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ABSTRACT:

In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data
composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric
and geometric features which are provided separately and in different combinations as input to a modern deep learning framework.
The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual
Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance
evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived
results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered
dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the
derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data
representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic
segmentation.

1. INTRODUCTION

The semantic segmentation of aerial imagery in terms of assign-
ing a semantic label to each pixel and thereby providing mean-
ingful segments has been addressed in the scope of many recent
investigations and applications. In this regard, much effort has
been spent on the ISPRS Test Project on Urban Classification,
3D Building Reconstruction and Semantic Labeling1, where one
objective is given by a 2D semantic labeling of aerial imagery
based on given multi-modal data in the form of true orthopho-
tos and the corresponding Digital Surface Models (DSMs) (Rot-
tensteiner et al., 2012; Cramer, 2010; Gerke, 2014) as shown in
Figure 1. While the radiometric information preserved in an or-
thophoto can already be sufficient to distinguish specific classes,
the geometric information preserved in the corresponding DSM
might alleviate the separation of further classes, as each modality
provides information about different aspects of the environment.

Generally, the semantic segmentation of aerial imagery based on
true orthophotos and the corresponding DSMs can be achieved
via the extraction of hand-crafted features and the use of stan-
dard classifiers such as Random Forests (Gerke and Xiao, 2014;
Weinmann and Weinmann, 2018) or Conditional Random Fields
(CRFs) (Gerke, 2014). Nowadays, however, many investigations
rely on the use of modern deep learning techniques which tend
to significantly improve the classification results (Sherrah, 2016;
Liu et al., 2017; Audebert et al., 2016; Audebert et al., 2017;
Chen et al., 2018; Marmanis et al., 2016; Marmanis et al., 2018).

1http://www2.isprs.org/commissions/comm3/wg4/tests.html
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Figure 1. The challenge: given data in the form of a true or-
thophoto (left) and the corresponding DSM (center), a labeling
close to the reference labeling (right) should be achieved, where
the classes are given by Impervious Surfaces (white), Building
(blue), Low Vegetation (cyan), Tree (green) and Car (yellow).

Some of these approaches also focus on using hand-crafted fea-
tures derived from the true orthophotos or from their correspond-
ing DSMs in addition to the given data as input to a deep learning
technique. In this regard, the Normalized Difference Vegetation
Index (NDVI) and the normalized Digital Surface Model (nDSM)
are commonly used (Gerke, 2014; Audebert et al., 2016; Liu et
al., 2017). Other kinds of hand-crafted features have however
only rarely been involved so far although they might introduce
valuable information for the semantic labeling task.

In this paper, we focus on the deep semantic segmentation of
aerial imagery based on multi-modal data. We extract a diversity
of hand-crafted features from both the true orthophotos and their
corresponding DSMs. Based on a separate and combined con-
sideration of these radiometric and geometric features, we per-
form a supervised classification involving modern deep learning
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techniques. As standard deep networks (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014) are composed of many layers
to learn complex non-linear relationships, such networks tend to
suffer from the vanishing gradient problem if they are very deep,
i.e. the gradients backpropagated through the layers become very
small so that the weights in early layers of the network are hardly
changed. This, in turn, causes a decrease in the predictive accu-
racy of the network and can be resolved by using a Residual Net-
work (ResNet) (He et al., 2016a). Relying on the ResNet archi-
tecture originally intended to classify image patches, we present a
modified ResNet architecture that allows a dense semantic image
labeling. More specifically, we make use of the ResNet-34 ar-
chitecture and introduce both atrous convolution and a shuffling
operator to achieve a semantic labeling for each pixel of the in-
put imagery. We denote the resulting deep network as Residual
Shuffling Convolutional Neural Network (RSCNN). Via perfor-
mance evaluation on a benchmark dataset, we quantify the effect
of considering the different modalities separately and in combi-
nation as input to the RSCNN. Thereby, we observe that the ad-
ditional extraction of different types of geometric features based
on the DSM and the definition of corresponding feature maps for
the RSCNN leads to an improvement of the classification results,
and that the best classification results are achieved when using se-
lected feature maps and not when using all defined feature maps.

