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ABSTRACT:

The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem
on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable
vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To
fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function
leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function,
we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using
the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very
coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to
deliver very precise orientation estimation results with an average absolute error smaller than 4◦.

1. INTRODUCTION

Autonomous driving comes with the need to deal with highly dy-
namic environments. To ensure safe navigation and to enable the
interaction with other objects, 3D scene reconstruction and the
identification and reconstruction of moving objects, especially
vehicles, are fundamental tasks. Additionally, research for col-
laborative vehicle positioning requires knowledge about the rela-
tive poses between cars for them to be used as vehicle-to-vehicle
observations (Knuth and Barooah, 2009). This leads to the need
of techniques for precise 3D object reconstruction to derive the
poses of other vehicles relative to the position of the observing
vehicle. In this context, stereo cameras provide a cost-effective
solution for sensing a vehicle’s surroundings. Most of the existing
techniques for vehicle detection and pose estimation are restricted
to a coarse estimation of the viewpoint in 2D, whereas the precise
determination of vehicle pose, especially of the orientation1, and
vehicle shape is still an open problem. Consequently, the goal of
this paper is to propose a method for precise 3D reconstruction
of vehicles from street level stereo images. We make use of 3D
vehicle reconstructions to reason about the relative vehicle poses
in 3D, i.e. the position and rotation of the vehicles with respect
to the observing vehicle. To reconstruct the vehicles in 3D, we
apply a model-based approach making use of a deformable 3D
vehicle model learned from CAD vehicle models. We formulate
an energy minimisation problem leveraging both, 3D and 2D im-
age information, and apply an iterative particle based approach
to fit one model to each detected vehicle, thus determining the
vehicle’s precise pose and shape.

2. RELATED WORK

This section provides a brief overview of related work for vehicle
pose estimation, vehicle reconstruction and vehicle modelling. A

∗Corresponding author
1In this work, the term orientation of a vehicle refers to the rotation

angle about the vertical vehicle axis.

coarse estimation of the vehicle orientation is delivered already
by a number of vehicle detection approaches, though mostly in
2D. As the visual appearance of vehicles in image data has a
large variety, e.g. due to changing camera viewpoints, often view-
point specific detectors (Payet and Todorovic 2011, Ozuysal et al.
2009, Villamizar et al. 2011) are being applied. The resulting de-
tections of these approaches are already associated with a coarse
estimation of the orientation of the vehicles. However, viewpoint-
specific detectors usually have to be trained using a large number
of training examples under different viewpoints. Typically, the
viewing directions are divided into a discrete number of pose-bins
and a classifier is trained for each bin so that a compromise be-
tween the detector complexity and the level of detail of the pose
estimation is found. This usually leads to a coarse orientation
estimation only. Another strategy frequently used for vehicle de-
tection is given by part based approaches (e.g. Felzenszwalb et al.
2010 and Leibe et al. 2006), which divide the objects into several
distinctive parts and learn a detector for each part, thus achieving
robustness against occlusions. Usually a global model consider-
ing the topology of the individual parts is applied for the detec-
tion of the entire object. All the methods mentioned so far are
solely 2D appearance based and typically only deliver 2D bound-
ing boxes and coarse viewpoint estimations as output. We aim
to obtain vehicle detections as well as precise pose estimations,
including the vehicle positions and orientations, in 3D space.

A step towards capturing 3D object information from images is
done by approaches which internally enrich a part-based detec-
tor by linking 3D object knowledge to the parts and transferring
this information to the objects after detection. To that end, often
the increasing amount of freely available CAD data is exploited.
For instance, Liebelt and Schmid (2010) treat appearance and ge-
ometry as separate learning tasks. They train an appearance part
model from real images and link each part of the training data
with 3D geometry from synthetic models, which allows an ap-
proximate estimation of 3D pose. Similarly, Pepik et al. (2012)
adapt the deformable part model (DPM) of Felzenszwalb et al.
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(2010). They add 3D information from CAD models to the de-
formable parts and incorporate 3D constraints to enforce part cor-
respondences. Thomas et al. (2007) enrich the Implicit Shape
Model (ISM) of Leibe et al. (2006) by adding depth information
from training images to the ISM and transfer the 3D information
to the test images, which allows the estimation of coarse 3D pose
information. Still, the mentioned approaches only use the 3D in-
formation implicitly by transferring the learned 3D information
to the detected objects.

