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ABSTRACT: 

 
Gypsum-rich material covers the hillslopes above ~ 1000 m of the Atacama and forms the particular landscape. In this contribution, 
we evaluate random forest-based analysis in order to predict the gypsum distribution in a specific area of ~ 3000 km², located in the 
hyperarid core of the Atacama. Therefore, three different sets of input variables were chosen. These variables reflect the different 
factors forming soil properties, according to digital soil mapping. The variables are derived from indices based on imagery of the 
ASTER and Landsat-8 satellite, geomorphometric parameters based on the Tandem-X World DEM™, as well as selected climate 
variables and geologic units. These three different models were used to evaluate the Ca-content derived from soil surface samples, 

reflecting gypsum content. All three different models derived high values of explained variation (r² > 0.886), the RMSE is ~ 4500 
mg∙kg-1 and the NRMSE is ~ 6%. Overall, this approach shows promising results in order to derive a gypsum content prediction for 
the whole Atacama. However, further investigation on the independent variables need to be conducted. In this case, the ferric oxides 
index (representing magnetite content), slope and a temperature gradient are the most important factors for predicting gypsum content.  
 
 

1. INTRODUCTION 

The hyperarid environment of the Atacama between Chañaral 
and Arica (N Chile) shows geomorphic processes of remarkable 
slowness, as postulated by geochronological studies on the age of 
Atacama landforms and surfaces (Dunai et al., 2005). The 
stability of surfaces in the central desert is documented by smooth 

slope morphologies, which result, supported by the presence of 
Biological Soil Crusts (BSC) (Wang et al., 2017), from the 
accumulation of thick atmospherically derived salt and dust 
deposits. In particular, the Coastal Cordillera above ~ 1000 m is 
covered by powdery, gypsum-rich material (called “chuca”), 
masking hillslopes in the hyperarid core of the Atacama. 
 
Morphodynamic activity mostly occurs due to fog-related 

atmospheric moisture (i.e., western Coastal Cordillera) and in 
relation to episodically occurring Andean discharge (i.e., the 
Precordillera and alluvial fans of the Central Depression), which 
is generally linked to severe precipitation events potentially 
causing overland flow or flash floods even in the hyperarid core 
of the Atacama. Likewise, salt-driven shrink-swell-, slump-, or 
solifluction-type processes and seismic shaking are assumed to 
actively contribute to the evolution of the specific Atacama 
landscape (May et al., 2019, 2020; Ullmann et al., 2019). 

 
Thus, the distribution of gypsum content in the surfaces of the 
Atacama is an important parameter for landscape 
characterisation. Therefore, we test in this contribution random 
forest-based machine learning (RDF) (Breiman, 2001) in order to 
predict gypsum content by using parameters derived by remote 
sensing, such as geology, soil surface indices or 
geomorphometric conditions. This approach follows the 

“scorpan”-paradigm from digital soil mapping (McBratney et al., 
2003), where a soil property (s) is the function of climate (c), 
organisms (o), relief (r), parent material (p), age (a) and the 
spatial position (n). Ultimately, we aim at determining the most 
important factors, delivered by RDF as well, explaining the 
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spatial pattern of gypsum content, which is assumed to be related 
to specific surface properties. 

 
2. MATERIALS AND METHODS 

2.1 Study area and sampling locations  

The study area presented in this contribution (Figure 1) is mainly 
situated in the Coastal Cordillera north of the Río Loa, with a size 
of 60 by 50 km, partly covering the inactive salt lake Salar 
Grande and the active Salar de Llamara. The 30 sampling 
locations on altering hillslopes were chosen based on a pre-

analysis of false-colour composites of Landsat 8 and existing 
geologic maps.  

