog or heavy rain and snowfall.
For our test site, the moderate-sized lake of St. Moritz, publicly
available webcams cover the entire water surface. We note that
in mountain areas (like Switzerland), many lakes are surrounded
by steep terrain, making it easy to install cameras at appropri-
ate, elevated viewpoints with wide field-of-view, so as to improve
coverage.

In this article we investigate the potential of RGB webcam im-
ages to predict accurate, per-pixel lake ice coverage. Technically,
this amounts to a semantic segmentation of the image into the
classes water, ice, snow and clutter, which we implement with
a state-of-the-art deep convolutional neural network (CNN). The
snow class is necessary to cover the case where snow covers the
ice layer, whereas clutter accounts for objects other than the three
target classes that may temporally appear on a lake. The key
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Figure 1. Examples of lake textures observed with webcams.

challenge when working with cheap webcams in outdoor con-
ditions is the data quality, as highlighted in Figure 1. The low
viewpoints lead to large variations in perspective scale, the un-
controlled lighting and weather conditions cause specular reflec-
tions, moving shadows and strong appearance differences within
the same class, while the image quality is also limited (low signal-
to-noise ratios, compression artifacts). In some cases, even man-
ual classification is difficult and only possible by exploiting tem-
poral cues. Despite these circumstances, we find that excellent
segmentation results can be obtained with modern CNNs. While
the core of our system is yet another variant of the recently suc-
cessful DenseNet/Tiramisu architecture; there is, to the best of
our knowledge, no published work regarding lake ice monitoring
with webcams or other terrestrial photographs. Looking beyond
lake ice and at environmental monitoring in general, we find that
webcams are still an under-utilized resource, and that deep learn-
ing could also benefit many other environmental applications. We
thus hope our study will trigger further work in this direction.

2. RELATED WORK

2.1 Terrestial and Webcam Data for Environmental Moni-
toring

Many environmental monitoring applications use image sequences
captured with ground-based cameras, including vegetation phe-
nology, fog monitoring, cloud tracking, rain- and snowfall assess-
ment and estimation of population size, to name a few. For an
excellent overview see (Bradley and Clarke, 2011). As pointed
out by (Jacobs et al., 2009), dense webcam networks constitute
an interesting alternative to remote sensing data to retrieve en-
vironmental information. Besides presenting two webcam-based
algorithms to estimate weather signals and temporal properties
of spring leaf growth, the authors maintain the Archive of Many
Outdoor Scenes (AMOS) (Jacobs et al., 2007), which collects
imagery from nearly 30000 webcams world-wide. (Richardson,
2015) present a continental-scale dataset consisting of 200 cam-
eras, specifically tailored for research in vegetation phenology.

In the following we concentrate on methods for pixel-wise clas-
sification in the context of environmental applications. An algo-
rithm for monitoring canopy phenology from webcam imagery
was presented in (Richardson et al., 2007), which fits a sigmoid
model to entities computed from the raw RGB information. (Both-
mann et al., 2017) propose a semi-supervised and an unsuper-
vised approach to identify regions in webcam streams that de-
pict vegetation. Phenology of the vegetation is then assessed by

tracking temporal changes in the green channel. In the domain
of snow monitoring, (Salvatori et al., 2011, Arslan et al., 2017)
present methods to estimate snow coverage in image sequences.
Pixel-wise classification is done by thresholding intensity with a
threshold value derived from the histogram of the blue channel.
(Riifenacht et al., 2014) fit a Gaussian Mixture Model to classify
snow pixels, and enforce spatial and temporal consistency of seg-
mentations via a Markov Random Field. (Fedorov et al., 2016)
train binary snow-on/snow-off classification with a Random For-
est and Support Vector Machines. Using a 33-dimensional fea-
ture vector, their supervised methods outperform thresholding as
in (Salvatori et al., 2011).

Perhaps the closest work to ours is (Bogdanov et al., 2005), where
a shallow neural network is trained to classify feature vectors ex-
tracted from SAR and optical satellite imagery as well as terres-
trial photographs. The network predicts 6 classes of sea ice with
an overall accuracy of approximately 91%. To the best of our
knowledge, no work exists about lake ice detection based on ter-
restrial images.