Alternatively, 3D model information can be used explicitly by
deriving cues from the model representation and using these cues
actively for vehicle detection, reconstruction and/or to infer pose
information. A commonly applied procedure is to use an arbitrary
object detector to initialise or instantiate the model, followed by
fine-grain model fitting or optimisation. For example, Bao et al.
(2013), Dame et al. (2013) and Güney and Geiger (2015) follow
this procedure for 3D scene reconstruction by initially detecting
vehicles and subsequently integrating vehicle models into their
3D reconstruction algorithm. Bao et al. (2013) calculate a mean
model from laser scans of different vehicle instances and adapt
it to newly observed instances. Güney and Geiger (2015) inte-
grate disparity patches sampled from a huge set of CAD vehicle
models into a disparity map estimated from stereo images. How-
ever, that sampling technique is computationally expensive and
object instances occurring in the images but not being present in
the CAD data set can not be recovered correctly. Dame et al.
(2013) use a Signed Distance Function (SDF) for model repre-
sentation and optimise initial pose and shape parameters from an
object detector in a monocular SLAM system.

A SDF is also used by Engelmann et al. (2016) for pose and shape
estimation of vehicles detected in stereo images. They fit the SDF
to detected vehicles by minimising the distance of reconstructed
3D vehicle points to the SDF. However, a SDF is a rather com-
plex object representation and its level of detail depends on the
applied voxel grid size. Active Shape Models (ASM) (Cootes et
al., 2000) provide a less complex method to represent the geo-
metry of an object class while being able to cover object defor-
mations due to the intra-class variability. 3D ASM have already
been used in the context of vehicle detection and pose estimation.
For instance, based on 3D points from mobile laserscanning data,
Xiao et al. (2016) use a 3D vehicle ASM to fit it to detected and
segmented generic street scene objects. Coenen et al. (2017) fit
ASM representing vehicles to 3D points from stereo images asso-
ciated to vehicle detections. However, the latter three approaches
do not use image information at all or only for the initial vehicle
detection, but disregard image cues for model fitting. In contrast,
Zia et al. (2013) and Zia et al. (2015) only use single images and
incorporate a 3D ASM into their detection approach, using the
model also to derive precise object pose estimates. For this pur-
pose, they apply a model-keypoint based multi-class classifier.
However, the results of Zia et al. (2013) show that their approach
heavily depends on a good pose initialisation. Similarly, Lin et al.
(2014) recover the 3D vehicle geometry by fitting the 3D ASM
to estimated 2D landmark locations resulting from a DPM de-
tector. Their approach also suffers from wrongly estimated part
locations resulting from the DPM. A 3D ASM is also used by
Menze et al. (2015) to be fitted to detections of vehicles obtained
from stereo image pairs and object scene flow. However, using
scene flow for object detection is computationally expensive.

In this work we want to reconstruct vehicles from street level
stereo images and fully recover their 3D pose and shape. For

this purpose we make use of a shape prior by learning an ac-
tive shape model from CAD vehicle models. Based on initial 3D
vehicle detections, we make the following contributions in this
paper: (1) We incorporate different types of features and obser-
vations derived from the vehicle model, reconstructed 3D data,
scene knowledge, and image information into one common en-
ergy function to infer the optimal target parameters; (2) we can
work without good pose initialisations by defining a robust model
initialisation and model fitting procedure based on an iterative
Monte Carlo model particle sampling technique which can also
handle local minima in the energy domain; (3) we go beyond
common pose estimation methods which are restricted to a small
number of orientation bins, delivering fine-grain pose parameters
and inferring vehicle shape, instead.

3. METHOD

Our aim is to determine the pose and shape of vehicles detected
from street level stereo images acquired from a moving platform
with an approximately horizontal viewing direction. To derive
the target pose and shape parameters we want to represent each
vehicle by a proper 3D vehicle model. For this purpose we use a
parametrized deformable model which we try to fit to the detected
vehicles based on information derived from the stereo images.

Our framework is depicted in Fig. 1. After a preprocessing step,
the proposed procedure is divided into the detection step, which
delivers 3D vehicle detections, and the modelling step, in which
a deformable vehicle model is fitted to the detected objects. For
vehicle detection we use the method described in (Coenen et al.,
2017) which we will only recapitulate briefly in this paper. The
main focus is on the description of the vehicle model representa-
tion and the model fitting strategy for the 3D vehicle reconstruc-
tion. The input to our method are calibrated street level stereo
images with known interior and relative orientation parameters.
Currently, the stereo image pairs are processed individually. We
define the left stereo partner to be the reference image and apply
dense matching to make use of 3D information in the subsequent
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Figure 1. Overview of our framework.
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steps. A dense disparity map is calculated for every stereo im-
age pair using the Efficient Large-Scale Stereo Matching (ELAS)
method (Geiger et al., 2011). The disparity images are used to
reconstruct a 3D point cloud MX in the 3D model coordinate
system MCS for every pixel of the reference image via triangu-
lation. The origin of the model coordinate system is defined in
the projection centre of the left camera. Its x-y plane is parallel to
the image plane and its z-axis points in the viewing direction. We
discard points further away from the stereo camera than a thresh-
old δd. This threshold is determined on the basis of a user-defined
maximum allowable threshold for the depth precision δσZ . The
dense disparity map and the 3D point cloud serve as the basis for
further processing.