 

Figure 1. Location of the study area (red rectangle) and the 

sampling locations (black dots). Background image is a 

Landsat-8 mosaic derived as an average of images from 2017 by 

Google Earth Engine.  
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2.2 Control data 

Soil surface samples were taken at the presented locations and 
the inorganic element concentration was determined using an 
Ametek X-ray Fluorescence Spectrometer (Spectro Xepos, 2007) 
and 8 g of sample material mixed with 2 g of Cereox analysis 

wax (Fluxana). Following calculation procedure, root mean 
square errors of calibration and lower limit of detection can be 
inferred from Spectro Xepos (2007). Certified reference 
materials were used for the calibration of the measurements. 
From these XRF analysis, we used the Ca-content as mg kg-1 in 
the samples for the representation of gypsum content. As 
expected, the Ca-content (mean: 44977 mg kg-1, 
SD: 27763 mg∙kg-1) shows a high significant correlation with S 
(r = 0.98; α ≤ 0.05) and a weak contrasting correlation with Na 

(r = -0.15) and Cl (r = -0.23), representing sodium chloride. 
 
2.3 Independent variables  

The raw digital elevation model (DEM) of the Tandem-X World 

DEM™ (Kramm and Hoffmeister, 2019) was masked and 
aggregated to a 60 m resolution. All following indices from 
satellite images were derived from mosaics of the area, calculated 
with Google Earth Engine by using the average of all images of 
a given time frame. For ASTER-based indices, the “ASTER L1T 
Radiance” dataset were used, consisting of images from the year 
2006 that were calibrated to an at-sensor radiance and 
orthorectified. Likewise, a Landsat 8 mosaic (L8) was computed 

from the archive “USGS Landsat 8 Collection 1 Tier 1 TOA 
Reflectance” from 2017, which incorporates a top-of-atmosphere 
(TOA) calibration. 
 
Independent variables are established by the previously described 
datasets to represent the different factors of the described 
“scorpan”-approach (Table 1). Thus, climate (c) is represented by 
the mean temperature and precipitation derived from the 

WorldClim 2 dataset (Fick and Hijmans, 2017). BSCs play an 
important role in covering surfaces in the Atacama and the BSC-
Index introduced by Chen et al. (2005) is used here as factor “o”. 
Relief (r) characteristics are height, slope, landforms from the 
geomorphons approach and the Topographic Ruggedness Index 
(TRI). In addition, the distance to sea is calculated. The parent 
material is represented by several different, sometimes 
contradicting indices, namely the ASTER-based mineral indices 

for ferric oxides, kaolinites, SiO2, gypsum and silicates. 
Likewise, the surface properties are represented by the ASTER-
based Clay Index and the L8-based Grain Size Index (GSI). Most 
variables are also shown at https://www.indexdatabase.de/ and 
calculations of each variable are presented in Table 1. Age (a) is 
not specifically represented here, but is partly regarded by the 
geologic units. All data is aggregated or resampled to a 60 m 
resolution as a trade-off between the different sensor resolutions 
(e.g. DEM resolution is 12.5 m, ASTER TIR-Band resolution is 

90 m) and stored in WGS 84 / UTM Zone 19S, EPSG: 32719.  
 
2.4 Statistical methods 

A lot more indices were regarded first, but neglected as strong 

cross-correlation occurred, e.g. by different indices for silica. The 
random-forest based analysis were conducted in ArcGIS Pro 
(v. 2.2) using three different sets of inputs for the calculation: 1) 
all presented datasets as independent variables (“ALL”), 2) a 
subset of the 10 most important variables from set 1 (“BEST”) 
and 3) a dataset with only the most important parameter for each 
of the “scorpan”-factors (“MINIMUM”). The calculation was 
conducted with 5000 trees, a leaf-size of five and a depth range 

from nil to nine. The predicted surface was set to a 60 m 

resolution. Due to the small sample size, no training data was 

excluded for validation. In contrast, the RMSE and NRMSE 
(normalized by range) was calculated for the differences between 
the sample content and the predicted surfaces. 
 