After briefly summarizing related work (Section 2), we explain
the proposed methodology for the deep semantic segmentation
of aerial imagery based on multi-modal data (Section 3). Subse-
quently, we demonstrate the performance of our methodology by
presenting and discussing results achieved for a standard bench-
mark dataset (Sections 4 and 5). Finally, we provide concluding
remarks and suggestions for future work (Section 6).

2. RELATED WORK

For many years, the semantic segmentation of aerial imagery
based on multi-modal data has typically been addressed by ex-
tracting a set of hand-crafted features (Gerke and Xiao, 2014;
Tokarczyk et al., 2015; Weinmann and Weinmann, 2018) and
providing them as input to a standard classifier such as a Ran-
dom Forest (Weinmann and Weinmann, 2018) or a Conditional
Random Field (CRF) (Gerke, 2014). Due to the great success
of modern deep learning techniques in the form of Convolutional
Neural Networks (CNNs), however, many investigations nowa-
days focus on the use of such techniques for semantically seg-
menting aerial imagery as they tend to significantly improve the
classification results.

Regarding semantic image segmentation, the most popular deep
learning techniques are represented by Fully Convolutional Net-
works (FCNs) (Long et al., 2015; Sherrah, 2016) and encoder-
decoder architectures (Volpi and Tuia, 2017; Badrinarayanan et
al., 2017). The latter are composed of an encoder part which
serves for the extraction of multi-scale features and a decoder
part which serves for the recovery of object details and the spa-
tial dimension and thus addresses a more accurate boundary lo-
calization. A meanwhile commonly used encoder-decoder struc-
ture has been proposed with the SegNet (Badrinarayanan et al.,
2017). To aggregate multi-scale predictions, a modification of the
SegNet introduces a multi-kernel convolutional layer to perform
convolutions with several filter sizes (Audebert et al., 2016). Fur-
ther developments have been presented with the DeepLab frame-
work (Chen et al., 2016) including i) atrous convolution by intro-
ducing upsampled filters to incorporate context within a larger

field-of-view without increasing the computational burden, ii)
atrous spatial pyramid pooling to allow for robustly segmenting
objects at multiple scales and iii) a combination of the responses
at the final layer with a fully-connected CRF to improve local-
ization accuracy. Instead of using a deconvolution to recover the
spatial resolution, an efficient sub-pixel convolution layer involv-
ing a periodic shuffling operator has been proposed to upscale
feature maps (Shi et al., 2016; Chen et al., 2018).

Specifically addressing semantic segmentation based on multi-
modal data in the form of orthophotos and the corresponding
DSMs, different strategies to fuse the multi-modal geospatial
data within such a deep learning framework have been presented
(Marmanis et al., 2016; Audebert et al., 2016; Audebert et al.,
2017; Liu et al., 2017), while the consideration of semantically
meaningful boundaries in the SegNet encoder-decoder architec-
ture and also in FCN-type models has been addressed by in-
cluding an explicit object boundary detector to better retain the
boundaries between objects in the classification results (Marma-
nis et al., 2018). As an alternative to involving a boundary detec-
tor, it has been proposed to discard fully-connected layers (which
reduce localization accuracy at object boundaries) and to addi-
tionally avoid the use of unpooling layers (which are more com-
plicated and e.g. used in SegNet) (Chen et al., 2017).

While lots of investigations focused on the improvement of the
classification pipeline, however, only little attention has been paid
to the input data itself. On the one hand, a true end-to-end pro-
cessing pipeline from orthophotos and the corresponding DSMs
to a semantic labeling (Marmanis et al., 2016) seems desirable.
On the other hand, however, it remains unclear to which degree
the use of hand-crafted features derived from the orthophotos or
their corresponding DSMs in the form of additional feature maps
serving as input to the deep network can still affect the quality
of the semantic labeling. Such hand-crafted features have al-
ready been involved with the Normalized Difference Vegetation
Index (NDVI) and the normalized Digital Surface Model (nDSM)
(Gerke, 2014; Audebert et al., 2016; Liu et al., 2017), yet other
kinds of hand-crafted radiometric or geometric features which
can be extracted from a local image neighborhood (Gerke and
Xiao, 2014; Tokarczyk et al., 2015; Weinmann and Weinmann,
2018) have only rarely been involved so far although they might
introduce valuable information for the semantic labeling task.

