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ABSTRACT: 

The localization and detailed assessment of damaged buildings after a disastrous event is of utmost importance to guide response 

operations, recovery tasks or for insurance purposes. Several remote sensing platforms and sensors are currently used for the manual 

detection of building damages. However, there is an overall interest in the use of automated methods to perform this task, regardless 

of the used platform. Owing to its synoptic coverage and predictable availability, satellite imagery is currently used as input for the 

identification of building damages by the International Charter, as well as the Copernicus Emergency Management Service for the 

production of damage grading and reference maps. Recently proposed methods to perform image classification of building damages 

rely on convolutional neural networks (CNN). These are usually trained with only satellite image samples in a binary classification 

problem, however the number of samples derived from these images is often limited, affecting the quality of the classification results. 

The use of up/down-sampling image samples during the training of a CNN, has demonstrated to improve several image recognition 

tasks in remote sensing. However, it is currently unclear if this multi resolution information can also be captured from images with 

different spatial resolutions like satellite and airborne imagery (from both manned and unmanned platforms). In this paper, a CNN 

framework using residual connections and dilated convolutions is used considering both manned and unmanned aerial image samples 

to perform the satellite image classification of building damages. Three network configurations, trained with multi-resolution image 

samples are compared against two benchmark networks where only satellite image samples are used.  Combining feature maps 

generated from airborne and satellite image samples, and refining these using only the satellite image samples, improved nearly 4% 

the overall satellite image classification of building damages. 

 

 

1. INTRODUCTION AND RELATED WORK 

Building damage maps have been recurrently used in the 

response and recovery phase of the disaster management cycle. 

Damaged buildings may be a proxy for victim localization 

(Dell’Acqua and Gamba, 2012) and their identification can also 

aid to plan and delineate recovery activities (Eguchi et al., 2009). 

Remote sensing has been extensively used to perform the damage 

assessment of a given region affected by a disastrous event 

(Dell’Acqua and Gamba, 2012; Dong and Shan, 2013; Gerke and 

Kerle, 2011; Vetrivel et al., 2017). The platforms used in remote 

sensing usually have a wide coverage, fast deployment and high 

temporal frequency while the collected data allow to automate 

building damage assessment procedures (Ural et al., 2011).  

A wide variety of remote sensing sensors mounted on different 

platforms have been used to map building damages (Armesto-

González et al., 2010; Dell’Acqua and Polli, 2011; Gokon et al., 

2015; Khoshelham et al., 2013; Marin et al., 2015; Vetrivel et al., 

2017). However, there has been a growing interest regarding the 

use of images (Curtis and Fagan, 2013; Fernandez Galarreta et 

al., 2015; Vetrivel et al., 2015, 2016a, 2017).  

In this regard, synoptic satellite imagery can be readily available 

and provide the first overview over a region struck by a disastrous 

event such as an earthquake (Dell’Acqua and Gamba, 2012). The 

International Charter (IC) (Bessis et al., 2004) and the 

Emergency Management Service (EMS) (Copernicus 

programme, European Commission), are two institutions which 

use such imagery to provide geoinformation to regions affected 

by disasters. The IC and EMS mostly rely on the manual 

interpretation of satellite images to identify damaged buildings, 

despite the amount of proposed automated methods. However, 

scene characteristics, cloud cover, limited resolution and 

viewpoint, limited time by map producers to develop new 

operational methods; hinder the automation of these procedures 

(Kerle, 2010; Vetrivel et al., 2016a). 

Other platforms coupled with cameras have also been used to 

map damages (Sui et al., 2014; Vetrivel et al., 2016b). Manned 

and unmanned aerial vehicles (UAV) enable the acquisition of 

images at a higher-resolution and can also perform oblique 

flights, introducing another level of damage information 

regarding the façades (Tu et al., 2017). In this regard, the Joint 

Research Center (JRC, European Commission) awarded a 

contract in 2015 to a consortium of private companies for the 

provision of aerial imagery after a disastrous event within a 

European context (“CGR supplies aerial survey to JRC for 

emergency,” n.d.). UAV images have become a normal source of 

information for many rescue teams in the recent earthquakes in 

Nepal (2015) and Italy (2016). These trends have pushed many 

researchers (Duarte et al., 2017; Sui et al., 2014; Vetrivel et al., 

2017) to develop damage detection algorithms exploiting these 

high-resolution images.   