Variable Formula / Description Reference 
Climate (c) 
Mean temperature  Fick and Hijmans, 

2017 

Mean 

precipitation 
 Fick and Hijmans, 

2017 

Organisms (o) 

Biological Soil 

Crust Index 

(BSCI) 

L8:  
1−3∗ |B4−B3|

B3+B4+B5

3

 Chen et al., 2005 

Relief (r) 
Height 

From Tandem-X World 

DEM™ 

 
Slope  
Landform Jasiewicz and 

Stepinski, 2013 
Topographic 

Ruggedness Index 

(TRI) 

Riley et al., 1999 

Distance to Sea Orthogonal distance in 

meters 
 

Parent material (p) 
Ferric oxides  ASTER:  

SWIR_B4

VNIR_B3N
 Kalinowski and 

Oliver, 2004 

Kaolinites  ASTER:  
SWIR_B7

SWIR_B5
 Hewson et al., 

2001 

SiO2 ASTER:  
TIR_B13

TIR_B12
 Ninomiya and Fu, 

2002 

Gypsum ASTER:  
TIR_B10 +TIR_B12

TIR_B11
 Cuhady, 2017 

Silicates ASTER:  
TIR_B11

TIR_B10
 Kalinowski and 

Oliver, 2004 

Clay Index ASTER: 
SWIR_B5×SWIR_B7

SWIR_B6×SWIR_B6
  Kalinowski and 

Oliver, 2004 

Grain Size Index 

(GSI) 
L8:  

B4−B2

B4+B2+B3
 Xiao et al., 2006 

Age (a) 
Geologic Units Units of map with scale 

1: 1 Mio. 
 

Table 1. Overview on independent variables with band 

combination or description and reference, if applicable.  

 
3. RESULTS 

Although a small number of samples was used, the results of the 
three different RDF models (Table 2) show that RDF is suitable 

to predict Ca-content pretty well. The explained variation for all 
models is very high (r² > 0.886) and the RMSE and NRMSE in 
comparison to the samples is ~ 4500 mg·kg-1, ~ 6% low. 
 
The first model with all parameters (“ALL”) shows already the 
pattern of important parameters, which is reflected by both other 
models. The ASTER-based ferric oxide index (representing 
magnetite content) and the gypsum index, slope and temperature 
play the most important role (importance > 10%), whereas all 

other factors play a minor role in the model. Both categorical 
variables, the geology and the geomorphons based landforms, 
show the smallest importance and mean annual precipitation has 
hardly an influence on the results.  
 
The second model (“BEST”) incorporates the ten most important 
variables of the first model. In this case, a nearly similar order of 
importance is calculated, with slightly higher overall values. The 

explained variation is similar to the previous result, but the 
RMSE and NRMSE is slightly better. 
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Figure 2. Predicted Ca-content (low: blue colours, high: red colours) for the study area. Left: RDF with all parameters; centre: RDF 

with the ten best parameters; right: RDF with selected parameters. Sampling locations are coloured equally. Values as mg·kg-1. 

 

The third model (“MINIMUM”) regards the most important 
parameters from the previous models, but only one parameter for 
each factor of the “scorpan”-approach is chosen. For example, 
only the ferric oxide index is used to represent the parent material 
and the gypsum index is neglected. Although, only four 
parameters are used, the explained variation, RMSE and NRMSE 

show only slightly higher results. 
 
In Figure 2, all predicted surfaces are presented with a 60 m 
resolution and the soil sample locations coloured by their Ca- 
content. The derived distribution fits to the values of the samples 
and reflects the altering surfaces in the area, e.g. the coastal areas 
and the Salar Grande (north-western bluish area) with minor Ca-
contents. In contrast, hillslopes show higher Ca-contents. 

Obviously, a small sensor error is distributed in the models, as a 
linear feature from west to east in the centre section is visible. 
Differences between the predicted surfaces are for example 
observable at the coastal slopes in the west and the Río Loa 
canyon. The first two models derive more areas with higher 
values (dark red colour) than the last model. In contrast, this last 
model (“MINIMUM”) derives higher values for the Río Loa 
canyon, as the input of slope is more important in the model. 
 

