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ABSTRACT: 

 

Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. 

During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) 

data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is 

whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter 

two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. 

However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be 

erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground 

points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, 

the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and 

SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly 

elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level. 

 

 

 

1. INTRODUCTION 

 

As basic topographical data, Digital Terrain Models (DTMs) are 

widely used in ortho image rectification, scene classification, 3D 

reconstruction, etc. Currently, DTMs can be obtained by airborne 

laser scanning (ALS), digital photogrammetry and 

interferometric synthetic aperture radar (InSAR) (Chen et al., 

2016). During the last two decades, much effort has been paid to 

filtering the ALS  points and obtaining DTMs. DTMs are derived 

by point cloud filtering followed by interpolation. The second 

method for DTM generation is aerial photogrammetry. The 3D 

object coordinates are obtained by matching two or more 

overlapping images, for instance by dense image matching 

(DIM). The resulting point clouds can also be used as the basis 

for DTM production. 

 

While the technique of DTM generation from ALS data is 

relatively mature after 20 years of development, it is still valuable 

that we look into the technique of DTM generation from aerial 

imagery. Taking the Netherlands as example, normally, a period 

of five years is required to update the whole national DTM using 

ALS data. In contrast, aerial images over the country are obtained 

yearly. Therefore, generating DTM from aerial imagery can 

significantly shorten the interval for data updating. 

 

Advances in aerial image quality and dense matching techniques 

provide the feasibility of extracting high quality DTMs from 

aerial images. Firstly, aerial images are obtained with higher 

radiometric quality. On-board GPS and Inertial Measurement 

Unit (IMU) allow to obtain more and more accurate orientation 

elements for bundle adjustment. Development in dense matching 

algorithms, e.g. Patch-based Multi-View Stereo (PMVS) 

(Furukawa and Ponce, 2010) and Semi-global Matching (SGM) 

(Hirschmüller, 2008) makes it possible to obtain accurate point 

cloud. nFrames SURE states that the vertical accuracy of their 

products can be better than 1 pixel. Pix4Dmapper (“Pix4D” are 

used below) also reports 1-3 GSD vertical accuracy. The 

evaluation based on roof segments in (Zhang et al., 2017) also 

confirms that the vertical accuracy achieved by Pix4D is better 

than 2 GSD. These numbers give rise to the assumption that it is 

possible to generate accurate DTMs from dense matching points. 

 

The aim of this paper is to study whether the standard Lidar filters 

can be used to filter DIM points towards DTM generation. Some 

previous studies have compared the characteristics of point 

clouds from laser scanning and dense matching. Accuracy and 

noise level are the two critical factors that influence the final 

DTM quality. In the airborne cases, the vertical accuracy of dense 

matching is usually worse than the accuracy from laser scanning. 

Compared to the ALS point cloud, the noise level of the DIM 

data depends on the dense matching algorithm and denoising 

method (Ressl et al., 2016; Zhang et al., 2017). In ALS points 

data gaps may appear on wet terrain surface while in DIM points 

data gaps appear due to failing image matching. These data gaps 

will cause problems in DTM interpolation. 

 

The paper is structured as follows: In Section 2, we review some 

work of DTM generation from ALS data and DIM data. Section 

3.1 introduces the data and experimental setup. Section 3.2 

studies the robustness of standard Lidar filter to DIM noise and 

artefacts. Section 3.3 evaluates the filtering result on the DIM 

points in urban scenes. Based on the filtering result in Section 3, 

Section 4 evaluates the potential DTM accuracy derived from 

DIM point clouds. Section 5 concludes the paper. The paper not 

only shows the deficiencies within the DIM points compared to 

ALS points, but also discusses the research problems related to 

generating accurate DTMs from DIM points.
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2. RELATED WORK 

 

Since the end of 1990s, optical sensors, radar systems and laser 

scanning systems have been widely used to capture topographic 

data (Li, 2004). 3D object coordinates are commonly obtained by 

photogrammetry and laser scanning. DTMs are generated 

through filtering point clouds and then interpolating on the 

ground points. It has been a hot research topic to develop robust 

algorithms for filtering ALS points (Meng et al., 2010; Chen et 

al., 2017). 