3.1 Formal problem definition

Our goal is to describe each stereo scene by a ground plane Ω ∈
R3 and a set of vehicle objects O that are visible in the stereo
images. We want to associate each vehicle object ok ∈ O with its
state vector (tk, θk, γk), where tk and θk determine the vehicle
pose, with its position tk represented by 2D coordinates on the
ground plane and θk being the rotation angle about an axis that
is perpendicular to the ground plane (heading); γk is a vector
of shape parameters determining the shape of a 3D deformable
vehicle model representing each object. In this context, we use a
3D active shape model (ASM) (Zia et al., 2013). More details on
the vehicle model can be found in Section 3.4.1.

3.2 Preprocessing

Using a stereo image pair and the reconstructed point cloud as in-
put, we detect and extract the ground plane and derive low level
features such as gradients and image edges to apply them as ad-
ditional information and observations in model fitting.

3.2.1 Ground plane extraction: Given our acquisition setup,
the 3D points belonging to the ground plane will belong to the set
of 3D points with the smallest vertical coordinate (y). We fil-
ter the overall point cloud MX by extracting a user-defined per-
centage pgp of points exhibiting the smallest y-coordinate values.
We apply RANSAC to this set of points to find the plane Ω of
maximum support, which we assume to correspond to the ground
plane. All inliers of the final RANSAC consensus set are stored
as ground points MXΩ ⊂ MX. Additionally to the model coor-
dinate system MCS we define a ground plane coordinate system
ΩCS. We define the origin of the system ΩCS as the orthogo-
nal projection of the origin of the model coordinate system to the
ground plane. The y-axis is defined in the direction of the plane
normal vector and the x/z-plane lies in the ground plane. We
determine the rotation matrix and the translation vector as rigid
transformation parameters between the systems MCS and ΩCS.
Using these parameters, any point Mx in the model coordinate
system can be transformed to a point Ωx in the ground plane co-
ordinate system.

3.2.2 Region of interest: Assuming that vehicles are always
located on the ground plane and do not exceed a maximum height
hmax, a set of interest points can be extracted from the point
cloud by filtering all points not belonging to the ground plane
and having a distance from the ground plane smaller than hmax.
The filtered interest points are stored as MXInt ⊂ MX with
MXΩ ∪ MXInt = ∅. In addition, the assumption made above
allows us to reduce the problem of pose estimation to the 2D
problem as described in Section 3.1. For the subsequent proce-
dure we thus transform the previously determined ground plane

points MXΩ and the interest points MXInt to the ground plane
system, resulting in ΩXΩ and ΩXInt. The proposed methods for
vehicle detection and modelling are applied in this domain.

3.2.3 Probabilistic free-space grid map: Based on the points
ΩXΩ in the ground plane and the extracted interest points ΩXInt

it is possible to reason about free space in the observed scene. We
want to represent free space, i.e. areas on the ground plane which
are not occupied by any 3D object, by a probabilistic free space
grid map Φ delivering a probability for each raster cell of being
free space. For this purpose, we create a grid in the ground plane
consisting of square cells with a side length lΦ. For each grid cell
Φg with g = 1...G we count the number of ground points ngΩ
and the number of interest points ngInt whose vertical projection
is within the respective cell. We define the probability ρg of each
cell to be free space as the ratio of both numbers with

ρg =
ngΩ

ngΩ + ngInt
. (1)

Grid cells without projected points are marked as unknown.

3.2.4 Gradient and edge images: We calculate a gradient
magnitude image Igrad of the reference image using the Sobel
operator. Based on Igrad, we compute a binary edge image Iedge
by thresholding the gradient image using the Canny edge detec-
tor (Canny, 1986). The gradient and edge images are used as
additional data sources for model fitting (cf. Section 3.4.2).

3.3 Vehicle Detection

The goal of this step is to detect all visible vehicles ok in the
stereo pair by finding their corresponding 3D object points ΩXk.
For vehicle detection we apply the approach described in (Coenen
et al., 2017). That method uses both, the 3D points and the image
data by fusing a generic 3D object detector with a state-of-the-art
vehicle detector in image space, which is expected to result in re-
liable vehicle detections. The 3D points ΩXInt inside the region
of interest for vehicle detection are projected to the ground plane
to obtain a ground plane density map of the 3D points. Assuming
that vehicles are surrounded by a band of free space, each vehicle
corresponds to a 2D cluster of projected 3D points in the ground
plane density map (cf. Figure 2). Quick-Shift Clustering (Vedaldi
and Soatto, 2008) is applied to identify the different clusters. This
results in generic object proposals, each containing a set of 3D
points ΩXk. A 2D bounding box enclosing the image pixels cor-
responding to the respective set of 3D points is derived for each
object proposal. To reject non-vehicle objects, the DPM (Felzen-
szwalb et al., 2010) is applied to the reference image. The DPM
delivers 2D bounding box detections which are used to verify the
vehicle hypotheses resulting from the generic 3D object detection
technique by thresholding the intersection over union index of the
respective bounding boxes. For more details we refer the reader
to (Coenen et al., 2017).