The use of overlapping images may allow the generation of 3D 

point clouds through dense image matching. The set of 

geometrical information extracted from point clouds can be used 

alongside the images for the detection of building damages 

(Fernandez Galarreta et al., 2015; Vetrivel et al., 2017). Their 

added value can be marginal if single epoch data are considered 

(Duarte et al., 2017; Vetrivel et al., 2017). Furthermore, the 

generation of 3D point clouds is still very time consuming, 

hindering their use in early response tasks. The quality of these 

3D data is directly related with the resolution of the input images, 

which limits the use of the 3D generated from satellite imagery. 

The achieved results regarding the use of airborne and UAV 

images are promising and their use is drastically increasing in 

recent years. However, satellite images are still the first and most 

common source for damage assessment. For this reason, a more 

reliable method to automate the detection from these images 

would be needed.  

The most recent approaches to perform satellite image 

classification of building damages use CNN (Vetrivel et al., 
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2016a). The used networks are very similar to the ones used in 

the computer vision domain (Krizhevsky et al. 2017). Satellite 

image samples are used for the training of the network, in a binary 

classification scheme (i.e. damaged and not damaged areas). 

However, the number of samples from satellite images is 

relatively small, while a wide variety of images acquired with 

airborne platforms, both manned and unmanned, are available 

too. These data are currently used to train a network which 

classifies images with the same resolution (Vetrivel et al., 2017). 

In computer vision and remote sensing, the use of multi-

resolution data has demonstrated to improve the overall image 

classification and segmentation (Fu et al., 2017; Hamaguchi et 

al., 2017; Lin et al., 2016; Liu et al., 2016). The multi-resolution 

training is usually performed artificially (Fu et al., 2017; Hu et 

al., 2015; Li et al., 2015; Shen et al., 2015; Tang and Mohamed, 

2012), up/down sampling the images at several scales. However, 

a multi-resolution approach using image data from different 

platforms and sensors has not been tested yet.  

The aim of this paper is to assess if the combined use of different 

resolution images improves the image classification of building 

damages from satellite images using CNN (Figure 1). 

 

a) 

 

 
b) c) 

Figure 1 Examples of damaged and undamaged regions in a) 

UAV (Pescara del Tronto,Italy, 2016), b) satellite (WorldView 3, 

Amatrice, Italy, 2016) and c) manned aerial vehicles (St Felice, 

Italy, 2012 ) imagery. 

 

The main idea is that the native multi-resolution information of 

remote sensing imagery (i.e. satellite and airborne) can be 

captured by a CNN, improving the satellite image classification. 

Several CNNs configurations have been tested to assess how the 

image samples from different resolutions can influence the 

performance of the classification of building damages. Two 

recent developments in the computer vision domain are used: 

residual connections and dilated convolutions. More details 

regarding the developed approach are described in Section 2. 

This is then followed by an experiments section (3) which details 

the datasets (Section 3.1) used to test the approach, presents the 

experiments (Section 3.2) and the achieved results (Section 3.3). 

The discussion and the conclusions are finally given in Section 4 

and Section 5 respectively.  

 

2. METHODOLOGY 

Five different CNN architectures are defined. Two are used as 

benchmark and the remaining three are used to test the multi-

resolution approach. Regarding the benchmark networks, the first 

is trained from scratch and the other one is fined-tuned on the 

generic satellite image samples provided by Cheng et al. (2017). 

The three multi-resolution test networks have been conceived to 

analyze the best way to combine and exploit features from each 

image resolution level.  

All the networks take advantage of residual connections and 

dilated convolutions. This section explains these two central 

components of the networks while the two basic modules of the 

networks are then described in Section 2.1. The networks 

architectures used in the tests are finally presented in Section 3. 