 

Point cloud filtering is the process of discriminating between 

ground and non-ground points. Generally, the filtering 

algorithms can be divided into five categories: morphological 

filtering (Kim and Shan, 2011), surface-based filtering (Kraus 

and Pfeifer, 1998), progressive TIN (Triangulated Irregular 

Network) densification (Axelsson, 2000), segment-based 

filtering (Lin and Zhang, 2014), classification-based filtering (Hu 

et al., 2016). A quantitative comparison of eight filtering methods 

can be found in (Sithole and Vosselman, 2004). They found that 

filtering based on the local surface estimation was generally 

better than global filtering. Also no filter worked perfectly on 

various scene complexity. Nowadays, these standard Lidar filters 

are relatively mature and have already been implemented in 

many commercial software for laser scanning data processing, 

e.g. LAStools, SCOP++, Terrasolid. 

 

Recently some studies concerning DTM generation from dense 

image matching data were published. Among these studies, it is 

quite common that the filtering operation is run on the DSM 

instead of on the raw point clouds. The reason is that DSM 

interpolated from the DIM points is less noisy than the raw points 

while it still retains a similar accuracy (i.e. the bias level to the 

ground truth). Perko et al. (2015) and Mousa et al. (2017) filtered 

DSMs using a Multi-directional and Slope Dependent filtering 

algorithm. Their DSMs were generated from satellite images and 

airborne images, respectively. Zhang et al. (2016) filtered a 

medium resolution DSM from satellite images by using a two-

step semi-global filtering method. Beumier and Idrissa (2016) 

tried to recognize the ground locations from the DSMs using a 

mean shift segmentation followed by a local regional filtering. In 

the DTM generation module of Pix4D, the software takes DSMs 

as input. The ground objects (e.g. buildings and trees) are 

identified and removed based on the local height gradient. Then 

the DSM is smoothed and interpolated into the final DTM. 

 

In addition, there are also a few studies filtering the raw DIM 

points. In general, the standard Lidar filter requires a precise 

point cloud with little noise as input. Yilmaz and Gungor (2016) 

compared the effects of five standard filters on the raw DIM 

points derived from UAV images. Debella-Gilo (2016) filtered 

the DIM points based on slope-based filtering aided by an 

existing lower-resolution DTM. However, they didn’t report on 

the noise level of the DIM point cloud or any denoising operation. 

 

Among the studies of generating DTM from photogrammetric 

point clouds, it is common to use the standard Lidar filtering 

algorithms or ideas to filter DIM points or DSM. Obviously, the 

noise level in the point clouds or DSMs has a major impact on 

the filtering result. However, no study has studied the impact of 

point cloud noise on the filtering result and thus the final DTM 

accuracy. In this paper, a comprehensive evaluation of the impact 

of noise level on the filtering result is implemented. We also 

evaluate the potential DTM accuracy that can be achieved in case 

that DIM points are filtered and then interpolated. 

 

3. FILTERING DIM POINTS USING STANDARD 

LIDAR FILTER 

 

In this section, we present some observations on filtering DIM 

points using the standard Lidar filter - LASground. The filtering 

algorithm used in LASground is a modification of the TIN-based 

approach by (Axelsson, 2000) 1,2. The lowest points at the initial 

grid cells in the point cloud are selected as seed points; and then 

TIN facets are built using these seed points. The coarse TIN 

surface is densified with the remaining points by judging distance 

and angle - related criteria. LASground is widely used to filter 

ALS point cloud. It has been used to create DTM from 

photogrammetric DSM 3. In contrast, in this paper it is used to 

filter the raw photogrammetric point cloud. The research 

question is whether LASground can be used to filter point cloud 

from dense matching in which there are usually more random 

noise than in the Lidar data. 

