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ABSTRACT:

In this paper, we present two radar vegetation indices for full-pol and compact-pol SAR data, respectively. Both are derived using
the notion of a geodesic distance between observation and well-known scattering models available in the literature. While the
full-pol version depends on a generalized volume scattering model, the compact-pol version uses the ideal depolariser to model
the randomness in the vegetation. We have utilized the RADARSAT Constellation Mission (RCM) time-series data from the
SAMPVEX16-MB campaign in the Manitoba region of Canada for comparing and assessing the indices in terms of the change in
the biophysical parameters as well. The compact-pol data for comparison is simulated from the full-pol RCM time series. Both the
indices show better performance at correlating with biophysical parameters such as Plant Area Index (PAI) and Volumetric Water
Content (VWC) for wheat and soybean crops, in comparison to the state-of-art Radar Vegetation Index (RVI) of Kim and van Zyl.
These indices are timely for the upcoming release of the data from the RCM, which will provide data in both full and compact-pol

modes, aimed at better crop monitoring from space.

1. INTRODUCTION

Vegetation indices are often used as a proxy for plant growth.
Recognizing the potential of vegetation indices derived from
optical sensors, regional to global products are advocated for
operational uses. Similar to the spectral indices that are well es-
tablished in optical remote sensing, a vegetation index derived
from synthetic aperture radar (SAR) data could provide com-
plementary information for crop growth monitoring (van Zyl,
2011; Li, Wang). This information from SAR data is essential
when the optical measurements are not practicable considering
the cloud cover. The sensitivity of the SAR backscatter signal
to vegetation dielectric and geometric properties also gets its
due attention from the remote sensing community.

In radar remote sensing application, the Radar Vegetation In-
dex (RVI) (Kim, van Zyl) was introduced as a proxy for plant
growth. The RVI was formulated by modeling the vegetation
canopy as a collection of randomly oriented dipoles, and it by
principal utilizes a measure of scattering randomness from ve-
getation targets. The RVI is used in several studies (Kim et
al., 2012, 2014; Huang et al., 2016) and indicated a good cor-
relation with canopy biophysical parameters. The investiga-
tions by Kim et al. (2012) by a comparative analysis of RVI
with optical-sensor based indices i.e., Normalized Difference
Vegetation Index (NDVI) indeed results in a good correlation
between these indices.

Very recently, a new vegetation index (GRVI) has been pro-
posed by Ratha et al. (2019a), which utilizes the notion of a
geodesic distance between observation and scattering models
in the literature. In particular, the GRVI utilizes the generalized
volume scattering model proposed in (Antropov et al., 2011). It
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has been found to correlate better with biophysical parameters
in comparison to the RVI along with altogether avoiding the ei-
genvalue decomposition approach, which is fundamental to the
definition of RVIL.

In view of the upcoming constellation of satellites such as the
Canadian RADARSAT Constellation Mission (RCM), SAOCOM
(TOPSAR with experimental CP-mode), and NISAR (the NASA-
ISRO SAR) L- and S-band mission; the study on compact polar-
imetric (compact-pol) data holds promise for the future. In a re-
cent study, McNairn et al. (2017) showed that the simulated CP
parameters are correlated with the Normalized Difference Ve-
getation Index (NDVI) derived from optical sensors. Homayouni
etal. (2019) assessed the volume to odd-bounce scattering power
ratio (P, /Ps) derived from a scattering power decomposition
method from simulated CP-SAR data for vegetation condition
monitoring. The P,/P; ratio shows a good correlation with
NDVI and crop biomass for several crop types. However, as the
crop canopy attained its peak growth during the end of the ve-
getative stage and fruit development, the magnitude of P, /P
was overestimated relative to that obtained from full-pol data.
Nevertheless, these studies confirm that a derived CP-SAR met-
ric similar to NDVI is essential for agricultural applications.
Even though the RVI is a good alternative, it is restricted to the
use of full-polarimetric SAR data. Thus, there is a need for a
radar vegetation index for CP-SAR data.