Residual connections: The depth of CNN have shown an 

increase in their capabilities to retrieve relevant information from 

images (Telgarsky, 2016). The usual hierarchical stacking of 

convolutional layers allows the network to learn from lower level 

features to higher levels of abstraction. Nonetheless, a given layer 

l may need feature information not only from the layer l-1 but 

also from other previous layers (l-2, etc.). Residual connections 

(He et al., 2016) enable this process, by feeding a given layer to 

the previous one, as in the classical hierarchical approach, 

summed with a given output of earlier layers (Figure 2). In this 

way, every level of a given residual network effectivilly 

contributes to the final recognition task. Figure 2 shows a scheme 

of a residual connection and its interactions within a network.  In 

this approach, features are extracted from remote sensing 

imagery at different spatial resolutions, where the relevance and 

complexity of a given feature may vary between the considered 

resolution levels. Thus, it is mandatory to capture and retain all 

of these levels of feature complexity through the use of residual 

connections.  

 
Figure 2 Simple scheme of possible residual connections within 

a CNN. The grey arrow shows a classical approach, while the red 

arrows show the new added (residual) connections. 

   

Dilated convolutions: Another central aspect of a network 

capable of capturing multi-resolution information is its ability to 

capture spatial context. Recently, Yu and Koltun (2016) proposed 

the use of dilated convolutions (Figure 3) in CNN. These dilated 

convolutions consist of convolutions applied to a given input 

image with a kernel having defined gaps (Figure 3). The 

receptive field of the network is bigger, capturing more 

contextual information (Hamaguchi et al., 2017). These dilated 

convolutions allow the integration of knowledge of the wider 

context (Hamaguchi et al., 2017) and at the same time depict finer 

details (Yu and Koltun, 2016). This is especially relevant for a 

multi-resolution approach since several sizes of patterns at 

different resolutions may contribute to the classification task.  
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Figure 3 a) 3x3 kernel with dilation 1, b) 3x3 kernel with 

dilation 3 

 

2.1 Basic convolutional set and modules definition: 

The architecture of the CNN is composed by two main modules: 

1) context module, followed by 2) resolution specific module 

(Figure 5). This structure was inspired by the works of 

Hamaguchi et al. (2017), Yu et al.  (2017) and He et al. (2016). 

The general idea is that both context and resolution specific 

information is needed (Hamaguchi et al., 2017), hence the use of 

the two distinct modules. 

Both modules are built stacking basic convolutional sets. These 

are composed of a convolution, batch normalization and ReLU 

(CBR, see Figure 4 a)) (He et al., 2016; Ioffe and Szegedy, 2015; 

Yu et al., 2017). Two basic convolutional sets bridged by a 

residual connection form a main CBR block, as shown in Figure 

4 b). In each CBR, different number of filters and dilation values 

can be adopted. Both the context and resolution specific modules 

are composed of a sequence of CBRs with different numbers of 

filters and dilation rates as indicated in Figure 5. 

a) 

 

 

b) 

 

 

 
Figure 4 Basic convolutional set (a). Basic group of convolutions 

used to build the context and (b) resolution specific modules 

indicating the number of filters used 

 

The context module (Figure 5 a)) is composed of several stacked 

CBRs with increasing dilation and increasing number of filters, 

with the objective of gradually capturing larger feature 

representations (Hamaguchi et al., 2017; Yu et al., 2017). The 

increasing number of filters over a CNN follows the state of the 

art approaches (He et al., 2016; Simonyan and Zisserman, 2015), 

more filters for higher level feature representation. The initial 

feature map is reduced from 224x224 (input) to 28x28px using a 

stride of 2, instead of 1 in the first three sets of CBRs. The use of 

larger stride has shown better performances than the max pooling 

operations, mainly because of the use of dilated convolutions (Yu 

et al., 2017). The kernel size of all the convolutions is 3x3 

(Springenberg et al., 2015). 

a)  

 

     

b) 

 
 

Figure 5 a) Context module, b) resolution specific module. 

Resolution specific module does not contain residual 

connections. 

 

The increase in the dilation factor can create artificacts on the 

resulting feature maps, due to the gaps generated by the dilated 

kernel (Hamaguchi et al., 2017; Yu et al., 2017). To attenuate this 

drawback, the dilation increase in the context module is 

compensated in the resolution specific module with a gradual 

reduction of the dilation value and the removal of residual 

connections from the basic CBR blocks (Yu et al., 2017). This 

also allows to re-capture the more local features (Hamaguchi et 

al. 2017), which might be lost due to the increasing dilations in 

the context module. 