 

3.1 Study Area and Experimental Setup 

The study area lies in the city center of Enschede, The 

Netherlands as shown in Fig. 1. 510 aerial images including 102 

nadir images and 408 oblique images were obtained by Slagboom 

en Peeters in 2011. The Ground Sampling Distance (GSD) of 

nadir images is 10 cm. Bundle adjustment was run in Pix4D 

Pix4Dmapper (version 3.2) using the initial exterior orientations 

(EOs) and 15 evenly distributed GCPs. After bundle adjustment, 

the same EOs are used for dense matching in nFrames SURE 

(version 2.1.0.33) and Pix4D, respectively. Some dense matching 

parameters are set as below: in both software, the image scale is 

set to 1/2 resolution; the Minimum Model Count (MMC) in 

SURE is set to 2; the Minimum Number of Matches (MNM) in 

Pix4D is set to 3. Note that MMC and MNM in the two software 

are not comparable because the dense matching algorithms in 

them are different: SURE employs the tube-shape Semi-global 

matching (tSGM) (Rothermel et al., 2012) while Pix4D employs 

patch-based multi-view stereo. Our criterion for adjusting MMC 

and MNM is to balance the noise level and data gap level in the 

point cloud by visual inspection. 

 

The ALS data of the same area were acquired by FLI-MAP 400 

system mounted in a helicopter in 2007. The point cloud density 

is 10 points/m2 and the maximum systematic error in height is 

 

 

Figure 1. Orthoimage of the study area. The two regions within 

the yellow rectangles are used in Section 3.1. The region within 

the red rectangle is used in Section 3.2. The potential DTM 

accuracy of the whole area is evaluated in Section 4. The area for 

the two yellow regions, red regions and the whole study region is 

880 m2, 6624 m2, 0.04 km2, 1.6 km2, respectively.
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5 cm (van der Sande et al., 2010). The ALS data will be used as 

reference when evaluating the filtering result in Section 3.3 and 

when evaluating the potential DTM accuracy in Section 4. 

 

3.2 Robustness of Lidar Filter to Point Cloud Noise 

Similar to DTM extraction from ALS point cloud, we assume that 

DTM sample points can be obtained from two land cover types: 

paved (or bare) ground and grassland. In this section, we only 

select pieces of smooth terrain and homogeneous grassland for 

evaluating the impact of random noise on the filtering. The 

filtering effect on the bumpy terrain or other small objects is not 

studied here. Two homogeneous and smooth regions marked by 

the yellow rectangles in Fig. 1 are used for tests: the left one is 

smooth ground paved by concrete; the right one is grassland. 

 

   
Figure 2. Selected patches on the paved ground (left, 112 patches) 

and grassland (right, 527 patches) for evaluating the filtering 

performance. The patch sizes are 2 m × 2 m. 

 

Several parameters in LASground affect the filtering 

performance. Since our study area is in urban area, the scene is 

set to “city or warehouses” (i.e. a step size of 25 m) and the 

parameter for controlling the initial ground points density is set 

to “default”. In addition, we also experimented with the 

parameters “spike size” and “bulge size”. Since the surface of the 

paved ground and grassland is smooth with little spike (often 

outliers), these two parameters do not make a difference on the 

filtering. We also try to adjust the parameter “stddev” which 

controls the maximal standard deviation for planar patches to be 

retained. Interestingly, tuning “stddev” did not bring a 

remarkable change to the filtering result. Therefore, we adopt the 

“10 cm” suggested by the software. 

 

In order to study the impact of the noise level on the filtering 

performance, a local evaluation method is used. Square patches 

of 2 m × 2 m are selected from the ALS data of the area. The 

patches are selected randomly as evaluating units. The Residuals 

of Plane Fitting (RPF) is calculated using all the points inside the 

patch. 

 𝑅𝑃𝐹 = √
1

𝑁
∑ ∆𝐻𝑖

2
𝑁

𝑖=1
 (1) 

N is the number of points in this patch. ∆𝐻𝑖 is the distance from 

the 𝑖 th point to the plane which is fitted to all the points within 

this patch. The patch will be valid only if RPF is smaller than 2 

cm. When RPF of the ALS data in a certain patch is smaller than 

2 cm, we can say that the terrain in this patch is quite smooth and 

planar. The patches selected on the paved ground and grassland 

are shown in Fig. 2. 112 and 527 patches are selected on the 

paved ground and grassland, respectively. Note that on the 

grassland in Fig. 2 the patches are all selected on smooth 

grassland. No patch lies on the bushes or trees. After patch 

selection, the filtering result and noise level are quantized locally 

within each patch: 

 

1) Filtering effect: Ideally, all points in every patch in Fig. 2 

should be classified as ground points by LASground. In 

consideration of scarce outliers or misclassifications, if more than 

95% of the points within a patch are classified as ground points, 

we still take it as correct filtering; if the ratio is less than 95%, 

the filtering in this patch is incorrect. 