Figure 2. Scheme of the generic object detection.
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3.4 Pose and shape estimation

Based on the initial vehicle detections we want to reconstruct the
vehicles in 3D to recover the pose and shape of each vehicle. For
this purpose we make use of vehicle shape priors in the form of
a deformable 3D vehicle model representation. We want to fit a
vehicle model to each detection, which is achieved by minimising
an energy function based on different types of observations using
a model-based Monte Carlo Sampling technique.

3.4.1 Model Representation: Like Zia et al. (2013), we learn
a 3D active shape model (ASM) as a shape prior for vehicles by
applying principal component analysis (PCA) to a set of manu-
ally annotated characteristic keypoints of 3D CAD vehicle mod-
els. By using vehicles of different types (here: compact car,
sedan, estate car, SUV and sports car) in the training set, the PCA
results in mean values for all vertex (keypoint) positions as well
as the directions of the most dominant vertex deformations. A de-
formed vehicle ASM is defined by the deformed vertex positions
v(γ), which can be obtained by the linear combination

v(γ) = m +
∑
i

γ(i)λi ei (2)

of the mean model m and the eigenvectors ei, weighted by their
corresponding eigenvalues λi and scaled by the object specific
shape parameters γ(i). The variation of the low dimensional
shape vector γ thus allows the generation of different vehicle
shapes. Figure 3 shows the mean model and two deformed model
using a different set of shape parameters. Note how the shape
parameters enable the generation of model shapes describing ve-
hicles of different types. For the number of the eigenvalues and
eigenvectors to be considered in the ASM we choose i ∈ {1, 2},
which we found to be a proper tradeoff between the complex-
ity of the model and the quality of the model approximation. A
fully parametrised instance of a 3D vehicle ASM in the ground
plane coordinate system, denoted by M(t, θ, γ), can be created
by computing the deformed keypoints using the shape vector γ
and subsequently shifting and rotating the whole model on the
ground plane according to the translation vector t and a rotation
matrix Ry(θ) derived from the heading angle θ:

Ml(t, θ, γ) = Ry(θ) · vl(γ) + t, (3)

where l is an index for the keypoints. To represent the model
surface we define a triangular mesh MTri for the ASM vertices.
To represent the wireframe MWF of the vehicle model, we de-
fine wireframe edges between selected keypoints. We choose sil-
houette edges that describe the outline of the vehicle and edges
describing distinctive part boundaries, i.e. the transition between
semantically different vehicle parts, as wireframe edges. The se-
lected wireframe edges are depicted in Figure 3.

Figure 3. 3D Active Shape Models. Centre: mean shape,
γ = (0, 0), left: γl = (1.0, 0.8), right: γr = (−1.0,−0.8).

3.4.2 Energy function: Given the initial vehicle detections,
our aim is to fit a vehicle model M(t, θ, γ) to each detection by
finding optimal values for the variables t, θ and γ by minimising
an energy function E(t, θ, γ):

E(t, θ, γ) = ω0 · Ē3D + ω1 · Ēfree + ω2 · Ēimg. (4)

The function consists of three normalised energy terms Ē(·), each
weighted by a weight factor ω0...2. More details on the normal-
isation of the energy terms is given in Section 3.4.3. The un-
normalised energy terms E3D , Efree, and Eimg are based on
information obtained in the way described in Section 3.2.

3D energy: The 3D-Energy term E3D is based on the observed
3D vehicle points ΩXk. It is a score for the Model M(t, θ, γ)
that is determined as the mean distance of the 3D vehicle points
from the model surface MTri:

E3D =
1

P
·
P∑
p=1

d(xp,MTri). (5)

In eq. 5, P is the number of 3D vehicle points and d(·, ·) is a func-
tion that returns the distance of an individual 3D vehicle point
xp ∈ ΩXk from its nearest triangle of the model surface. This
term tries to fit the 3D ASM to the 3D vehicle point cloud.

Free-space energy: The free space energy term Efree takes the
probabilistic free space grid map Φ as input data source. In this
term, the model M(t, θ, γ) is evaluated based on the amount of
overlap between its 2D ground plane bounding boxMBB and the
free space grid map cells Φg weighted by their probability ρg of
being free space:

Efree =
1

AMBB

·
G∑
g=1

ρg · o(MBB ,Φg). (6)

In eq. 6,AMBB is the area of the model bounding box. The func-
tion o(·, ·) calculates the amount of overlap between the model
bounding box and a grid cell using the surveyor’s area formula
(Braden, 1986). Thus, this energy term penalises models that are
partly or fully located in areas which are actually observed as free
space. It acts as substitute information for missing 3D informa-
tion on the vehicle sides that are invisible to the camera.