In this paper, we investigate the value of different types of hand-
crafted features for the semantic segmentation of aerial imagery
based on multi-modal data. We extract a diversity of hand-crafted
features from both the true orthophotos and their corresponding
DSMs. Thereby, we involve hand-crafted radiometric features
such as the NDVI and one of its variants, but also radiometric
features derived from transformations in analogy to the definition
of color invariants (Gevers and Smeulders, 1999). Furthermore,
we involve hand-crafted geometric features in the form of the
nDSM (Gerke, 2014) and features extracted from the 3D struc-
ture tensor and its eigenvalues. While the analytical considera-
tion of these eigenvalues allows reasoning about specific object
structures (Jutzi and Gross, 2009), we use the eigenvalues to de-
fine local 3D shape features (West et al., 2004; Demantké et al.,
2011; Weinmann et al., 2015; Hackel et al., 2016) which can ef-
ficiently be calculated on the basis of local image neighborhoods
(Weinmann, 2016; Weinmann and Weinmann, 2018). Based on a
separate and combined consideration of these radiometric and ge-
ometric features, we perform a supervised classification using a
deep network. For the latter, we take into account the potential of
the Residual Network (ResNet) (He et al., 2016a) in comparison
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to standard networks like AlexNet (Krizhevsky et al., 2012) and
the VGG networks (Simonyan and Zisserman, 2014) as it allows
for a higher predictive accuracy due to its capability of reducing
the problem of vanishing gradients. Relying on the ResNet-34
architecture, we introduce both atrous convolution (Chen et al.,
2016) and a shuffling operator (Chen et al., 2018) to assign each
pixel of the input imagery a semantic label.

3. METHODOLOGY

The proposed methodology addresses the semantic interpretation
of aerial imagery by exploiting data of several modalities (Sec-
tion 3.1) which are provided as input to a deep network (Sec-
tion 3.2). The result is a dense labeling, i.e. each pixel is assigned
a respective semantic label.

3.1 Feature Extraction

Given a true orthophoto and the corresponding DSM on a regu-
lar grid, the information may be stored in the form of a stack of
feature maps (i.e. images containing the values of a respective
feature on a per-pixel level), whereby three feature maps corre-
spond to the spectral bands used for the orthophoto and one fea-
ture map corresponds to the DSM. Further information can easily
be taken into account by adding respective feature maps. In total,
we define eight radiometric features (Section 3.1.1) and eight ge-
ometric features (Section 3.1.2) for the given regular grid. Based
on these features, we define corresponding feature maps which
serve as input to a CNN.

3.1.1 Radiometric Features In our work, we assume that the
spectral bands used for the orthophoto comprise the near-infrared
(NIR), red (R) and green (G) bands (Cramer, 2010; Rottensteiner
et al., 2012; Gerke, 2014). Accordingly, we define the reflectance
in the near-infrared domain, in the red domain and in the green
domain as features denoted by the variables RNIR, RR and RG,
respectively. In addition, we consider color invariants as features.
In analogy to the definition of color invariants derived from RGB
imagery to improve robustness with respect to changes in illumi-
nation, we consider normalized colors which represent a simple
example of such color invariants (Gevers and Smeulders, 1999):

RnNIR =
RNIR

RNIR +RR +RG
(1)

RnR =
RR

RNIR +RR +RG
(2)

RnG =
RG

RNIR +RR +RG
(3)

Besides these features derived via radiometric transformation, we
extract further radiometric features in the form of spectral in-
dices. In this regard, the Normalized Difference Vegetation Index
(NDVI) (Rouse, Jr. et al., 1973) is defined as

NDVI =
RNIR −RR
RNIR +RR

(4)

and represents a strong indicator for vegetation. A slight variation
of this definition by replacing RR with RG results in the Green
Normalized Difference Vegetation Index (GNDVI) (Gitelson and
Merzlyak, 1998) defined as

GNDVI =
RNIR −RG
RNIR +RG

(5)

which is more sensitive to the chlorophyll concentration than the
original NDVI.

