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ABSTRACT:

The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively
studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for
3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping
System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency
between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the
sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans.
Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired
simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset
of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and
texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed
independently in a separate thread or computer.

1. INTRODUCTION

1.1 Context

Mobile Mapping Systems (MMS) have become more and more
popular to map cities from the ground level, allowing for a very
interesting compromise between level of detail and productivity.
Such MMS are increasingly becoming hybrid, acquiring both im-
ages and LiDAR point clouds of the environment. However, these
two modalities remain essentially exploited independently, and
few works propose to process them jointly. Nevertheless, such a
joint exploitation would benefit from the high complementarity
of these two sources of information:

• High resolution of the images vs high precision of the Li-
DAR range measurement.

• Passive RGB measurement vs active intensity measurement
in near infrared.

• Different acquisition geometries.

In this paper, we propose a fusion of image and LiDAR infor-
mation into a single representation: a textured mesh. Textured
meshes have been the central representation for virtual scenes in
Computer Graphics, massively used in the video games and ani-
mation movies industry. Graphics cards are highly optimized for
their visualization, and they allow a representation of scenes that
holds both their geometry and radiometry. Textured meshes are
now gaining more and more attention in the geospatial industry as
Digital Elevation Models coupled with orthophotos, which were
well adapted for high altitude airborne or space-borne acquisi-
tion, are not suited for the newer means of acquisition: closer
range platforms (drones, mobile mapping) and oblique imagery.

We believe that this trend will accelerate, such that the geospatial
industry will have an increasing need for efficient and high qual-
ity surface reconstruction and texturing algorithms that scale up
to the massive amounts of data that these new means of acquisi-
tion produce.

This paper focuses on:

• using a simple reconstruction approach based on the sensor
topology

• adapting the state-of-the-art texturing method of (Waechter
et al., 2014) to mobile mapping images and LiDAR scans

We are able to produce a highly accurate surface mesh with a high
level of detail and high resolution textures at city scale.

1.2 Related work

In this paper we present a visibility consistent 3D mapping frame-
work to construct large scale urban textured mesh using both
oriented images and georeferenced point cloud coming from a
terrestrial mobile mapping system. In the following, we give
an overview of the various methods related to the design of our
pipeline.

From the robotics community perspective, conventional 3D ur-
ban mapping approaches usually propose to use LiDAR or cam-
era separately but a minority has recently exploited both data
sources to build dense textured maps (Romanoni et al., 2017).
In the literature, both image-based methods (Wu, 2013, Litvinov
and Lhuillier, 2014, Romanoni and Matteucci, 2015) and LiDAR-
based methods (Hornung et al., 2013, Khan et al., 2015) often
represent the map as a point cloud or a mesh relying only on
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Figure 1. The texturing pipeline

geometric properties of the scene and discarding interesting pho-
tometric cues while a faithful 3D textured mesh representation
would be useful for not only navigation and localization but also
for photo-realistic accurate modeling and visualization.

The computer vision, computer graphics and photogramme-
try communities have generated compelling urban texturing re-
sults. (Sinha et al., 2008) developed an interactive system to
texture architectural scenes with planar surfaces from an un-
ordered collection of photographs using cues from structure-
from-motion. (Tan et al., 2008) proposed an interactive tool for
only building facades texturing using oblique images. (Garcia-
Dorado et al., 2013) perform impressive work by texturing en-
tire cities. Still, they are restricted to 2.5D scene representation
and they also operate exclusively on regular block city structures
with planar surfaces and treat buildings, ground, and building-
ground transitions differently during texturing process. In or-
der to achieve a consistent texture across patch borders in a set-
ting of unordered registered views, (Callieri et al., 2008, Gram-
matikopoulos et al., 2007) choose to blend these multiple views
by computing a weighted cost indicating the suitability of input
image pixels for texturing with respect to angle, proximity to the
model and the proximity to the depth discontinuities. However,
blending images induces strongly visible seams in the final model
especially in the case of a multi-view stereo setting because of the
potential inaccuracy in the reconstructed geometry.