For the classification part of the network, global average pooling 

followed by a convolution which maps the feature map size to 

the number of classes, is applied. Since this is a binary 

classification problem, a sigmoid function is used as activation. 

 

3. EXPERIMENTS 

3.1 Dataset and training samples 

There are two subsets of data: a) a multi-resolution dataset 

formed by three sets of images corresponding to satellite and 

airborne images (manned and UAV platforms) and b) a set of 

generic satellite image samples, which is used in one of the 

benchmark approaches. 

Regarding the multi-resolution data, three sets of images, one set 

for each level of resolution, are considered: satellite, manned and 

unmanned aerial vehicles (Table 1). Most of the datasets depict 

real earthquake-induced building damages; however, there are 

also images from controlled demolitions. 

The satellite images cover five different geographical locations 

in Italy, Ecuador and Haiti (Table 1). The satellite imagery was 

collected with WorldView 3 (Amatrice, Pescara del Tronto and 

Portoviejo) and GeoEye 1 (L’Aquila, Port-au-Prince). These data 

are pansharpened and have a variable resolution between 0.4 and 

0.6m. 

The airborne imagery consists of nadir and oblique imagery with 

a ground sampling distance (GSD) of 12-18 cm for the manned 

vehicles and of 2-10 cm for the UAV. The differences in image 

content at a given level of resolution (different illumination 

settings, view angles, sensors characteristics, morphology of 

buildings and urban landscape) are further increased by the multi-

resolution aspect. 
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Location 

N. of samples 
Month/Year of 

event Damaged 
Not 

damaged 

  

Satellite samples 

Aquila 115 118 April 2009 

Port-au-Prince 732 701 January 2010 

Portoviejo 147 163 April 2016 

Amatrice 165 180 August 2016 

Pesc. Tronto 93 94 August 2016 

Total  1252 1256  

 

 

Airborne (manned vehicles) 

samples 

 

Aquila, 336 385 April 2009 

St Felice 587 593 May 2012 

Amatrice 320 362 August 2016 

Tempera 259 260 April 2009 

Bidonville 229 229 January 2010 

Port-au-Prince 749 712 January 2010 

Onna 387 365 April 2009 

Total  2867 2906 

 

 

 Airborne (UAV) samples  

Aquila 113 131 April 2009 

Wesel 90 94 ++ 

Portoviejo 216 208 April 2016 

Pesc. Tronto 218 264 August 2016 

Katmandu 309 288 April 2015 

Taiwan 187 611 February 2016 

Gronau 457 501 ++ 

Mirabello 502 453 May 2012 

Lyon 312 310 ++ 

Total  2704 2860  

 

Table 1 Overview of the location and quantity of satellite and 

airborne samples. The ++ locations indicate controlled 

demolitions of buildings. 

 

The samples are extracted for each resolution from the set of 

images indicated before. First, damaged and undamaged image 

regions are manually delineated, see Figure 6. Every cell that 

contains more than 60% of its area covered by one of the classes 

is cropped and used as an image sample for that same class. The 

grid size varies according to the resolution: satellite 80x80px, 

airborne (manned vehicles) 100x100px and airborne (UAV) 

160x160px. The variable size of the image samples is set in order 

to keep in count the different resolution and the extension of the 

area captured in each patch. Due to the scarcity of satellite image 

samples (Table 1), to consider a smaller patch in this level of 

resolution, allowed to extract a higher number of samples. 

The number of samples is approximately the same for the 

damaged and undamaged classes. However, the number of 

samples is not balanced among the 3 levels of resolution. The 

number of satellite image samples is two-fold lower when 

compared to the other two levels of resolution.  

 

  

Figure 6 Examples of damaged (red) and non-damaged (green) 

areas digitized in satellite (GeoEye 1, Port-au-Prince, Haiti, 

2010), left. Airborne (manned platform) (St Felice, Italy, 2012) 

imagery, right. 