3.1.2 Geometric Features In addition to the radiometric fea-
tures, we extract a set of geometric features. The most intu-
itive idea in this regard is to take into account that the heights
of objects above ground are more informative than the DSM it-
self. Consequently, we use the DSM to calculate the normal-
ized Digital Surface Model (nDSM) via the approach presented
in (Gerke, 2014). This approach relies on first classifying pixels
into ground and off-ground pixels using the LAStools software2.
Subsequently, the height of each off-ground pixel is adapted by
subtracting the height of the closest ground point. Besides the
nDSM, we involve a set of local shape features extracted from
the DSM as geometric features. Using the spatial 3D coordinates
corresponding to a local 3×3 image neighborhood, we efficiently
derive the 3D covariance matrix also known as the 3D structure
tensor (Weinmann, 2016; Weinmann and Weinmann, 2018). The
eigenvalues of the 3D structure tensor are normalized by their
sum which results in normalized eigenvalues λ1, λ2 and λ3 with
λ1 ≥ λ2 ≥ λ3 ≥ 0 and λ1+λ2+λ3 = 1. The normalized eigen-
values, in turn, are used to calculate the features of linearity L,
planarity P , sphericity S, omnivariance O, anisotropy A, eigen-
entropy E and change of curvature C (West et al., 2004; Pauly et
al., 2003) which have been involved in a variety of investigations
for 3D scene analysis (Demantké et al., 2011; Weinmann et al.,
2015; Hackel et al., 2016):

L =
λ1 − λ2

λ1
(6)

P =
λ2 − λ3

λ1
(7)

S =
λ3

λ1
(8)

O = 3
√
λ1λ2λ3 (9)

A =
λ1 − λ3

λ1
(10)

E = −λ1 ln (λ1)− λ2 ln (λ2)− λ3 ln (λ3) (11)

C =
λ3

λ1 + λ2 + λ3
(12)

3.2 Supervised Classification

For classification, we focus on the use of modern deep learning
techniques in the form of convolutional neural networks, where
standard networks like AlexNet (Krizhevsky et al., 2012) and the
VGG networks (Simonyan and Zisserman, 2014) are composed
of a collection of convolutional layers, max-pooling layers and
activation layers followed by fully-connected classification lay-
ers. The use of deep networks with many layers allows learn-
ing complex non-linear relationships, yet it has been found that
the performance of very deep networks tends to decrease when
adding further layers via simply stacking convolutional layers as
indicated in the left part of Figure 2. This is due to the vanish-
ing gradient problem during training, i.e. the gradient of the error
function decreases when being backpropagated to previous lay-
ers and, if the gradient becomes too small, the respective weights
of the network remain unchanged (He et al., 2016b). One of the
most effective ways to address this issue is given with the Resid-
ual Network (ResNet) (He et al., 2016a) whose architecture is
characterized by basic units as shown in the center part of Fig-
ure 2. These basic units, in turn, contain an identity mapping of

2http://rapidlasso.com/lastools/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2, 2018 
ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-65-2018 | © Authors 2018. CC BY 4.0 License.