 

2) Noise level: Height Ranking Range (HRR) is used to represent 

the noise level. It is calculated by sorting the heights of all points 

within a patch. The HRR is obtained by subtracting the m 

percentile from the n percentile (m<n). HRR represents the height 

range in the vertical direction. Generally, it is robust to blunders 

in the point cloud. In this paper, m and n are set to 5% and 95%, 

respectively. 

 

The filtering results from LASground are shown in Fig. 3. In Fig. 

3(a-d), the percentage of correctly classified patches is 100%, 

80%, 100% and 89%, respectively. LASground performs very 

well on Pix4D point cloud because the point cloud is precise with 

little noise.  Compared with filtering Pix4D point cloud, Fig. 3(d) 

shows that filtering SURE point cloud meets more difficulty 

along the bush and in the shadow. The SURE point cloud is much 

noisier than Pix4D and this brings problems during filtering. 

 

In order to evaluate the robustness of LASground to point cloud 

noise, the distribution of the HRR values for all the patches 

correctly filtered are shown in Fig. 4. The HRR values in the four 

histograms range from approximately 0.05 m to 0.40 m which 

indicates that LASground performs well in filtering a point cloud  

 

 
(a) paved ground, Pix4D (b) paved ground, SURE 

 
    (c) grassland, Pix4D (d) grassland, SURE 

Figure 3. Filtering results on the paved ground and grassland. The 

green indicates the identified ground points; blue indicates non-

ground points; black indicates data gaps. In (c) and (d), blue 

indicates identified non-ground points not only on the grassland, 

but also on the trees and bushes (cf. Fig. 2). Generally, the Pix4D 

point clouds in Fig. 3(a) and (c) are darker than SURE point 

clouds in Fig. 3(b) and (d) due to a lower point density. 
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Figure 4. HRR Distribution for all the correctly filtered patches. 

Bin width is 3 cm. Top: paved ground; Bottom: grassland. The 

dark brown between the blue and light brown histograms is the 

overlap of the two histograms. 

 

with a HRR smaller than 0.40 m. In addition, the mean of HRRs 

for paved ground-Pix4D, paved-ground-SURE, grassland-

Pix4D, grassland-SURE are 0.14 m, 0.24 m, 0.14 m, 0.24 m, 

respectively. This indicates that the noise level of the dense 

matching point clouds on paved ground and grassland are the 

same, for either Pix4D or SURE. To the best of our knowledge, 

the noise level of the point cloud from SURE is dependent on the 

image quality, image overlapping, orientation accuracy and 

dense matching algorithm. SURE does not implement any post-

processing on the dense matching point cloud. 

 

Now we study the patches which are wrongly filtered, i.e. less 

than 95% points within the patch are classified as ground points. 

Fig. 5 visualizes the HRR values of these wrongly filtered 

patches. The color coding from blue to red indicates that the HRR 

increases. HRR in these wrongly filtered patches ranges from 0.2 

m to 0.59 m. The right figure of Fig. 5 shows that DIM point 

cloud from SURE is relatively noisy and contains more artefacts 

in the shadow than other areas. So these areas in the shadow are 

challenging for LASground. 

 

Fig. 6 shows the two profiles on paved ground and grassland 

drawn in Fig. 5 (along the yellow lines). Checking the 

orthoimages and laser points shows that the profile in the left 

paved ground of Fig. 5 is smooth ground with no bumps or 

spikes. The profile in the right grassland of Fig. 5 is the grassland 

in shadow. The length of the point cloud profile is approximately 

2 m and the vertical depth is 20 cm. Fig. 6 shows that some 

artefacts exist in the SURE point cloud. Note that the blue points 

and green points together form the SURE points. In the top figure 

of Fig. 6, the ALS point cloud distributes between the “ground 

points” and “non-ground points” identified by LASground. The 

 
Figure 5. Visualization of the HRR values for the wrongly 

filtered patches in the SURE points. Top: 23 patches on the paved 

ground; Bottom: 58 patches on the grassland. 

 

HRR is about 0.5 m. As the higher DIM points are classified as 

non-ground, the average height of the ground points shows a bias 

w.r.t. the average height of the ALS points. 