4. DISCUSSION 

Sampling locations were predefined by false-colour images and 
the geologic map for the area in order to cover different units with 
varying gypsum content. However, the amount of samples is very 

low, as sampling is restricted by reachability in this environment. 
The RDF approach is originally intended for higher sample 
amounts, but in this case also shows its suitability.  
 
Overall, this simple test of applying RDF worked pretty well and 
shows a high explained variation (r² > 0.858), a low RMSE and 
NRMSE in regard to the small number of samples (n = 30) and 
the large area of ~ 3000 km² covered by these samples.  

 

Table 2. Results of the different RDF models for Ca prediction, 

computed with different sets of variables, their specific 

importance (in %), the overall explained variation (as R²), the 

RMSE (in mg·kg-1) and NRMSE calculated from the sample 

content and the predicted surface.  

 

The independent variables were chosen from a large number of 
possible indices, geomorphometric values and further available 

parameters in order to cover the factors given by the “scorpan”-
approach. As described, the derived ASTER image shows an 
error in the centre of the study area, where no sample points are 
located. Filtering, atmospheric correction or a more detailed 
mosaic generation might solve this problem. However, the large 
size of the Atacama needs cloud-based solutions, instead of 
locally working with hundreds of single scenes. In addition, the 
ASTER sensor itself is over the end of lifetime and shows a 
malfunction of the SWIR sensors since 2007 (e.g. Abrams and 

Yamaguchi, 2018). Thus, variables should be derived from L8 or 
Sentinel-2 imagery in the future. Likewise, existing indices based 

Variables Results 
Dataset Parameters with 

importance values [%] 

Expl. 

Variation 

[R²] 

RMSE 

[mg·kg-1]/ 

NRMSE  

ALL ferric oxides (13), slope 

(11), temperature (10), 

gypsum (10), kaolinites 

(9), SiO2 (8), height (7), 

TRI (7), silica (4), GSI 

(4), clay (4), BSCI (4), 

distance to sea (4), 

geomorphons (2), 

geology (1), precipitation 

(0) 

0.929 4851.24 

0.079 

BEST ferric oxides (15), slope 

(13), gypsum (12), 

temperature (12), 

kaolinites (11), SiO2 (9), 

height (9), TRI (9), silica 

(6), GSI (5)  

0.924 4260.33 

0.042 

MINIMUM slope (27), ferric oxides 

(27), temperature (26), 

BSCI (20) 

0.886 4591.39 

0.065 
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on single band calculations were used as independent variables. 

Another possibility would be to directly use all band information 
in order to predict gypsum content.  
 
However, the potential of RDF-based predictions for specific soil 
surface properties is shown. In particular, the low RMSE is 
promising. The minimum impact of both categorical variables, 
landforms and geologic units, might be the result of a bias, as 
these variables are internally treated by one-hot encoding.  

 
Interestingly, the ferric oxide index (Kalinowski and Oliver, 
2004) plays the most important role for all RDF models, as well 
as slopes and the small temperature gradient, varying from 
23.2 °C to 27.8 °C. The ASTER-based gypsum index itself 
shows a prominent role, but minor results in direct use (r = 0.35). 
The important role of biological soil crusts in the Atacama, 
reflected by the BSCI, is not supported here, which might be the 
result of the index itself. Overall, the results are in accordance 

with the results of Voigt et al. (2020).  
 

5. CONCLUSION 

Random forest-based analysis was tested for the prediction of 

gypsum content distribution in the Atacama. The first results 
from three different models show promising results with a high 
explained variation, a small RMSE and NRMSE. Input 
parameters for this modelling approach were chosen according to 
factors from digital soil mapping. Further research needs to 
exchange ASTER-based indices and extent the small number of 
samples.  
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