 

The generic satellite images samples are taken from a freely 

available benchmark dataset: NWPU-RESISC45 (Cheng et al., 

2017). This benchmark dataset contains 45 classes with 700 

satellite image samples per class. From these, fourteen classes 

were selected and divided into two broader classes, built and non-

built (Table 2). Instead of considering the total 31500 samples, 

only fourteen classes are considered (9800) to reduce the 

computational cost of the approach 

 

Built Non-built 

Airport Beach 

Commercial area Circular farmland 

Dense residential Desert 

Freeway Forest 

Industrial area Mountain 

Medium residential Rectangular farm 

Sparse residential Terrace 

 

Table 2 Fourteen classes of the benchmark dataset (NWPU-

RESISC45) divided in built and non-built classes. Each class 

contains 700 samples, totalling 9800 image samples. 

 

3.2 Experiments 

Using the modules defined before in section 2.2, five different 

networks are derived from the architectures shown in Figure 7. 

The first two networks are used as benchmarks for the other tests 

involving the multi-resolution architecture. In the first 

benchmark network (Figure 7 a)), the satellite training samples 

are fed into a network composed of the context module and the 

resolution specific module. The second benchmark uses the same 

architecture as defined in Figure 7 c) (mresB). It feeds the generic 

satellite image samples (Table 2) into the context module, while 

the resolution specific is only fed with the satellite samples. Due 

to the low number of damage domain satellite image samples 

(2508) when compared to the other levels of resolution (around 

5700), training a network from scratch may not be optimal 

(Tajbakhsh et al., 2016). For this reason, the second benchmark 

(henceforth referred as benchmark_ft), fine tunes the learned 

features from generic satellite samples, with damage domain 

specific satellite image samples.  
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a) 

 
b) 

 
c) 

 
d) 

 
 

Figure 7 Tested network configurations: a) benchmark, b) multi-

resolution A (mresA), c) multi-resolution B (mresB) and d) 

multi-resolution C (mresC). Details on the text. 

 

The other three networks combine both the context and the 

resolution specific modules. The overall aim of these tests is to 

understand if sharing features between resolutions (Figure 7 b) 

and c)) captures more relevant information than merging the 

output of each separate context module (Figure 7 d)). A more 

detailed explanation of these three networks is given below: 

 

mresA: feeds the training data of all resolutions to the context 

followed by the resolution specific module. In this way the 

extracted features of both modules are shared between 

resolutions, Figure 7 b). 

 

mresB: all the training data of all resolutions are fed into the 

context module. However, the resolution specific module is only 

fed with the satellite samples. In this case the context module 

serves as base model with its weights that are tuned in the 

resolution specific module, Figure 7 c).  

 

mresC: each data resolution is given to a different context 

module. The output of these modules is subsequently summed. 

These summed feature maps are used to initialize the resolution 

specific module that considers only satellite image samples, 

Figure 7 d).  

 

The stockastic gradient descent (Wilson et al., 2017), with 

momentum of 0.9 and with a decreasing learning rate, is used in 

the optimization. The initial learning rate is of 10−2, decreasing 

by a factor of 10 every 30 epochs (total of 120), with a weight 

decay of  10−2. This is set for the benchmark and mresA 

networks. For the other two networks, the context and resolution 

specific modules are executed separately. In these cases, the 

context module is performed with the same learning rate 

parameters of the benchmark and mresA. However, the 

resolution specific learning rates differ. The mresB (and 

benchmark_ft) resolution specific module has the learning rate  

initially set at 10−3, decreasing by a factor of 10 every 30 epochs, 

with a weight a decay of 10−6. In the case of the mresC the 

learning rate is set initially to 10−4, with the same decreasing rate 

and weight decay as mresB. These parameters are obtained 

empirically. In the benchmark and mresA the networks are 

learning from scratch, hence the aggressive learning rate. While 

in the benchmark_ft,mresB and mresC, the resolution specific 

module intends to take advantage of the weights obtained by the 

context module, hence the lower learning rate parameters. In this 

way, the multi-resolution context information is refined for the 

specific case of the satellite image classification of building 

damages. 