 

In the bottom figure of Fig. 6, hollow space can be found inside 

the SURE points and the points show two layers. LASground 

simply takes the points in the top layer as the non-ground points. 

The HRR is about 0.8 m. Along this grassland profile, the ALS 

points are located at the bottom of the DIM points. 

 

3.3 Filtering Photogrammetric Points in Urban Scene 

In this section, a 0.04 km2 study area (red rectangle in Fig. 1) is 

filtered using LASground. This area is mainly covered with 

buildings, streets, paved ground and individual trees. In some 

locations, the streets are narrow and covered with shadow. 

Concerning the filtering parameters in LASground, “step size” 

shows a large impact on the filtering result: if it is set very large, 

some roof points will also be taken as ground points. After some 

trials, we set the parameter according to the scene - “city or 

warehouses”. That is, the step size is fixed to 25 m in this section. 

 

 
Figure 6. Profiles of three point clouds: ALS points (red), SURE 

ground points identified by LASground (green) and non-ground 

points (blue). Top: Profile of the line on paved ground; Bottom: 

Profile of the line on grassland. 
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(a) ALS data (b) DIM-raw (c) DIM-RF 

Figure 7. Filtering results of a city block. The top row shows both the ground and non-ground points. White indicates the ground points 

identified by LASground; black indicates data gaps. Non-ground points are colored based on the height value. The bottom row shows 

only the ground points. The two figures in the first column entitled (a) is the filtering effect of ALS data; (b) shows the filtering effect 

of the raw point clouds generated by Pix4D; column (c) shows the filtering effect of the Pix4D point cloud processed by a ranking 

filter. For the meaning of black and yellow boxes, please refer to the text. 

 

Considering the possible artefacts and random noise in the DIM 

point cloud, a ranking filter is used to refine the raw point clouds. 

The rationale of ranking filter is to rank the heights of all points 

within a vertical raster cell. In our case, the median of the heights 

(i.e. 50% percentile) is taken as the final value assigned to this 

cell. The cell size is set to 0.5 m × 0.5 m based on heuristics. The 

cell size should be set small enough to contain sufficient terrain 

details and should be set large enough to contain points in most 

cells. If less than 3 points exist in a certain cell, this cell will not 

be assigned any value but just left empty. 

 

Three point clouds are filtered as shown in Fig. 7: ALS data, raw 

Pix4D point cloud (DIM-raw), Pix4D point cloud processed by a 

ranking filter (DIM-RF). We do not present the filtering results 

of SURE points because the filtering delivers more mistakes 

when the points are too noisy, especially on the narrow streets. 

Fig. 7(a) shows the filtering result of ALS data. Building and 

individual trees are filtered out successfully. The black rectangle 

shows the filtering result on the narrow street. Here LASground 

works well. 

 

Fig. 7(b) shows the filtering result of the raw Pix4D point cloud. 

Dense matching is challenging in shadow area due to poor texture 

and low contrast in images. Ideally, all the ground points should 

be labelled as “ground”, including ground points in the shadow. 

The black rectangle shows the filtering in the shadow. Some 

points are identified as ground and some are identified as non-

ground. In the yellow rectangle, most of the locations are 

identified as non-ground. Fig. 7(c) shows the filtering result of a 

Pix4D point cloud processed by ranking filtering. 

 

Fig. 7(b) and (c) show that LASground performs well at filtering 

individual trees on both the DIM-raw and DIM-RF data, 

especially on the southeast open square. In the black rectangles, 

there are more ground locations identified in DIM-raw than in the 

DIM-RF. This narrow street is located in shadow. Checking the 

data profile shows that the heights of the DIM points are higher 

than the real ground surface by approximately 30 cm, and the 

DIM points are randomly distributed because of remaining 

matching errors. The DIM-RF identifies fewer ground points 

than DIM-raw but the identified ground points are more likely to 

be reliable ground locations. 

The yellow rectangles show the filtering effect of a road, which 

is not in the shadow. LASground filters classified most of the 

points in Pix4D-raw data as non-ground. In contrast, many 

locations are taken as ground points in the DIM-RF data. 