While there exists a prominent work on texturing urban scenes,
we argue that large scale texture mapping should be fully auto-
matic without the user intervention and efficient enough to han-
dle its computational burden in a reasonable time frame without
increasing the geometric complexity in the final model. In con-
trast to the latter methods, (Waechter et al., 2014) proposed to use
the multi-view stereo technique (Frahm et al., 2010, Furukawa et
al., 2010) to perform a surface reconstruction and subsequently
select a single view per face based on a pairwise Markov random
field taking into account the viewing angle, the proximity to the
model and the resolution of the image. Then, color discontinu-
ities are properly adjusted by looking up the vertex’ color along
all adjacent seam edges. We consider the method of (Waechter
et al., 2014) as a base for our work since it is the first comprehen-
sive framework for texture mapping that enables fast and scalable
processing.

In our work, we abstain from the surface reconstruction step
for multiple reasons. As pointed out above, methods based on
structure-from-motion and multi-view stereo techniques usually
yield less accurate camera parameters, hence the reconstructed
geometry might not be faithful to the underlying model compared
to LiDAR based methods (Pollefeys et al., 2008) which results in
ghosting effect and strongly visible seams in the textured model.
Besides, such methods do not allow a direct and automatic pro-
cessing on raw data due to relative parameters tuning for each
dataset and in certain cases their computational cost may become

prohibitive. (Caraffa et al., 2015) proposed a generic framework
to generate an octree-cell based mesh and texture it with the reg-
ularized reflectance of the LiDAR. Instead, we propose a sim-
ple but fast algorithm to construct a mesh from the raw LiDAR
scans and produce photo-realistic textured models. In Figure 1,
we depict the whole pipeline to generate large scale high quality
textured models leveraging on the georeferenced raw data. Then,
we construct a 3D mesh representation of the urban scene and
subsequently fuse it with the preprocessed images to get the final
model.

The rest of the paper is organized as follows: In Section 2 we
present the data acquisition system. A fast and scalable mesh
reconstruction algorithm is discussed in Section 3. Section 4 ex-
plains the texturing approach. We show our experimental results
in Section 5. Finally, in Section 6, we conclude the paper propos-
ing out some future direction of research.

2. DATA ACQUISITION

Figure 2. The set of images acquired by the 5 full HD cameras
(left, right, up, in front, from behind)

Mobile mapping is a data acquisition technique that relies on sen-
sors mounted on a terrestrial platform equipped with a georefer-
encing system allowing a very precise geolocalization of the ac-
quired data. In this study, the used data was acquired by the Mo-
bile Mapping System (MMS) Stereopolis II (Paparoditis et al.,
2012) developed at the french National Mapping Agency (IGN).
It is equipped with 5 full HD cameras (2048 × 2048 px) acquir-
ing 12-bit RGB images that correspond to the five upper faces
of a cube as shown in Figure 2 and a LiDAR sensor mounted
transversally so it is able to scan the plane orthogonal to the ve-
hicle trajectory.

The used LiDAR scanner is a RIEGL VQ-250 that rotates at 100
Hz and emits 3000 pulses per rotation with 0 to 8 echoes recorded
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for each pulse, producing an average of 250 thousand points per
second in typical urban scenes. The sensor records information
for each pulse (direction (θ, φ), time of emission) and echo (am-
plitude, range, deviation).

The MMS is also mounted with a georeferencing system com-
bining a GPS, an inertial unit and an odometer. This system out-
puts the reference frame of the system in geographical coordi-
nates at 100Hz. Combining this information with the informa-
tion recorded by the LiDAR scanner and its calibration, a point
cloud in (x, y, z) coordinates can be constructed. In the same
way, using the intrinsic and extrinsic calibrations of each camera,
each acquired image can be precisely oriented. It is important
for our application to note that this process ensures that images
and LiDAR points acquired simultaneously are precisely aligned
(depending on the quality of the calibrations).

3. SENSOR TOPOLOGY BASED SURFACE
RECONSTRUCTION

In this section, we propose an algorithm to extract a large scale
mesh on-the-fly using the point cloud structured as series of line
scans gathered from the LiDAR sensor being moved through
space along an arbitrary path.

3.1 Mesh extraction process

During urban mapping, the mobile platform may stop for a mo-
ment because of external factors (e.g. road sign, red light, traffic
congestion . . . ) which results in massive redundant data at the
same scanned location. Thus, a filtering step is mandatory to get
an isotropic distribution of the line scans. To do so, we fix a min-
imum distance between two successive line scans and we remove
all lines whose distances to the previous (unremoved) line is less
than a fixed threshold. In practice, we use a threshold of 1cm,
close to the LiDAR accuracy.