2.2 CNNs for Semantic Segmentation

The rise of deep neural networks for image processing has re-

cently also boosted semantic image segmantation. Based on the

seminal Fully Connected Network of (Long et al., 2015), many

state-of-the-art segmentation networks follow the encoder-decoder
architecture. The encoder is typically derived from some high-

performance classification network consisting of a series of con-

volution (followed by non-linear transformations) and downsam-

pling layers, for instance (He et al., 2015, Huang et al., 2016,

Xie et al., 2016). The subsequent decoder uses transposed con-

volutions to perform upsampling, normally either reusing higher-

resolution feature maps (Long et al., 2015, Ronneberger et al.,

2015, Jégou et al., 2016) or storing the pooling patterns of the

encoder (Badrinarayanan et al., 2015). In this way, the high-

frequency details of the input image can be recovered. The present
work builds on the Tiramisu network proposed in (Jégou et al.,

2016), which we will review in more detail in section 3.2.

3. METHODOLOGY
3.1 Data Collection and Preprocessing

The data used in this work consists of image streams from two
webcams, which we have automatically downloaded from the in-
ternet. Both cameras capture lake St. Moritz, see Figures 2a and
2b. Images were collected from December 2016 until June 2017.
The lake was frozen for a period of approximately four months,
starting mid-December. The major difference between the two
streams are image scale: one camera (Cam0) captured images
with larger GSD whereas the other one (Cam1) records at higher
resolution. Both cameras record at a frequency of one image
per hour. The cameras are stationary and stable with respect to
wind, such that the maximal movements observed in the data are
around 1 pixel. We manually removed images affected by heavy
snow fall, fog and bad illumination conditions (early morning,
late evening). Methods for automatic detection and elimination
of such images have been proposed, e.g. (Fedorov et al., 2016),
but are not in the scope of this work.

Ground truth label maps were produced by manually delineating
and labeling polygons in the images, with labels water, ice, snow
and clutter. Among these,water, ice and snow are the sought
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(a) CamO - large GSD stream

(b) Caml - small GSD stream

Figure 2. Example images of the two webcam streams.

attributes of the application, the clutter class was introduced to
mark objects other than water that are sometimes found on the
lake, such as boats, or tents which are built up on lake St.Moritz
when hosting horse racing events. For the manual labeling task
we used the browser-based tool of (Dutta et al., 2016). The spec-
ified polygons were then converted to raster label maps with a
standard point-in-polygon algorithm. Overall, 820 images for
Cam0 and 927 images for Cam1 were labeled.

3.2 Semantic Segmentation

Our segmentation network is based on the One Hundred Layer
Tiramisu architecture of (Jégou et al., 2016). The network fea-
tures a classical encoder-decoder architecture, see Figure 3(a).
The encoder is based on the classification architecture DenseNet,
a sequence of so-called dense blocks (DB), see Figure 3(b). A
dense block contains several layers. Each layer transforms its in-
put by batch normalization (Ioffe and Szegedy, 2015), ReLU rec-
tification (Glorot et al., 2011) and convolution. The depth of the
convolution layer is called growth rate. The distinguishing char-
acteristic of a dense block is that the result of the transformation
is concatenated with the input to form the output that is passed
to the next layer, thus propagating lower-level representations up
the network. In much the same way, the output of a complete
dense block is concatenated with its input and passed through a
transition-down (TD) block to reduce the resolution. TD blocks
are composed of batch normalization, ReLU, 3x3 convolution
and average-pooling. To make the model more compact, the 3x3
convolution reduces the depth of the feature maps by a fixed com-
pression rate. The result is then fed into the next dense block.
The input feature maps of each transition-down block are also
passed to the decoder stage with the appropriate resolution, to
better recover fine details during up-sampling. The decoder is a
sequence of dense blocks and transition-up (TU) blocks. Note
that in contrast to the encoder, dense blocks pass only the trans-
formed feature maps, but not their inputs, to the next stage, to

control model complexity. Transition-up blocks are composed of
transposed convolutions with stride 2, which perform the actual
up-sampling. Output feature maps from the last dense block are
subject to a final reduction in depth, followed by a softmax layer
to obtain probabilities for each class at each pixel. The connec-
tion between the encoder and the decoder part is one more dense
block (bottleneck), which has the lowest spatial resolution and at
the same time the highest layer depth. It can be interpreted as a
sort of abstract “internal representation” shared by the input data
and the segmentation map.

In practice, the input dimensions are limited by the available
GPU memory. To process complete images, we cut them into
224 %224 pixel tiles with 50% overlap along the row and col-
umn direction, such that each pixel is contained in 4 tiles. Each
tile is processed separately, then the four predicted probabilities
Pi—0.1,2,3(x) for class ¢ are averaged at every pixel x, to obtain
p°(x) = >, pf(x)/4. The final class is then the one with high-
est probability (winner-takes-it-all).