Image energy: Additionally to the 3D information considered
in the energy terms described so far, image information can also
be used directly in the energy function within the image energy
term Eimg to evaluate the quality of the correspondence between
a model and the observed data. We propose two variants of the
image energy term: the gradient energy and the edge energy.

Gradient energy: In the energy term Egrad, the gradient infor-
mation Igrad and the wireframe MWF are considered to obtain
a score for the model M(t, θ, γ). Starting from the assumption
that the two types of vehicle edges chosen to define the wireframe
correspond to large image gradients, the magnitude of gradients
along the backprojected edges of the model wireframe is used as
a model score. For this purpose, we backproject the visible parts
of the model wireframe to the image, resulting in a binary image
IWFb with entries of 1 at pixels that are crossed by a wireframe
edge and 0 everywhere else. We consider differences between
the real image gradient positions and the model wireframe caused
by generalisation effects of our vehicle model representation by
blurring the binary wireframe image using a Gaussian filter, thus
transforming IWFb into a non-binary image IWF . The gradient
energy is calculated according to

Egrad = 1− 1

EWF
·
W∑
w=1

(Iwgrad · IwWF ), (7)

whereW is the overall number of pixels and Iw(·) returns the value
of image I(·) at pixel w. For eq. 7, we assume the gradient im-
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age to be normalised such that both, IwWF and Iwgrad ∈ [0, 1].
EWF is the sum over all grey values in IWF and is used to scale
the energy. This energy term becomes small when the backpro-
jected wireframe corresponds well with large image gradients.

Edge energy: In this energy term, the binary backprojected wire-
frame image IWFb and the edge image Iedge are used to score the
Model M(t, θ, γ) based on the average distance of the backpro-
jected model wireframe edges to image edges. For this purpose,
we search the closest non-zero edge pixel in Iedge for each wire-
frame edge pixel in IWFb along the direction of the respective
wireframe edge normal. We define a threshold dpx and only con-
sider the number V of pairs of pixels whose distance uv⊥ , with
v = 1...V , is smaller than dpx. The edge energy is calculated by

Eedge =
1

V
·
V∑
v=1

uv⊥ . (8)

This energy term takes small values if the backprojected wire-
frame is well aligned with the observed image edges.

3.4.3 Energy minimisation: The energy function of eq. 4 is
minimized to find the optimal pose and shape parameters for each
detected vehicle. As this function is non-convex and the model
parameters are continuous, we apply iterative Monte Carlo sam-
pling to approximate the parameter set for which the energy func-
tion becomes minimal. To this end we discretise the target param-
eters by generating model particles for the vehicle ASM. Starting
from one or more initial parameter sets, we generate a number
of particles np in each iteration j ∈ [0, nit] by jointly sampling
the pose and shape parameters from a uniform distribution cen-
tered at the preceding parameter values. For the resampling step,
we calculate the energy for every particle and introduce the best
scoring particles as initial seed particles for the next iteration. In
each iteration, the size of the interval from which the parameters
are sampled is reduced. In the following paragraphs, more details
on the initialisation and the resampling steps are given.

Initialisation: In contrast to (Coenen et al., 2017), where only
one initial particle was created, in this work we propose to in-
troduce four initial model particles 0M i

k(0tk,
0θik,

0γk) with i ∈
[1, 4] for every vehicle detection ok. To initialise the parame-
ters of the particles we create the minimum 2D bounding box
enclosing the 2D projections of the 3D vehicle points ΩXk on
the ground plane (cf. Figure 4). We define the initial translation
vector 0tk as the centre of the bounding box. The orientations
0θik of the particles are set to the four orientations of the bounding
box semi-axes. By introducing four initial particles with different
orientations we expect to be more robust against incorrect orien-
tation estimates compared to only using one initial orientation as
in (Coenen et al., 2017). The initial shape parameter vector 0γk
is defined as zero vector and, thus, the initial particles correspond
to the mean vehicle model.

Figure 4. Initialisation of the model particles.

Resampling: In each iteration j we want to find the nseed best
scoring particles according to the particle energy in eq. 4. Eq. 4
requires the individual energy terms E(·) to be normalised due
to their different units and ranges of values, in order to be able
to combine them in one single expression. For this purpose we
determine the minimum and maximum energy Emin(·) and Emax(·)
of each energy term resulting from the current particle set and
normalise the energy terms of every particle by

Ē(·) =
E(·) − Emin(·)

Emax(·) − Emin(·)
(9)

before computing the overall energy. For resampling, we define
a number nseed of particles with the lowest energy and forward
them to the next iteration as seed particles. By forwarding mul-
tiple particles instead of only one particle as in (Coenen et al.,
2017) we expect to be able to deal with multi-modal energy dis-
tributions and local energy minima in a better way.