Once the regular sampling is done, we consider the resulting point
cloud in the sensor space where one dimension is the acquisition
time t and the other is the θ rotation angle. Let θi be the an-
gle of the ith pulse and Ei the corresponding echo. In case of
multiple echoes, Ei is defined as the last (furthest) one, and in
case of no return, Ei does not exist so we do not build any tri-
angle based on it. In general, the number Np of pulses for a 2π
rotation is not an integer so Ei has six neighbors Ei−1, Ei+1,
Ei−n, Ei−n−1, Ei+n, Ei+n+1 where n = bNpc is the integer
part of Np. These six neighbors allow to build six triangles. In
practice, we avoid creating the same triangle more than once by
creating for each echo Ei the two triangles it forms with echoes
of greater indexes: Ei, Ei+n, Ei+n+1 and Ei, Ei+n+1, Ei+1 (if
the three echoes exist) as illustrated in Figure 3. This allows the
algorithm to incrementally and quickly build a triangulated sur-
face based on the input points of the scans. In practice, the (non
integer) number of pulses Np emitted during a 360 deg rotation
of the scanner may slightly vary, so to add robustness we check
if θi+n < θi < θi+n+1 and if it doesn’t, increase or decrease n
until it does.

3.2 Mesh cleaning

The triangulation of 3D measurements from a mobile mapping
system usually comes with several imperfections such as elon-
gated triangles, noisy unreferenced vertices, holes in the model,
redundant triangles . . . to mention a few. In this section, we focus

Figure 3. Triangulation based on the sensor space topology

on three main issues that frequently occur with mobile terrestrial
systems and affect significantly the texturing results if not ade-
quately dealt with.

3.2.1 Elongated triangles filtering In practice, neighboring
echoes in sensor topology might belong to different objects at
different distances. This generates very elongated triangles con-
necting two objects (or an object and its background). Such elon-
gated triangles might also occur when the MMS follows a sharp
turn. We filter them out by applying a threshold on the maximum
length of an edge before creating a triangle, experimentally set to
0.5m for the data used in this study.

3.2.2 Isolated pieces removal In contrast with camera and
eyes that captures light from external sources, the LiDAR scanner
is an active sensor that emits light itself. This results in measure-
ments that are dependent on the transparency of the scanned ob-
jects which cause a problem in the case of semitransparent faces
such as windows and front glass. The laser beam will traverse
these objects, creating isolated pieces behind them in the final
mesh. To tackle this problem, isolated connected components
composed by a limited number of triangles and whose diameter
is smaller than a user-defined threshold (set experimentally) are
automatically deleted from the final model.

3.2.3 Hole filling After the surface reconstruction process,
the resulting mesh may still contain a consequent number of holes
due to specular surfaces deflecting the LiDAR beam, occlusions
and the non-uniform motion of the acquisition vehicle. To over-
come this problem we use the method of (Liepa et al., 2003).
The algorithm takes a user-defined parameter which consists of
the maximum hole size in terms of number of edges and closes
the hole in a recursive fashion by splitting it until it gets a hole
composed exactly with 3 edges and fills it with the corresponding
triangle.

3.3 Scalability

The interest in mobile mapping techniques has been increasing
over the past decade as it allows the collection of dense and very
accurate and detailed data at the scale of an entire city with a
high productivity. However, processing such data is limited by
various difficulties specific to this type of acquisition especially
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the very high data volume (up to 1 TB by day of acquisition (Pa-
paroditis et al., 2012)) which requires very efficient processing
tools in terms of number of operations and memory footprint. In
order to perform an automatic surface reconstruction over large
distances, memory constraints and scalability issues must be ad-
dressed. First, the raw LiDAR scans are sliced into N chunks of
10s of acquisition which corresponds to nearly 3 million points
per chunk. Each recorded point cloud (chunk) is processed sep-
arately as explained in the work-flow of our pipeline presented
in Figure 4, allowing a parallel processing and faster production.
Yet, whereas the aforementioned filtering steps alleviate the size
of the processed chunks, the resulting models remain unneces-
sarily heavy as flat surfaces (road, walls) may be represented by
a very large number of triangles that could be drastically reduced
without loosing in detail.