During the training of every network, data augmentation is 

performed since this has shown to avoid overfitting and improve 

the overall image classification (Krizhevsky et al., 2017; 

Simonyan and Zisserman, 2015). The used data augmentation 

consists of random translations, rotations, image normalization 

and up/downsampling of the images. The networks were run for 

120 epochs with a batch size of 8. The input size for the network 

is 224x224px. The image samples are zero padded to fit in this 

template, instead of being resized (Vetrivel et al., 2016a). 

The training is performed using 70% of the samples of each 

resolution, while the validation uses 30% of the satellite image 

samples. This ratio is applied to each location separatly. The 

selected samples for both the training and validation remains the 

same for all the experiments. 

 

3.3 Results  

The achieved results of the use of the five network architectures 

are presented below in Table 2. 

 

Network Accuracy Parameters Training 

samples 

benchmark 0.905 8.6M 1718 

benchmark_ft 0.904 8.6M 11518 

mresA 0.898 8.6M 8685 

mresB 0.924 8.6M 8685 

mresC 0.944 18.4M 8685 

 

Table 3 Results of experiments 

 

As indicated in this table, the benchmark network trained from 

scratch (benchmark) marginally outperforms the one which used 

generic satellite image samples in the context module and 

posteriorly fine-tuned it with the damage domain samples 

(benchmark). 

Most of the multi-resolution approaches overcome the 

benchmark networks. Only mresA underperformed the two 

benchmark networks. The best performing network was mresC 

with an accuracy increase of almost 4% compared to the 

benchmark. This network also outperformed mresB by 2%. The 

network mresC is also the one with the higher number of 

parameters since 3 context modules were added before the 

resolution specific module. The number of training samples is of 
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1718 for the benchmark 11518 for the benchmark_ft and 8685 

for the rest of the networks.  

To better understand and validate the networks behaviour, a 

second test was conducted by feeding them with new and unused 

satellite image patches. These input patches were of 224x224 px 

(i.e. different from the sample sizes of 80x80 px). Figure 8 and 

Figure 9 show activations given by the last set of filters of all the 

multi-resolution networks and the benchmark one with the higher 

accuracy (benchmark, Table 2). In particular, for each network 

and from the set of 256 feature maps, the one with the higher 

average activation value is visualized.  

 

 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 8 Satellite image sample (collected with WorldView-3, 

Porto Viejo, Ecuador, 2016), with damaged area manually 

outlined in red, fed into the network. Higher activation value of 

the last set of feature maps of the benchmark b), mresA c), mresB 

d) and mresC e) networks. 

 

The activation from mresC (Figure 8 d)) shows a stronger 

agreement with the damaged area in red, when considering all the 

presented activations. However, smaller damaged areas are not 

considered as damaged. The activation from the benchmark 

(Figure 8 a)) also shows localization capabilities, but it is less 

discriminative in correspondence of non-damaged areas.  Figure 

8 b) presents the activation from mresA, where some difficulty to 

localize the damaged area from the given patch is evident. The 

mresB (Figure 8 c)), fails to localize the damage. 

 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 9 Satellite image sample, with the damage manually 

outlined in red (GeoEye 1, Port-au-Prince, Haiti, 2010) fed into 

the network. Higher activation value of the last set of feature 

maps of the benchmark a), mresA b), mresB c) and mresC d) 

networks 

 

Another example is presented in Figure 9, left. In this case the 

mresC activation (Figure 9, d)), from the four activations, is the 

one that shows the better agreement with the damaged region. As 

in the previous case, there are smaller damage regions that are 

not identified in the activation. The benchmark (Figure 9, a)) 

activation goes across the whole image sample, including areas 

which are not damaged. mresA (Figure 9, b)) and mresB (Figure 

9, c) only focus on the damaged area on the left upper part of the 

sample. 

Both figures, mresA and mresB, present noisier activations than 

the benchmark and the mresC. 

 

4. DISCUSSION 

The presented results indicate an improvement in the satellite 

image classification of building damages thanks to the use of 

different training samples from different spatial resolutions. 