 

In both the black and yellow rectangles, LASground tends to 

deliver better filtering results on the DIM-RF data than the DIM-

raw data. It can be explained by the fact that median ranking filter 

can reduce the noise in the DIM points. The DIM point cloud 

after pre-processed by a ranking filter is getting more similar to 

the ALS data in terms of ground representation. Moreover, the 

noise is removed very considerably and height jumps from 

ground to above-ground objects are more or less better retained 

because of the relatively large raster. In this case, LASground can 

better discriminate ground and non-ground cells because outliers 

and noise are not affecting the TIN densification step. 

 

Apart from the qualitative comparison above, the filtering results 

are also evaluated quantitatively using the measures from 

(Sithole and Vosselman, 2004). The filtering result of ALS data 

after manual check is taken as the reference. The ALS data and 

Pix4D-raw data are both 3D while the Pix4D-RF is 2.5D. The 

filtering result on Pix4D-raw is evaluated as below: Take the 

surface through the ALS ground points and label the DIM ground 

points as correct if they are within some margin of the ALS 

ground surface. To evaluate the 2.5D filtering result, the ALS 

data are also converted to 2.5D and only the label of the highest 

point in each bin is taken as the true label. Three quantitative 

measures are calculated: Type I error is the percentage of bare 

ground points actually labelled as non-ground points by 

LASground; Type II error is the percentage of non-ground points 

labelled as ground points; Total error is the overall statistics of 

points being wrongly classified. The filtering results are shown 

in Table 1.  

 

Dataset Type I Type II Total error 

DIM-raw 22.3% 5.2% 8.7% 

DIM-RF 12.0% 7.0% 8.4% 

Table 1. Quantitative evaluation of the filtering results 
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Table 1 shows that the total error by filtering DIM-raw (8.7%) 

and DIM-RF (8.4%) are similar. Type I error of DIM-raw is 

much larger than if DIM-RF is used. The reason is that many 

ground points on the narrow streets in shadow are misclassified 

as non-ground points. These DIM points are usually a mixture of 

real ground points and blunders. LASground will filter out the 

above points and only the lowest points will be taken as ground 

points. In addition, the level of Type II errors is smaller than Type 

I errors. Type II error of DIM-RF is slightly larger than DIM-raw. 

If we check the filtering effect of individual trees and objects (e.g. 

chairs and dustbins) on the southeast square in Fig. 7(c), the 

reason for a relatively high Type II error is that some small 

objects are smoothed by using a median ranking filter. 

LASground will classify these locations into ground while the 

ground truth is non-ground. In contrast, the details of small 

objects can be better retained in the DIM-raw data. When 

filtering DIM-raw data, the ground and non-ground points can be 

better separated. 

 

In summary, the advantage of using a ranking filter on the point 

cloud is that the filtered point cloud contains less noise. When 

filtering the points after ranking filtering, LASground performs 

better in avoiding non-ground points. That is, compared to 

filtering the raw DIM points, filtering DIM-RF will deliver less 

ground locations with higher reliability. On the other hand, the 

disadvantage of using ranking filter is that some low objects may 

be smoothed. These non-ground locations are thus likely to be 

misclassified as ground by LASground. In contrast, the details of 

small objects can be better retained in the DIM-raw data. When  

filtering the DIM-raw data, the ground and non-ground points can 

be better separated by LASground. 

 

 

4. EVALUATING THE POTENTIAL ACCURACY OF 

DTMS 

 

4.1 Comparison of DTM Accuracy Derived from Pix4D and 

SURE Point Clouds 

The observations in Section 3 indicated that LASground is quite 

tolerant to the random noise when filtering the DIM points. In 

particular, all the DIM points on the paved ground, bare earth and 

grassland are likely to be taken as terrain points by LASground. 

In this section, we explore the potential accuracy that can be 

obtained by DTM derived from dense matching. We do not 

interpolate on the point cloud but we directly calculate the 

deviation of the DIM point cloud from the reference. The ALS 

data are taken as reference data and only the vertical accuracy is 

studied. In the evaluation stage, the square patches of 2 m × 2 m 

are taken as the evaluation unit. Compared to the point-to-point 

comparison, the accuracy measures calculated based on each 

patch are more robust to local blunders and random noise. The 

study area is the whole region shown in Fig. 1 (1.6 km2). 