In this work, inspired by the approach made in formulating
the GRVI for full-pol SAR data, a new vegetation index for
compact-pol SAR data is proposed. Due to the lack of a volume
model, we use the ideal depolariser to model the randomness
in the vegetation. The compact-pol (RH-RV) data is simulated
from the full-pol RADARSAT-2 data. The comparison in tem-
poral trends of the two indices of common origin and the RVI
is made along with important biophysical parameters such as
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Plant Area Index (PAI) and Vegetation Water Content (VWC).
Correlation studies are also conducted in particular for the two
major crops of the test site, i.e., wheat and soybean.

2. METHODOLOGY
2.1 Kennaugh matrix

Under monostatic conditions, the 2x 2 complex symmetric scat-
tering matrix S encompasses the full polarimetric information
of the backscatter from targets. It is denoted as

Sun Snv
S = 1
{ Sva  Svv ] ’ 0

where the subscripts H and V denote horizontal and vertical
polarizations, respectively.

In the real domain, the same information expressed in terms of
power through the 4 x 4 real symmetric Kennaugh matrix K
defined as

10 0 1
1, o |10 0 -1
K= A(Ses)A™, A=| | | | ®

0 j —j 0

where ® is the Kronecker product, and j = /—1.

However, for studying distributed targets, the coherent inform-
ation in S is turned into an incoherent measurement by the
process of multi-looking. In its new form, the information is
captured as a 3 x 3 complex Hermitian coherency T (or equi-
valently covariance C) matrix. The Kennaugh matrix for the
incoherent case can also be obtained from the elements of the
coherency matrix ([T]) in the following manner:

futiptin - R(Ti) R(T1s) S(T2s)
K— §R(T12) T11+’T‘§2*T33 %(Tzs) %(Tw) (3)
R(Th3) R(To3) Ty —Top+ T3 —(T2)
S(T2s) S(T13) —S(Th2) 77T1'+€22+T33

where T3 is the (4, j)-th entry of T and, R and 3 denote the real
and imaginary parts of a complex number. Thus, polarimetric
information in form of coherent S or incoherent T can be easily
obtained in their corresponding K matrices using equations (2)
and (3) respectively.

Symmetric scatterers such as trihedral (¢), cylinder (c), dipole
(dp), quarter waves (£1/4), narrow dihedral (nd), dihedral (d)
and the asymmetric scatterers such as left and right helices (lh
and rh) are well studied in PolSAR literature. The Kennaugh
matrices of these elementary scatterers, along with the ideal de-
polarizer (ID) is given in Table 1. These scatterers have been
useful for pertinent applications within the Pol[SAR domain.,
e.g., in target decompositions, an ocean surface will provide
a high trihedral component, while buildings perpendicular to
radar line of sight (LoS) will provide a high dihedral compon-
ent. Thus, using a distance measure to measure the dissimilarity
of observations with the models forms the first-hand choice for
PoISAR data analysis. In this light, the geodesic distance (G D)
on the unit sphere in the space of 4 x 4 real matrices is found
useful in many PolSAR applications Ratha et al. (2019b).

Table 1. Kennaugh Matrices for Elementary Targets and the
Ideal Depolarizer

Target Row 1 Row 2 Row 3 Row 4
K; 1000 0100 0010 000-1
K. 5/83/800 3/85/800 001/20 000-1/2
Kap 1-100 -1100 0000 0000
K_i/4 1000 0100 000-1 00-10
K14 1000 0100 0001 0010
Knq 5/83/800 3/85/800 00-120 000172
Kg 1000 0100 00-10 0001
Kin 100-1 0000 0000 -1001
K h 1001 0000 0000 1001
Kip 1000 0000 0000 0000

2.2 Geodesic Distance

The Kennaugh matrices by definition are 4 x 4 real matrices.
Thus, the GD between two arbitrary Kennaugh matrices (K
and K>) (first proposed in Ratha et al. (2017)) is defined as,

Tr(KTK>)

4
VTIKTK)/Tr(KIKz) @

GD(K1,K2) = % cos !

where Tr is the trace operator, and the superscript 7' denotes
transpose. The 2/ is the normalization factor. The GD is ad-
aptively utilized in several applications in a series of papers by
the authors for full-polarimetric SAR data. The G'D has several
elegant properties such as boundedness, scale invariance, and
invariance under the orthogonal transformation of the polariz-
ation basis which makes GD quite versatilite for PoISAR ap-
plications. A detailed mathematical treatment of the GD along
with a survey of its past and future applications is presented
in Ratha et al. (2019b).