 
67



Conv 

BN 

ReLU 

Conv 

BN 

ReLU 

XL 

XL+1 

Conv 

BN 

ReLU 

Conv 

BN 

ReLU 

XL 

XL+1 

Addition 

Conv 

BN 

ReLU 

Conv 

BN 

ReLU 

XL 

XL+1 

Addition 

Figure 2. Three popular network connection styles: plain
structure (left), original residual structure (center) and full pre-
activation residual structure (right): the convolutional layers in
residual structures are characterized by the number of filters n,
the atrous rate r and the stride s (first convolutional layer: n, r,
s; second convolutional layer: n, r = 1, s = 1).

the input of the basic unit and are motivated by the fact that opti-
mizing the residual mapping is easier than optimizing the original
mapping. The additional gain in computational efficiency allows
to form deep networks with more than 100 convolutional layers.
A further upgrade of the original residual structure to full pre-
activation style (He et al., 2016b) is indicated in the right part of
Figure 2 and has proven to be favorable in theory and through ex-
periments as no ReLU layer will impede the flow of information
and the backpropagation of errors.

We make use of residual blocks as shown in the right part of Fig-
ure 2 to define our deep network. Therefore, each residual block
is parameterized by the number of filters n, atrous rate r and
stride s. Relying on these residual blocks, we use the structure
of a ResNet-34 and modify it to the task of dense labeling by in-
troducing atrous convolution (Chen et al., 2016) and a shuffling
operator (Chen et al., 2018). Thereby, we take into account that
pooling layers or convolutional layers with a stride larger than 1
will cause a reduction of the resolution. We refer to such layers as
Resolution Reduction Layers (RRLs). To avoid severe resolution
reduction and thus spatial information loss, we only keep the first
three RRLs and change the strides of the remaining RRLs to 1. In
addition, we remove the layer of global average pooling and its
subsequent layers to allow for image segmentation. The resulting
network is referred to as Residual Shuffling Convolutional Neural
Network (RSCNN) and shown in Figure 3.

Atrous Convolution As the field-of-view of the deeper lay-
ers will shrink after removing RRLs, we involve atrous convo-
lution (Chen et al., 2016) which can be used to compute the final
CNN responses at an arbitrary resolution through re-purposing
the networks trained on image classification to semantic segmen-
tation and to enlarge the field-of-view of filters without the need
for learning any extra parameters. Experiments also reveal that

networks adopting a larger atrous rate will have a larger field-
of-view, thus resulting in better performance. Considering a one-
dimensional signal x[i], the output y[i] of atrous convolution with
a filter w[k] of length K is defined as

y[i] =

K∑
k=1

x[i+ r · k]w[k], (13)

where r is the atrous rate. For r = 1, this corresponds to the
standard convolution. The use of atrous convolution in our work
thus follows the principles mentioned in (Chen et al., 2016).

Shuffling Operator To achieve a dense prediction, we involve
a shuffling operator to increase the resolution by combining fea-
ture maps in a periodic shuffling manner. The concept of the shuf-
fling operator has been originally introduced for super-resolution
(Shi et al., 2016) and it aims at the upscaling of feature maps.
Inspired by this idea, it has been proposed to introduce this oper-
ator for the semantic segmentation of aerial imagery (Chen et al.,
2018), and respective experiments reveal that the use of a shuf-
fling operator improves the predictive accuracy through forcing
networks to learn upscaling. For example, if we need to double
the resolution of the feature map, we can combine four feature
maps as shown in Figure 4, which can be expressed as

I ′(ci, x, y) = I(ci × u2 +mod(y, u)× u (14)

+mod(x, u), bx
u
c, b y

u
c), (15)

where I ′ refers to the feature map after the combination, I refers
to the feature map before the combination, ci refers to the order
of the feature map and (x, y) is the location. The only hyper-
parameter for the shuffling operator is the upscaling rate u. In
our experiments, we adopt the shuffling operator with an upscal-
ing rate of u = 4 and bilinear interpolation to recover the spatial
resolution as done in (Chen et al., 2018).

4. EXPERIMENTAL RESULTS

In the following, we first describe the used dataset (Section 4.1).
Subsequently, we summarize the conducted experiments (Sec-
tion 4.2) and, finally, we present the derived results (Section 4.3).