 

First, the ALS data are filtered using LASground. Then, square 

patches are detected from the ground points. A patch is valid if it 

meets two conditions: (1) The number of points in this patch is 

larger than a certain threshold; (2) The RPF (Eq. 1) is better than 

2 cm. The patches in shadow are eliminated. The shadow mask 

is calculated from an orthoimage based on a grayscale histogram 

(Sirmacek and Unsalan, 2009). Only if all the four corners and 

the center location of a certain patch lie in the non-shaded 

locations, the patch will be taken as valid. The selected patches 

are divided into two categories based on the green index on the 

ortho image: ground and grassland. Finally 24,634 ground 

patches and 7381 grassland patches are selected for accuracy 

evaluation. 

 

 

After the patches are detected from the ALS point cloud, the DIM 

points within the square patch boundary in 2.5D space are 

cropped for evaluation. Concerning a certain patch, a plane is 

fitted to the ALS points, the mean deviation from the DIM points 

to the plane is calculated as the accuracy measure as shown in 

Eq. (2). 𝜇𝑖 denotes the mean deviation between the DIM points 

and the ALS points for the jth patch. i denotes the ith patch in the 

whole study area, j denotes the jth point in this patch. There are 

𝑛𝑖 points in this patch. ∆ℎ𝑖𝑗 is the distance from the jth point to 

the fitted ALS plane. 𝜇𝑖 is the mean deviation between the DIM 

points and the ALS points for the jth patch. 

 

 𝜇𝑖 =
1

𝑛𝑖
∑ ∆ℎ𝑖𝑗

𝑛𝑖

𝑗=1
  (2) 

 

The distribution of mean deviations is shown in Fig. 8. 

Interestingly, the distribution of the deviations for Pix4D and 

SURE are quite different even though the same EOs were used 

for dense matching. Fig. 8 also shows that there is only one peak 

in the SURE histograms but there are two peaks in the Pix4D 

histograms. The mean deviation on the ground ranges in [-0.18 

m, 0.18 m] for Pix4D data, and ranges in [-0.15 m, 0.15 m] for 

SURE data. The mean deviation on the grassland ranges in [-0.2 

m, 0.2 m] for Pix4D data, and ranges in [-0.15 m, 0.15 m] for 

SURE data. 

 

In order to make quantitative evaluation of the DIM accuracy in 

the whole study area, the following two accuracy measures are 

calculated considering all the patches: 

 - Mean of mean deviations: 

 

 μ̅ =
1

m
∑ μi

m

i=1
 (3) 

 

 - Standard deviation of mean deviations: 

 

 𝜎𝜇𝑖
= √

1

𝑚 − 1
∑ (𝜇𝑖 − 𝜇̅)2

𝑚

𝑖=1
 (4) 

μ̅ is calculated by averaging the mean deviations in the whole 

area. m is the number of patches in the whole study area. The 𝜎𝜇𝑖
 

is calculated to represent the standard deviation of the mean 

deviations from the μ̅. The accuracy measures at the whole block 

are shown in Table 2. 

 

Dataset μ̅ 𝜎𝜇𝑖
 

ground-pix4d 0.057 0.056 

ground-sure 0.016 0.048 

grassland-pix4d 0.078 0.077 

grassland-sure 0.030 0.056 

Table 2. Accuracy measures of DIM point cloud in the whole 

block. (Unit: m) 

 

Table 2 shows that μ̅ of SURE point cloud is better than for the 

Pix4D point cloud on both ground and grassland as could already 

be seen in the histograms of Fig. 8. In addition, the  
𝜎𝜇𝑖

 of SURE point cloud is better than Pix4D point cloud on both 

ground and grassland. 
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Figure 8. Distribution of mean deviations for the DIM points generated by Pix4D and SURE. Left: 24,634 ground patches; (b) 7381 

grassland patches. Note that the dark brown between the blue and light brown histograms is actually the overlapping of the two 

histograms. 

 

Table 2 also shows that the bias between the DIM data and the 

ALS data on the grassland is larger than the bias on the ground. 

That is, the accuracy on the grassland is worse than the ground. 

This can be explained by that dense matching usually delivers the 

points on the top surface of the grassland but laser scanning can 

penetrate the shallow grass and record the points on the real 

terrain. So the bias on the grassland includes not only the dense 

matching errors but also the grass height (Ressl et al., 2016). 