Only one multi-resolution network did not improve the 

classification accuracy compared to the used benchmarks. Two 

factors could have contributed to this: 1) this network was the 

only multi-resolution network where the resolution specific 

module was not trained only considering the satellite image 

samples; 2) the number of satellite training samples is twofold 

lower if compared with the other two resolutions. This might 

have led the networks to discard features which might be relevant 

for the satellite resolution. 

The other two networks, which take input samples from all the 

resolution levels in their context module, outperform the 

benchmark tests. In this regard, the sum of the feature maps 

coming from the context module of each of the resolutions 

(mresC) seems to be more beneficial than feeding all of them into 

the same context module (mresB). In the case the context module 

is shared, the network might discard satellite features, due to an 

unbalanced number of training samples between the different 

image resolutions. This is in agreement with other remote sensing 

studies where the up/down sampled image samples are fed into a 

different network (or parts of the network) and each feature map 

is then summed to provide a stronger classifier (Fu et al., 2017; 

Maggiori et al., 2017). The number of parameters is also higher 

in the best performing resolution; this might have a positive effect 

on the performance.  

Considering previous works (Vetrivel et al., 2016a), there was an 

increase (around 15%) in the accuracy of satellite image 

classification of building damages, even without considering the 

multi-resolution aspect. This accuracy difference is, however, 

closely related with recent advancements in the image 

classification algorithms using CNN (He et al., 2016; Krizhevsky 

et al., 2017). 

The activation maps confirm the results provided by the accuracy 

assessment; also in this case mresC outperform the other 

methods. However, the activations of this network appear to be 

smoother; smaller signs of damage might not be considered. In 

contrast, the activation maps of networks which shared the 

context module present a noisier activation and seem to generate 

artefacts as indicated in Hamaguchi et al. (2017) and Yu et al. 

(2017), even after decreasing the dilation value in the resolution 

specific module. 

The learning rate was found to be critical. The used parameters 

were tuned empirically and a small change in the parameter 

values showed to have a high impact on the final result. The 

presented results represent the best accuracy values achieved 

with each network configuration.  

 

5. CONCLUSIONS AND FUTURE DEVELOPMENTS 

This paper assessed the combined use of remote sensing imagery 

with different resolutions within a CNN approach, to perform the 

satellite image classification of building damages.  

The combined use of several resolutions and their different 

combination in the training of the CNN, improved the accuracy 

of satellite image classification of building damages by nearly 

4%. The addition of feature maps from the different resolutions 

has shown to capture more relevant information than having 

these shared in a single network. The activations of the best 

performing network, which sums the feature maps coming from 

the several resolutions, have shown a better agreement with 
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manually defined damaged regions. However, the activations 

also show that this network is not able to identify smaller signs 

of damage, which can be critical for any decision maker 

considering a damaged map generated by such an automated 

approach.  

Since the shown results are only related with the overall accuracy 

and behaviour of the networks, more research is needed to assess 

in which specific conditions this multi-resolution approach 

improves damage mapping. The datasets used in this experiment 

mostly refer to the same geographical regions (Haiti and Italy) 

and the same disastrous events, which could be one of the reasons 

for the reported results. 

With the expected increase in the amount of collected imagery 

from several different platforms (both manned and unmanned 

platforms), this multi-resolution aspect of CNN can be beneficial 

in many practical cases. The trained networks would be very 

useful in the damage assessment at regional level, where satellite 

images are currently the only used source of information. This 

model could be further refined adding location specific samples 

in an online learning approach (Vetrivel et al., 2016a). In an early 

post-disaster setting, this multi-resolution capability is even more 

meaningful, due to the different sources of imagery that might be 

collected.  While satellite may be the first set of available data, 

there is a continuous capture of airborne multi-resolution data 

from the initial stages of the response phase.  

New tests will be performed using the same number of samples 

for every resolution. This would allow to better understand the 

impact of using unbalanced number of data with different 

resolutions. The use of only airborne samples as training to 

classify damages from satellite imagery will be then considered 

in order to assess the transferability of learned features to 

different resolutions.  

The successful use of multi-resolution remote sensing image 

samples should also be extended to other image classification 

problems with more classes. There is an increasing amount of 

multi-resolution image data available and, in that sense, a multi-

resolution approach taking advantage of such large amount of 

data would be beneficial. 
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