Figure 4. The proposed work-flow to produce large scale models

To this end, we apply the decimation algorithm of (Lindstrom
and Turk, 1998, Lindstrom and Turk, 1999). The algorithm pro-
ceeds in two stages. First, an initial collapse cost, given by the
position chosen for the vertex that replaces it, is assigned to ev-
ery edge in the reconstructed mesh. Then, at each iteration the
edge with the lowest cost is selected for collapsing and replac-
ing it with a vertex. Finally, the collapse cost of all the edges now
incident on the replacement vertex is recalculated. For more tech-
nical details, we refer the reader to (Lindstrom and Turk, 1998,
Lindstrom and Turk, 1999).

4. TEXTURING APPROACH

This section presents the used approach for texturing large scale
3D realistic urban scenes. Based on the work of (Waechter et al.,
2014), we adapt the algorithm so it can handle our camera model
(with five perspective images) and the smoothing parameters are
properly adjusted to enhance the results. In the following, we
give the outline of this texturing technique and its requirements.

4.1 Image processing and registration

(a) before masking (b) after masking

Figure 5. Illustration of the acquired frontal images processing

To work jointly with oriented images and LiDAR scans ac-
quired by a mobile mapping system, the first requirement is that
both sensing modalities have to be aligned in a common frame.
Thanks to the rigid setting of the camera and the LiDAR mounted
on the mobile platform yielding a simultaneous image and Li-
DAR acquisition, this step is no more required. However, such
setting entails that a visible part of the vehicle appears in the ac-
quired images. To avoid using these irrelevant parts, an adequate
mask is automatically applied to the concerned images (back and
front images) before texturing as shown in Figure 5.

Typically, texturing a 3D model with oriented images is a two-
stage process. First, the optimal view per triangle is selected with
respect to certain criteria yielding a preliminary texture. Second,
a local and global color optimization is performed to minimize
the discontinuities between adjacent texture patches. The two
steps are discussed in Sections 4.2 and 4.3.

4.2 View selection

To determine the visibility of faces in the input images, a pairwise
Markov random field energy formulation is adopted to compute
a labeling l that assigns a view li to be used as texture for each
mesh face Fi:

E(l) =
∑

Fi∈Faces

Ed(Fi, li) +
∑

Fi,Fj∈Edges

Es(Fi, Fj , li, lj)

(1)
where

Ed = −
∫
φ(Fi,li)

||∇(Ili)||2dp (2)

Es = [li 6= lj ] (3)

The data term Ed (2) computes the gradient magnitude
||∇(Ili)||2 of the image into which face Fi is projected using a
Sobel operator and sum over all pixels of the gradient magnitude
image within face Fi’s projection φ(Fi, li). This term is large if
the projection area is large which means that it prefers close, or-
thogonal and in-focus images with high resolution. The smooth-
ness term Es (3) minimizes the seams visibility (edges between
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faces textured with different images). In the chosen method, this
regularization term is based on the Potts model ([.] the Iverson
bracket) which prefers compact patches by penalizing those that
might give severe seams in the final model and it is extremely fast
to compute. Finally, E(l) (1) is minimized with graph-cuts and
α-expansion (Boykov et al., 2001).

4.3 Color adjustment

After the view selection step, the obtained model exhibits strong
color discontinuities due to the fusion of texture patches com-
ing from different images and to the exposure and illumination
variation especially in an outdoor environment. Thus, adjacent
texture patches need to be photometrically adjusted. To address
this problem, first, a global radiometric correction is performed
along the seam’s edge by computing a weighted average of a set
of samples (pixels sampled along the discontinuity’s right and
left) depending on the distance of each sample to the seam edge
extremities (vertices). Then, this global adjustment is followed
by a local Poisson editing (Pérez et al., 2003) applied to the bor-
der of the texture patches. All the process is discussed in details
in (Waechter et al., 2014) work.

Finally, the corrections are added to the input images, the texture
patches are packed into texture atlases, and texture coordinates
are attached to the mesh vertices.

5. EXPERIMENTAL RESULTS

5.1 Mesh reconstruction

In Figure 6, we show the reconstructed mesh based on the sen-
sor topology and the adopted decimation process. In practice,
we parameterize the algorithm such that the approximation error
is below 3cm, which allows in average to reduce the number of
triangles to around 30% of the input triangles.