4. EXPERIMENTS
4.1 Training Details

Training and test sets are generated by randomly selecting 75% of
all images for training and the remaining 25% for testing. All im-
ages are then tiled into 224 x224 patches as described in section
3.2. The set of training patches is further subdivided (randomly)
into a training part (80% of training data, respectively 60% of all
data) and a validation part (20%, respectively 15%). All patches
are normalized by subtracting the mean intensity. Class frequen-
cies are balanced in the cross-entropy loss function by reweight-
ing with the (relative) frequencies in the training set. The same
network architecture is used for both cameras. It features three
dense blocks in the encoder (with 4,7 and 12 layers), and three
dense blocks in the decoder (with 12,7, and 4 layers). The bot-
tleneck which connects encoder and decoder has 15 layers. The
growth rate is 12. Learning is done with the Nestorov-Adam op-
timizer (Sutskever et al., 2013). The network is regularized with
L2-regularization and dropout (Srivastava et al., 2014) with a rate
of 50%. We found empirically that high compression rates of
0.25 to 0.33 were important to ensure good convergence. The
network was implemented using Keras, with Tensorflow as back-
end. All experiments were run on a Nvidia Titan X graphics card.

4.2 Quantitative Results: Semantic Segmentation

We train separate networks (i.e., same architecture, but individual
network weights) for the two datasets, so as to adapt the network
weights to the specific camera and viewpoint. After training, the
network is applied to all test patches of the respective dataset, and
the patch-wise predictions are assembled to complete per-image
segmentation maps with the consensus mechanism explained in
Section 3.2. A background mask is applied to the images so that
only pixels which correspond to the water body are evaluated.
The resulting pixel-wise class maps per full camera image are the
final predictions that we compare to ground truth. The confusion
matrices for the two datasets are displayed in Tables la and 1b.
Entries are absolute pixel counts across the entire test set, in units
of 1 million pixels. Furthermore, we also display precision and
recall for each class, as well as the overall accuracy.

The segmentation results are promising, reaching overall accura-
cies of 95.3% for the CamO sequence and 95.7% for the Caml1 se-
quence. For both datasets, semantic segmentation of water works
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Figure 3. (a): Schematic illustration of the segmentation framework. The encoder down-samples the image, and thereby increases the
field of view. It consists of a sequence of dense blocks (DB) and transition down (TD) blocks. The decoder performs up-sampling of
feature maps with a sequence of dense blocks (DB) and transition-up (TU) blocks. To recover high-resolution detail, skip connections
pass information from intermediate encoder stages to the corresponding decoder stages. (b): Internal structure of a dense block with

two layers and growth rate 3. For more details, see Section 3.2.

Predicted . Predicted .

water ice snow clutter | Recall water ice snow clutter | Recall
True True
water 28.57 0.29 0.31 0.00 | 98.0% water 211.15 1.83 2.69 0.00 | 97.9%
ice 0.40 4.56 0.20 0.00 | 88.3% ice 2.10 27.58 221 0.02 | 86.4%
SNOwW 0.51 0.20 8.29 0.07 | 91.4% Snow 1.02 3.60 9401 0.54 | 94.8%
clutter 0.00 0.00 0.08 0.29 | 76.7% clutter 0.00 0.02 1.22 2.82 | 69.4%
Precision 96.9% 90.3% 93.3% 80.8% | 95.3% Precision 98.5% 83.5% 93.9% 83.4% | 95.7%
(a) CamO (b) Caml1

Table 1. Confusion matrices for the two webcam datasets. Units are millions of pixels, except for precision and recall.

best among the target classes, regarding both recall and precision.
For Cam0, recall and precision of all main classes are in the range
of 88.3%-98.0%, respectively 90.3%—-96.9%. For Caml, recall
and precision of the main classes are 86.4%—97.9%, respectively
83.5%-98.5%. Evidently, the class ice is harder to predict than
water and snow, for both data sets. For both Cam1 and Cam2
data sets the recall and precision of the clutter class are compa-
rably low. This is mostly due to mistakes on thin structures. We
note that the clutter class forms only a tiny portion of the pixels,
and would be excluded in post-processing (e.g., temporal smooth-
ing) in most practical applications. Somewhat suprisingly, overall
accuracy, precision and recall from the low and high resolution
streams are comparable. However, for the most challenging pe-
riod, during freezing, predictions from lower resolution seem to
be less stable, see figure 4. Since samples from the freezing pe-
riod form only a small portion of the data, their higher uncertainty
has little impact on the overall numbers. We expect that further
reducing resolution, and thus descriptiveness of local texture, will
eventually decrease segmentation performance.