4.1 Dataset

For our experiments, we use the Vaihingen Dataset (Cramer,
2010; Rottensteiner et al., 2012) which was acquired over a rel-
atively small village with many detached buildings and small
multi-story buildings. This dataset contains 33 patches of differ-
ent sizes, whereby the given regular grid corresponds to a ground
sampling distance of 9 cm. For 16 patches, a very high-resolution
true orthophoto and the corresponding DSM derived via dense
image matching techniques are provided as well as a reference
labeling with respect to six semantic classes represented by Im-
pervious Surfaces, Building, Low Vegetation, Tree, Car and Clut-
ter/Background. According to the specifications, the class Clut-
ter/Background includes water bodies and other objects such as
containers, tennis courts or swimming pools. We use 11 of the
labeled patches for training and the remaining 5 labeled patches
for evaluation.3

3Please note that the definition of training and test data thus differs
from the one used for the ISPRS benchmark.
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Figure 3. The overall structure of our Residual Shuffling Convolutional Neural Network (RSCNN): the symbol “/2” in the convolutional
block refers to the stride of the convolutional layers and symbols like “/2” upon arrows indicate that the resolution is reduced to half of
the input in length, while symbols like “X3” after a residual block indicate that the corresponding block is repeated three times.
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Figure 4. Basic concept of the shuffling operator: it converts
c × u2 feature maps of size H ×W into c feature maps of size
(H × u)× (W × u). Here: H = 2, W = 2, u = 2, c = 1.

4.2 Experiments

For each orthophoto and the corresponding DSM, we extract the
set of hand-crafted features (cf. Section 3.1). Based on the or-
thophoto, we derive eight feature maps containing radiometric
information with respect to the reflectance in the near-infrared
(NIR), red (R) and green (G) domains, the normalized near-
infrared (nNIR), normalized red (nR) and normalized green (nG)
values, the Normalized Difference Vegetation Index (NDVI) and
the Green Normalized Difference Vegetation Index (GNDVI).
Based on the DSM, we derive eight feature maps containing ge-
ometric information with respect to the normalized Digital Sur-
face Model (nDSM), linearity (L), planarity (P), sphericity (S),
omnivariance (O), anisotropy (A), eigenentropy (E) and change
of curvature (C). A visualization of the behavior of these features
for a part of the considered scene is provided in Figure 5.

Then, we focus on a separate and combined consideration of ra-
diometric and geometric information as input to the RSCNN (cf.
Section 3.2). We train and evaluate our network using the MXNet
library (Chen et al., 2015) on one NVIDIA TITAN X GPU with
12GB RAM. The network parameters are initialized using the
method introduced in (He et al., 2015). Regarding the choice of
the loss function, we use the cross-entropy error which is summed
over all the pixels in a batch of 16 patches. To optimize this ob-
jective function, we use the standard Stochastic Gradient Descent
(SGD) with a momentum of 0.9. During training, the samples in
each batch are represented by patches of 56 × 56, 112 × 112,
224 × 224 and 448 × 448 pixels for 200 epochs, 50 epochs, 30
epochs and 20 epochs, respectively. The learning rate is kept at
0.01 as the adaptation of Batch Normalization (BN) (Ioffe and
Szegedy, 2015) allows for training with a big training rate. Each
patch fed into the network is normalized by the subtraction of the
mean value and a subsequent division by the standard deviation.
In contrast to the common strategy that prepares patches before-
hand, and in which patches are regularly cropped from the orig-
inal large images and then saved on hard-disks before training,
each sample is cropped randomly and temporarily in our experi-
ments as proposed in (Chen et al., 2017).

In all experiments, the Patches 1, 3, 5, 7, 13, 17, 21, 23, 26, 32 and
37 are used to train the deep network, while the Patches 11, 15,
28, 30 and 34 are used for performance evaluation. As evaluation
metrics, we consider the Overall Accuracy (OA), the mean F1-
score across all classes (mF1) and the mean Intersection-over-
Union (mIoU). To reason about the performance for each single
class, we additionally consider the classwise F1-scores.