5.2 Texturing the reconstructed models

In this section, we show some texturing result (Figure 7) and the
influence of the color adjustment step on the final textured models
(Figure 8). Before the radiometric correction, one can see several
color discontinuities especially on the border of the door and on
some parts of the road (best viewed on screen). More results are
presented in the appendix to illustrate the high quality textured
models in different places in Rouen, France.

5.3 Performance evaluation

We evaluate the performance of each step of our pipeline on a
dataset acquired by Stereopolis II (Paparoditis et al., 2012) dur-
ing this project. It consists of 17km of 6 hours of acquisition
of both LiDAR and images yielding nearly to 2 billion georef-
erenced points and 40000 full HD images (more than 500 Giga-
bytes of raw data).

Acquisition # Views # Faces Image resolution
10s 120 1.8 Million 2048× 2048

Table 1. Statistics on the input data per chunk

In Table 1, we present the required input data to texture a chunk of
acquisition (10s); the average number of views and the number of
triangles after decimation. Figure 9 shows the timing of each step
in the pipeline to texture the described setting. Using a 16-core

Xeon E5-2665 CPU with 12GB of memory, we are able to gener-
ate a 3D mesh of nearly 6 Million triangles in less than one minute
compared to the improved version of Poisson surface reconstruc-
tion (Kazhdan and Hoppe, 2013) where they reconstruct a surface
of nearly 20000 triangle in 10 minutes. Moreover, in order to tex-
ture small models with few images (36 of size (768 × 584)) in a
context of super-resolution, (Goldlücke et al., 2014) takes several
hours (partially on GPU) compared to the few minutes we take to
texture our huge models. Finally, all the dataset is textured in less
than 30 computing hours.

Figure 9. Performance evaluation of a chunk of 10s of
acquisition

6. CONCLUSION AND PESPECTIVES

6.1 CONCLUSION

This paper has demonstrated a full pipeline to produce textured
mesh from mobile mapping images and LiDAR data at city scale.
It is mostly based on state-of-the-art techniques that have gained
a level of maturity compatible with such large scale processing.
The sensor mesh reconstruction is quite novel but very simple.
We believe that such a textured mesh can find multiple applica-
tions, directly through visualization of a mobile mapping acquisi-
tion, or more indirectly for processing jointly image and LiDAR
data: urban scene analysis, structured reconstruction, semantiza-
tion, ...

6.2 PERSPECTIVES

This work leaves however important topics unsolved, and most
importantly the handling of overlaps between acquired data, at in-
tersections or when the vehicle passes multiple times in the same
scene. We have left this issue out of the scope of the current paper
as it poses numerous challenges:

• Precise registration over the overlaps, sometimes referred to
as the loop-closure problem.

• Change detection between the overlaps.

• Data fusion over the overlaps, which is strongly connected
to change detection and how changes are handled in the final
model.

Moreover, this paper proposed a reconstruction from LiDAR
only, but we believe that the images hold a pertinent geometric
information that could be used to complement the LiDAR recon-
struction, in areas occluded to the LiDAR but not to the cameras
(which often happens as their geometries are different).
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(a) the reconstructed mesh colored with reflectance (b) zoomed region before decimation

(c) Decimated region (70%) with elongated triangles (d) Decimated region (70%) with regular triangles

Figure 6. Decimation of sensor space topology mesh

(a) the reconstructed mesh (b) the corresponding mesh after texturing

Figure 7. Texturing result on a region in Rouen, France

(a) before color adjustment (b) after color adjustment

Figure 8. Textured scene before (a) and after color adjustment (b)
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Finally, an important issue that is partially tackled in the textu-
ration: the presence of mobile objects. Because the LiDAR and
images are most of the time not acquired strictly simultaneously,
mobile objects might have an incoherent position between image
and LiDAR, which is a problem that should be tackled explicitly.
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APPENDIX

In this appendix, we show more texturing results obtained from
the acquired data in Rouen, France. Due to memory constraints,
we are not able to explicitly show the entire textured model
(17Km). However, we can show a maximum size of 70s (350m)
of textured acquisition (Figure 10).
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(a) 350 m textured scene (70s of acquisition)

(d) zoomed textured street walls

Figure 10. Samples of textured scenes from Rouen, France
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