4.3 Quantitative Results: Ice On / Ice Off

Freezing and thawing dates are of particular interest for climate
monitoring. In this section we seek to exploit temporal redun-
dancy and estimate the daily percentage of ice and snow cover-
age for the observed water body. Per image, we sum the pixels of
each class to obtain the covered area. We then compute the me-
dian coverage per class for each day. Finally, the coverage of the
water body by ice, snow and clutter (mainly representing man-
made structures erected on the ice) are summed. Predictions and
ground truth coverage derived from manually labeled segmenta-
tions are displayed in figures 4 and 5 for the two cameras. Gaps
(marked by red sections) are caused by missing data due to tech-

nical problems. For areas where data is available, ground truth is
reproduced rather well. For Cam0, an image-wise ice on/ice off
classification by thresholding at 50% water yields more than 98%
correct predictions, (2 misclassified days with ice coverage near
50% coverage, where minimal differences lead to a flip of the
binary prediction). For Caml, the same threshold classifies all
days correctly. We note that true ice-on/ice-off prediction should
of course cover the entire lake and account for projective distor-
tion of the lake surface, still the results indicate that an aggregated
per-lake analysis will be accurate enough for most applications of
interest. Note also, for this evaluation only the test set (25% of
all images) was used. Once an operational system is in place, the
temporal density will be 4 x higher, further increasing robustness.

4.4 Qualitive Results

Figures 6 and 7 show example segmentation results for Cam0 and
Caml, respectively. Column (a) shows the original images, col-
umn (b) the corresponding ground truth segmentation. Column
(c) shows the automatically generated semantic segmentations,
and reliability maps are displayed in column (d). The reliability
at a pixel x is defined as the maximum probability over all classes
r(x) = maze (p°(x)).

The first three rows in each of the figures are examples of good
segmentation results for interesting, non-trivial input images. As
expected, reduced reliability is generally observed near class tran-
sitions. There is a tendency for misclassifications to occur in the
upper part of the images, presumably due to the loss of high-
frequency texture. Even thin structures of the clutter class are
segmented fairly well. The last row in each figure shows an exam-
ple where segmentation fails. For failure cases, blocky artifacts
appear in the reliability maps, as a result of the tiled processing.
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Figure 4. Predicted vs. groundtruth frozen area for Cam0. Red bars indicate periods of data gaps, where no images were stored.
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Figure 5. Predicted vs. groundtruth frozen area for Cam1. Red bars indicate periods of data gaps, where no images were stored.

Note that in a number of failure cases even human operators have
difficulties, unless they use the temporal context.

5. CONCLUSIONS AND OUTLOOK

In this work, we have investigated the monitoring of lake ice, us-
ing webcams instead of traditional remote sensing images as a
data source. We have employed a neural network to conventional
RGB webcam images to obtain semantic segmentation maps for
the lake of St. Moritz. With a class nomenclature of water, ice,
snow, clutter, we have achieved segmentation accuracies larger
than 95% on two different test sequences. We found that among
the main target classes, ice was the most difficult to predict, but
still reached more than 85% recall at more than 80% precision.
At the image level, aggregated daily ice-on/ice-off classification
by simple thresholding resulted in only two misclassified days
over hundreds of images from the winter 2016/2017, both dur-
ing partial ice coverage near 50%. Overall, we believe that there
is large potential to operationally use conventional webcams for
lake ice monitoring.

Since images overlap and are captured in rather dense tempo-
ral sequences, a future direction of work is to exploit spatial and
temporal redundancy to remedy the remaining classification er-
rors. Of particular interest is a more accurate segmentation during
the transition periods with partial ice coverage, while stable lake
states (water only, full snow or ice coverage) are already classi-
fied with very high accuracy. While temporal smoothing appears
straight-forward, fusing observations from different cameras re-
quires knowledge of their relative orientation. While stable tie
points are hard to find, e.g., after snowfall, one could possibly
match silhouettes in mountain areas between images and also to
digital elevation models, or match lake borders across cameras.
We also plan to carry out experiments to assess the generaliza-
tion capabilities of already trained networks to new lakes or cam-
eras. Of special interest is the generalization across winters, to
simplify long-term observations. To that end we have started to
record imagery for the winter 2017/2018.
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Figure 6. Semantic Segmentations for Cam0. (a): RGB input; (b): manual segmentations; (c): predicted segmentations; (d): reliability

maps.
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Figure 7. Semantic Segmentations for Cam1. (a): RGB input; (b): manual segmentations; (c): predicted segmentations; (d): reliability

maps.
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