4.3 Results

The classification results derived for different subsets of the de-
fined feature maps are provided in Table 1. This table also con-
tains information about the number of parameters as well as the
time required to train the RSCNN for the respective input data.
For selected subsets, the achieved labeling is visualized in Fig-
ures 6 and 7 for a part of Patch 30 of the Vaihingen Dataset.

5. DISCUSSION

The derived results (cf. Table 1) clearly indicate that reason-
able classification results can already be achieved by only con-
sidering true orthophotos (OA = 84.59%, mF1 = 82.81%,
mIoU = 59.54%). In contrast, the classification results are sig-
nificantly worse when only considering geometric information
(OA = 70.95 . . . 76.07%, mF1 = 59.58 . . . 71.04%, mIoU =
39.00 . . . 47.45%). For the class Building, the corresponding F1-
score reveals a slight decrease in most cases. However, the de-
crease is more significant for the other classes, particularly for
the classes Low Vegetation and Car for which the F1-scores are
reduced by more than 20%. The fusion of radiometric and geo-
metric information improves the classification results. While the
mF1 and mIoU reach an almost constant level around 83% and
60%, respectively, the OA is improved up to 85.69% when using
the NIR, R, G, nDSM, NDVI, L, P and S feature maps as input
to the classifier. The derived results also reveal that considering
the NDVI feature map in addition to the NIR, R, G and nDSM
feature maps does not yield better classification results which is
in accordance with insights of other investigations (Gerke, 2014).
In contrast, the consideration of geometric cues given in the L,
P and S feature maps in addition to the NIR, R, G and nDSM
feature maps leads to slightly improved classification results.

Interestingly, the best classification result is not obtained for the
case when all feature maps are used as input to the network (cf.
Table 1). This effect is likely to indicate the Hughes phenomenon
(Hughes, 1968; Guyon and Elisseeff, 2003) characterized by a
decrease in classification accuracy when increasing the number of
considered features. This might be due to the fact that redundant
and possibly even irrelevant features are included in the semantic
segmentation task. As a consequence, the end-to-end processing
pipeline with a deep network should still involve feature extrac-
tion and feature selection techniques to select appropriate input
data for the network.
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Figure 5. Visualization of the used radiometric information (first and second row) and the used geometric information (third and fourth
row) for a part of Patch 30: the color encoding reaches from blue (low values) via green (medium values) to yellow (high values).

The visualizations of derived results for semantic segmentation
(cf. Figure 6) additionally reveal discontinuities in the final pre-
diction when using only radiometric features or only geometric
features. These artifacts in the classification results arise from
the fact that, due to the limited GPU memory, the whole image
is partitioned into patches of 448× 448 pixels and these patches
are fed into the network for prediction. Compared to the pixels at
the center of patches, the marginal pixels have a smaller field-of-
view which may result in inaccurate predictions and discontinu-
ities. Indeed, the visualized results correspond to the bottom right
part of Patch 30. When using both radiometric and geometric in-
formation, this issue is resolved as the geometric and radiometric
information are complementary and their combination allows a
better prediction. When visualizing the used radiometric and ge-
ometric features (cf. Figure 5), particularly the nDSM reveals

non-intuitive characteristics as local constraints like horizontal
ridge lines are not preserved. Consequently, a potential source
for improvement could be to directly approximate the topology of
the considered scene from the spatial 3D coordinates using spa-
tial bins and a coarse-to-fine strategy (Blomley and Weinmann,
2017) instead of using the LAStools software to derive the nDSM
(Gerke, 2014).