Final result: The final values for the target parameters of pose
and shape are defined in the last iteration and are set to the pa-
rameters of the particle achieving the lowest energy within the
particle set of the final iteration.

4. EVALUATION

4.1 Test data and test setup

For the evaluation of our method we use stereo sequences of the
KITTI Vision Benchmark Suite (Geiger et al., 2012). The data
were captured by a mobile platform in an urban area. We use
the object detection and object orientation estimation benchmark,
which consists of 7481 stereo images with labelled objects. In our
evaluation we consider all objects labelled as car. For every ob-
ject, the benchmark provides 2D image bounding boxes, the 3D
object location in model coordinates as well as the rotation angle
about the vertical axis in model coordinates. Furthermore, infor-
mation about the level of object truncation and object occlusion
are available. The values for truncation refer to the objects leav-
ing image boundaries and are given as continuous values from
0 (non-truncated) to 1 (truncated). The occlusion state indicates
the vehicle’s occlusion due to other objects with 0 = fully visi-
ble, 1 = partly occluded, 2 = largely occluded and 3 = unknown.
We briefly discuss the results for the vehicle detection as these
results are the input for the proposed pose and shape estimation
approach. However, the main focus of the evaluation is on the re-
sults for pose and shape estimation to analyse the quality of our
model fitting approach. For the evaluation, similarly to (Geiger et
al., 2012), we define three levels of difficulty as shown in Table 1:
easy, moderate and hard, each considering different objects for
the evaluation, depending on their level of visibility.

easy moderate hard
min. bounding box height [Px] 40 25 25
max. occlusion level 0 1 2
max. truncation 0.15 0.30 0.50

Table 1. Levels of difficulty for the evaluation.

We require an overlap of at least 50% between the detected 2D
bounding box and the reference bounding box for an object to be
counted as a correct detection. In the case of multiple detections
for the same vehicle, we count one detection as a true positive,
whereas further detections are counted as false positives. For the
evaluation of the pose estimation we consider all correctly de-
tected vehicles and compare the 3D object locations tk and the
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orientation angles θk of our fitted models to the reference po-
sitions and orientations. We consider a model to be correct in
position and/or orientation if its distance from the reference po-
sition is smaller than 0.75 m and the difference in orientation is
less than 22.5◦, respectively.

4.2 Parameter settings

For the 3D reconstruction of the stereo images the maximum
value δσZ for the standard deviation of the depth values is defined
as 1.5 m. For the specific stereo setup used for the acquisition of
the data (cf. Section 4.1), this leads to maximum valid distance
of the 3D points from the camera of approximately 24 m.

In all experiments for model fitting, we conduct nit = 12 iter-
ations, drawing 140 particles per iteration from nseed = 8 seed
particles. As initial interval boundaries of the uniform distribu-
tions from which we randomly draw the particle parameters, we
choose ±1.5 m for the location parameter tk, ±2.5 for the shape
parameter vector γk and ±45◦ for the orientation θk. By choos-
ing±45◦ as range for the orientation angle of the four initial seed
particles we allow particles to take the whole range of possible
orientations in the first iteration to be able to deal with incorrect
initialisations. In each iteration j the size of the interval bound-
aries is decreased by a factor 0.85j . With nit = 12, this leads to
a reduction of the final interval range to 14% of the initial width.

To assess the impact of the individual components in the model
fitting procedure, we define five different variants with different
settings for the generation of particles and for the calculation of
the energy terms. The variant Base uses a setting that is compara-
ble to the method used by (Coenen et al., 2017). This is achieved
by setting ω0 = 1 and ω1,2 = 0 to only consider the 3D energy
term for the model fitting. Instead of four initial particles we only
create one single particle with an initial orientation 0θ = 0θ1, us-
ing an initial interval width of ±180◦ for the orientation. For the
particle generation we change nseed to 1. Variant 3D also only
considers the 3D energy term in the model fitting procedure; it
differs from Base by the settings for the particle generation, i.e.
by considering four initial particles with different initial orienta-
tions and by increasing the number of seed particles from 1 to
8. In variant 3D+Free, we add the free-space energy term to the
energy function and choose ω0 = 0.8 and ω1 = 0.2. To evalu-
ate the full energy function for the model fitting we set ω0 = 0.7,
ω1 = 0.2 and ω2 = 0.1. We distinguish between Fulle and Fullg
in which Eimg is substituted by Eedge and Egrad, respectively.
The values for the weight factors were found empirically. In the
last setting, referred to as Refine, we apply an adaptive model
fitting strategy by using the Base+Free setting for coarse initial
pose estimation and the Fullg setting for a subsequent refinement.
For this purpose we vary the weight factors in the iterations. In
the first nit−1 iterations we set ω2 to zero and thus only consider
the termsE3D andEfree for model fitting. In the last iteration we
also include Eimg by using the Fullg parameter setting to lever-
age the image information for final pose and shape refinement.