 

When filtering the DIM point clouds in the urban scene using 

LASground, all the points on the ground and grassland will 

probably be classified as ground points without the negative 

impact of artefacts. However, the problem is that dense matching 

will deliver some points higher than the true terrain on the 

grassland, which will result in incorrect elevated DTMs. 

 

4.2 The Impact of Ranking Filter on The Potential DTM 

Accuracy 

In Section 3, we found that a ranking filter leads to improvements 

in the ground point filtering. In this section, we check whether 

the ranking filter would have an impact on the potential DTM 

accuracy achieved by the Pix4d point cloud. Similar to Section 

4.1, the mean deviations for 24,634 ground patches and 7381 

grassland patches are calculated and incorporated into the mean 

of mean deviations μ̅ and standard deviation of mean deviations 

𝜎𝜇𝑖
 as shown in Table 3. RF indicates that this point cloud is 

preprocessed by a ranking filter. 

 

Dataset μ̅ 𝜎𝜇𝑖
 

ground-pix4d-RF 0.048 0.063 

grassland-pix4d-RF 0.067 0.085 

Table 3. Accuracy measures of DIM point cloud after pre-

processed by a ranking filter. (Unit: m) 

 

Table 3 shows that for both the ground and grassland, when RF 

is used in a preprocessing step, μ̅ gets improved by around 1 cm. 

However, 𝜎𝜇𝑖
 increases slightly. That is, when the point cloud is 

pre-processed by a ranking filter, generally the potential DTM 

accuracy will improve but the ranking filter will also bring more 

variation to the DTM errors at the whole photogrammetric level. 

In addition, we can study the impact of a ranking filter onto the 

point cloud accuracy by calculating the deviation between DIM-

RF and DIM-raw for every patch. Fig. 9 shows the distribution 

of deviation values for ground patches and grassland patches, 

respectively. According to statistics, on 13.3% grassland patches 

and 8.6% patches the deviations between DIM-RF and DIM-raw 

are larger than 10 cm. The deviation values are relatively small 

compared to the large patch size (2 m × 2 m). In addition, the 

deviations between DIM-RF and DIM-raw on the paved ground 

is generally smaller than on the grassland, which can be 

explained by the fact that there are usually more artefacts and 

surface fluctuation on grassland. 

 

 
Figure 9. Distribution of deviation between DIM-RF and DIM-

raw. Top: paved ground; Bottom: grassland. 

 

 

5. CONCLUSIONS 

 

This paper studies the question whether the standard Lidar filters 

can be used to filter dense matching points in order to derive 

accurate DTMs. Filtering results on the homogeneous ground and 

grassland show that the filtering performance depends on the 

noise level and scene complexity. LASground is verified to be 

relatively robust to random noise. However, filtering algorithms 
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may only select the lower points as ground points in case of a 

large amount of noise. In addition, artefacts and blunders may 

appear in the dense matching points due to low image contrast or 

poor texture (e.g. in the shadow, along the narrow street, etc.). In 

these cases, LASground will probably classify some noisy 

ground points as non-ground points. Filtering results on a city 

block show that LASground performs well on the grassland, 

along bushes and around individual trees if the point cloud is 

sufficiently precise. In addition, a ranking filter can be used to 

filter the DIM point cloud before LASground filtering. 

LASground will identify fewer but more reliable ground 

locations. However, a ranking filter will also smooth some 

ground details so some small objects on the terrain will be filtered 

out. Since we aim at obtaining accurate DTMs, the ranking 

filtering shows its value in identifying only reliable ground 

points. 

 

The accuracy of the point cloud determines the final DTM 

accuracy. The accuracy of the DIM point clouds is evaluated 

using a patch-based method. The bias from the reference is 

studied in the whole study area. Although the same EOs are used 

for dense matching, the vertical accuracy of SURE point cloud 

on the ground is better than the Pix4D point cloud. In addition, 

we also verify that the error on the grassland is larger than the 

error on the paved ground. We also found that the ranking filter 

brought only very small deviation to the point cloud. Therefore, 

the ranking filter might be taken a useful pre-processing tool 

before filtering noisy photogrammetric point clouds. Future work 

may focus on modifying the previous Lidar filtering algorithms 

so that they can be used on relatively noisy DIM point clouds. 
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