6. CONCLUSIONS

In this paper, we have focused on the use of multi-modal data
for the semantic segmentation of aerial imagery. Using true or-
thophotos, the corresponding DSMs and further representations
derived from both of them, we have defined different sets of
feature maps as input to a deep network. For the latter, we
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Considered Feature Maps NP ttrain F1(IS) F1(B) F1(LV) F1(T) F1(C) OA mF1 mIoU
NIR-R-G 21.1448M 5 h 86.29 91.42 75.03 85.01 76.29 84.59 82.81 59.54
DSM 21.1385M 3 h 72.45 89.27 52.80 78.81 47.89 74.12 68.24 44.97
nDSM 21.1385M 3 h 68.20 88.78 46.92 76.83 17.16 70.95 59.58 39.00
L-P-S 21.1448M 5 h 72.01 84.74 54.08 78.30 52.81 72.78 68.39 44.51
nDSM-L-P-S 21.1479M 6 h 73.70 90.26 54.90 79.40 53.56 75.30 70.37 46.81
NIR-R-G-DSM 21.1479M 6 h 86.75 92.44 75.27 85.16 77.75 85.06 83.47 60.11
NIR-R-G-nDSM 21.1479M 6 h 87.41 92.98 75.61 85.25 77.40 85.47 83.73 60.89
NIR-R-G-nDSM-NDVI 21.1510M 7 h 87.43 92.64 75.75 85.30 75.68 85.42 83.36 60.03
NIR-R-G-nDSM-NDVI-L-P-S 21.1542M 7 h 87.63 92.81 76.31 85.47 76.55 85.69 83.76 60.48
Radiometry 21.1604M 7 h 86.60 91.31 75.34 85.08 75.45 84.72 82.76 59.24
Geometry 21.1604M 7 h 74.44 90.45 57.23 80.00 53.08 76.07 71.04 47.45
Radiometry & Geometry 21.1855M 10 h 87.65 92.72 75.47 85.11 75.82 85.40 83.35 60.35

Table 1. Number of parameters NP, training time ttrain and derived classification results for different subsets of the defined feature
maps serving as input to the RSCNN: the F1-scores and the values for OA, mF1 and mIoU are given in % and the classes are abbreviated
(IS: Impervious Surfaces; B: Building; LV: Low Vegetation; T: Tree; C: Car).

Reference Radiometry Geometry Radiometry & Geometry 

Figure 6. Visualization of the reference labeling and the results for semantic segmentation when using only radiometric features, when
using only geometric features and when using both geometric and radiometric features (from left to right): the color encoding addresses
the classes Impervious Surfaces (white), Building (blue), Low Vegetation (cyan), Tree (green) and Car (yellow).

Reference NIR-R-G-DSM NIR-R-G-nDSM-NDVI-L-P-S Radiometry & Geometry 

Figure 7. Visualization of the reference labeling and the results for semantic segmentation when using the original data (i.e. only the
NIR, R, G and DSM feature maps), when using a specific subset of all defined feature maps (here the NIR, R, G, nDSM, NDVI, L, P
and S feature maps) and when using all defined feature maps (from left to right): the color encoding addresses the classes Impervious
Surfaces (white), Building (blue), Low Vegetation (cyan), Tree (green) and Car (yellow).

have proposed a Residual Shuffling Convolutional Neural Net-
work (RSCNN) which combines the characteristics of a Residual
Network with the advantages of atrous convolution and a shuf-
fling operator to achieve a dense semantic labeling. Via perfor-
mance evaluation on a benchmark dataset, we have analyzed the
value of radiometric and geometric features when used separately
and in different combinations for the semantic segmentation task.
The derived results clearly reveal that true orthophotos are bet-
ter suited as the basis for classification than the DSM, the nDSM
and different representations of geometric information and their
combination. However, the combination of both radiometric and
geometric features yields an improvement of the classification re-
sults. The derived results also indicate that some features such as

the NDVI are less suitable, and that the use of many features as
the basis for semantic segmentation can decrease the predictive
accuracy of the network and might thus suffer from the Hughes
phenomenon. We conclude that selected data representations de-
rived via feature extraction and feature selection techniques pro-
vide a gain if used as the basis for deep semantic segmentation.
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mote Sensing and Geoinformation (DGPF) (Cramer, 2010):
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html.
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tation of Earth observation data using multimodal and multi-scale deep
networks. In: Proceedings of the 13th Asian Conference on Computer
Vision (ACCV), Taipei, Taiwan, Vol. I, pp. 180–196.
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