4.3 Vehicle detection results

Table 2 shows the values for completeness (the percentage of ref-
erence vehicles that were detected), correctness (the percentage
of detections that actually are vehicles) and quality (a trade-off
parameter combining completeness and correctness) (Heipke et
al., 1997) resulting from the vehicle detection approach. We con-
sider these results to be very satisfactory. Compared to Coenen
et al. (2017), there is a considerable improvement in all quality
indices (up to 9%) due to a better ground plane estimation.

easy moderate hard
Completeness [%] 94.3 86.4 71.4

Correctness [%] 88.6 92.3 93.2
Quality [%] 84.0 80.6 67.9

Table 2. Vehicle detection results.

4.4 Pose estimation results

Table 3 shows the results of the comparison between the result-
ing pose parameters from the fitted 3D vehicle models and the
reference data for location and orientation of the vehicles. The
table contains the percentage of the correctly estimated positions
t and orientations θ and the mean absolute errors for position ε̂t
and for orientation ε̂θ of the correctly determined models in [cm]
and [◦], respectively. Comparing the results for different levels of
difficulty, we can see a similar pattern of performance for all vari-
ants. That is, all variants perform best for the easy level and worst
for the hard level. Independently from the level of difficulty, the
percentage of vehicles for which a correct position is determined
only differs by about 4% between the different approaches. It
may seem counter-intuitive that the positional errors grow with
the number of energy terms that are considered (the best values
are achieved for 3D), but these differerences are very small (a
few cm, about 10% of the magnitude of the errors). As there are
larger differences in the orientation estimation results, we focus
on an analysis of the results of the orientations in the following
paragraphs. Figure 5 shows a histogram of differences between
the vehicle orientations derived by our methods and the reference
orientations for all correct detections from the easy level.

Base 3D 3D+Free Fullg Fulle Refine

ea
sy

t [%] 71.1 73.2 73.6 72.6 72.6 73.2
ε̂t [cm] 37.9 37.6 38.6 39.7 39.4 39.0
θ [%] 58.4 74.8 82.4 80.7 80.5 81.2
ε̂θ [◦] 4.3 3.8 3.6 3.4 3.4 3.4

m
od

er
at

e t [%] 69.3 72.0 72.0 71.3 71.2 71.6
ε̂t [cm] 37.6 37.2 38.3 39.5 39.0 38.9
θ [%] 54.9 72.0 76.6 75.8 74.8 75.2
ε̂θ [◦] 4.4 3.9 3.7 3.5 3.5 3.6

ha
rd

t [%] 66.7 69.6 69.9 68.7 69.1 69.5
ε̂t [cm] 37.7 37.1 38.2 39.3 38.9 38.7
θ [%] 52.6 68.7 73.2 71.9 71.3 71.8
ε̂θ [◦] 4.4 3.9 3.8 3.6 3.6 3.7

Table 3. Pose estimation results.

Base 3D 3D+Free Full RefineFull
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Figure 5. Histogram of absolute differences between estimated
and reference orientations (correct detections of the easy level).
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Base: Applying this setting, equivalent to (Coenen et al., 2017),
only leads to correct orientation estimations in between 52% and
58% of the cases, depending on the difficulty level (Table 3), and
a mean orientation error of up to 4.4◦. Figure 5 shows that a
large amount of false orientation estimations (about 25%) are in
the last orientation bin, indicating an error of 180◦. This effect
was already observed in (Coenen et al., 2017) and was found to
be caused by incorrect orientation initialisations and/or the almost
symmetric 3D shape of vehicles w.r.t. their minor half axis.

3D: This variant differs from variant Base by an enhanced parti-
cle fitting procedure. Table 3 shows that this leads to a distinct
increase of correct orientation estimations by up to 17% and to
a decrease of the mean orientation error of about 0.5◦. Figure 5
shows clearly that the desired effect of the advanced particle fit-
ting strategy was achieved, resulting in a rigorous reduction of
the incorrect orientation estimations in the last orientation bin.

3D+Free: In this approach we incorporated information about
observed free space in the scene to the model fitting process. Ac-
cording to Table 3, this leads to an improvement of the number
of correct orientation estimates of up to 7.6% and to a reduction
of ε̂θ of about 0.2◦. Using this approach we achieve the largest
number of correct orientation estimates with more than 82% cor-
rectly determined vehicle orientations for the easy level. Figure 5
shows that this improvement is caused by a reduction of the false
orientation estimations in the intermediate orientation bins while
the amount of incorrect orientation estimations of the last bin re-
mains unchanged compared to 3D. We consider this as a natural
effect of the free space energy term as it is not able to distinguish
between two vehicles with opposite viewing directions.

Fullg and Fulle: Here we incorporate image data in the model
fitting process in the form of gradient and edge information, re-
spectively. As Table 3 shows, Fullg and Fulle achieve numeri-
cally very similar results, with Fullg performing slightly better.
However, the Full energy settings lead to a decrease in the num-
ber of correct orientation estimations of up to 1.7% compared to
the 3D+Free setting. The reason for that can be that non-vehicle
gradients and non-vehicle edges or edges resulting from reflec-
tions on the vehicle or from shadows can distort the image en-
ergy terms due to incorrect gradient and edge associations with
the model wireframe. Besides, due to the generalisation of the
ASM, the wireframe of the model could possibly differ too much
from some of the real world vehicle shapes and thus the image
energy terms are not able to support the fitting procedure. Nev-
ertheless, the mean orientation error of the correctly determined
vehicle orientations decreases, too. This effect also becomes ap-
parent in Figure 6, which shows a cumulative histogram of the
absolute differences between the estimated orientations and the
reference using a bin width of 1◦. The histogram covers correctly
determined orientations with differences smaller than 10◦. The
cumulative percentage of correct orientation estimations for the
Fulle and Fullg settings are always better than for the 3D+Free
approach. That is, when the estimated orientation is within the
first orientation bin and, thus, the image-based energy terms do
not lead to deviations of the orientation values for the reasons just
described, the gradient and edge energy terms are able to improve
and to refine the orientation result.

Refine: To investigate this effect further, in this variant we only
consider the image energy terms in the last iteration of the particle
fitting procedure. As a result, the amount of correct orientation
estimations increases again (up to 81.2% as in Table 3) while the
refining effect of the image energy terms being apparent from the

improved mean orientation error and the better behavior of the
cumulative histogram in Figure 6 is maintained. Moreover, while
vehicles with an estimated orientation offset to the reference in
a range of 22.5◦ are already considered as correct estimations,
Figure 6 shows that more than 90% of the correct orientation es-
timations are even correct within a range of 8◦ or smaller using
the Full and Refine approaches, but the latter is obviously more
robust against divergence in the early stages of the model fitting
process, leading to a correct solution in more cases.

The quality of shape estimation is not quantitatively evaluated in
this work. However, Figure 7 shows two representative examples
underlining the benefit of including the image energy terms for
model fitting as the shape and/or the orientation estimation is dis-
tinctly improved using the Refine setting compared to 3D+Free.
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Figure 6. Cumulative histogram of absolute differences between
estimated and reference orientation (correct orientation

estimations of the different approaches, easy level).

Figure 7. Results of 3D+Free (first row) and Refine (second row)

5. CONCLUSION

We have developed an approach to estimate the pose and shape
of vehicles from stereo image pairs. For this purpose we devel-
oped a robust Monte Carlo vehicle model fitting technique us-
ing an active shape model as shape prior to recover the vehicles
in 3D and to infer their position and orientation. To this end,
we defined an energy function incorporating reconstructed 3D
data, recovered 3D scene knowledge, low-level image informa-
tion and vehicle model features. Our results show that the ad-
vanced particle fitting technique as well as the incorporation of
observed free space to the model fitting procedure improves the
pose estimation results, especially the results for the vehicle ori-
entation, significantly. Considering gradient or edge information
in the energy function could refine the correct orientation estima-
tions. However, non-vehicle gradient and edge data can distort
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the energy function, leading to slightly fewer correct orientation
estimates. Furthermore, the generalisation of the ASM can lead
to incorrect associations between image gradients or edges and
the model wireframe. To overcome this problem, a more detailed
and fine-grained vehicle model can be applied in the future by
adding more keypoints to the ASM and its wireframe. Besides,
the energy function gives room for extensions. On the one hand,
the free space energy term can be extended from 2D to 3D by
incorporating free space voxels instead of the free space grid into
the model fitting process. Furthermore, the energy function can
be extended by computing the gradient and edge energy terms not
only in the reference image but in both stereo images to consider
additional observations from a different viewpoint. Further, the
current state of our work does not comprise occlusion awareness,
which will be an essential extension in the future. Another possi-
bility to incorporate image information more robustly into model
fitting can be achieved by using a keypoint classifier trained for
the individual ASM keypoints. Its classification output for the
particle model keypoints can be incorporated using an additional
energy term in the model fitting. Also, until now the parameters
and weights for the particle model fitting are found empirically.
These parameters can be learned, e.g. in a Monte Carlo simula-
tion. Finally, in the future we will make use of the shape estima-
tions results to reason about vehicle categories, the vehicle type
or even to recognize individual vehicles.
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