2.3 Generalized Volume RVI (GRVI)

Vegetation is a distributed target, and finding a model with a
good-fit has been a challenge in PolSAR literature. Hence, we
can find several volume scattering models to represent the scat-
tering from vegetation. This makes the choice of volume scat-
tering model for vegetation studies a dilemma for researchers
within the field. Recently, a parameterized generalized volume
model was proposed by Antropov et al. (2011). It depends on
two parameters, namely the co-polarized channel ratio () and
the co-polarized channel correlation coefficient (p). For prac-
tical purposes, p is fixed at 1/3. The Kennaugh matrix Kgy ex-
pressed in form of ~y in equation (5). This generalized volume
model provides many of the prevalent volume scattering mod-
els in PolSAR literature as its special cases. In Ratha et al.
(2019a), the geodesic distance of the observation with the gen-
eralized volume model, as well as the geodesic distances from
even and odd bounce scatterers was synergistically combined to
propose a radar vegetation index (GRVI) for full-pol SAR data.

GRVI = 8 foy, 0<GRVI<I, (6)
o (P 2 GDgy
fav=(-GDev), B=(2)"" @
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The two extreme cases, viz., GRVI = 0 and GRVI = 1 corres-
pond to K € {K;, K., K4, K,q} and K = Kgy, respectively.
The role of the 3 is as a damping factor which will bring down
the GRVI value for non-vegetation zones in which one of the
odd or even bounce scattering is dominant.

The GRVI was compared with eigenvalue based RVI in respect
of its correlation with biophysical parameters such as VWC
(Volumetric Water Content), and the PAI (Plant Area Index).
There was no assumption made on the mode of polarization
while computing the GD between Kennaugh matrices. Hence,
the definition holds for Kennaugh matrices obtained in the hy-
brid compact polarimetric mode, as well.

2.4 Compact-pol RVI (CpRVI)

In the hybrid compact polarimetric mode the earlier S matrix
representation is replaced with the scattering vector given as

Ecu _ 1 | Sun Smv 1 )
Ecv V2| Sve  Svv +i

_ 1 | Sum+iSuv

= 5 { Svir +iSyy } (10)

where the subscript C' can be either the left-hand circular (LHC)
transmit with a + sign or the right-hand circular (RHC) transmit
with a - sign. For the incoherent case, the covariance matrix
is then obtained from the elements of the scattering vector as a
2 x 2 complex Hermitian matrix,

(|IEcu|?)
(Ecv E&w)

<ECHE5\/>

<[C}> = <|ECV|2>

(11

For CP-SAR data, the 4 x 1 Stokes vector & can be written in
terms of the elements C as,

go C11 + Ca2
-, g1 C11 — C22
= = 12
g g2 Ciz2 + Ca ’ (12)
gs ij (012 - 021)

where + corresponds to left and right circular polarization re-
spectively. The Kennaugh matrix (Kcp) for CP-data can be
written in terms of the elements of the Stokes vector as,

go 0 92/2 0

0 0 0 g1
/2 0 0 0

0 g1 0 g3/2

Kcp = (13)

As such there does not exist volume scattering model for CP-
SAR data. Thus, we utilize the ideal depolarizer (ID) to model
the randomness from distributed targets.

In defining the GRVI in (6), the imbalance in the similarity of
observation with odd (¢, ¢) and even bounce scatterers (nd, d) is
utilized. This will be facilitated in the CP-SAR case by consid-
ering the imbalance between received backscattering power in
the opposite sense (OC) and the same sense (SC), respectively.

To define a similarity of observation with the ideal depolarizer,
it may be noted that GDip = GD(K, Kp) has a upper theor-
etical limit of 2/3. Thus, the similarity fip = 1 — (3/2)GDp is
defined accordingly to obtain a range of [0 1].

In this light, we propose a novel Compact-pol Radar Vegetation
Index is defined as

CpRVI = 4 fip, 0 < CpRVI< 1, (14)
2(3/2 GDp)
fiv=1-(3/2GDo, A= (%) TLas
q
p =min{SC,0C}, ¢ = max{SC,O0C}, (16)
SC = (gO g 93)7 oC = (gO —g 93)7 (17)

where go (the 1st element of g) is the total average received
power and g3 (the 4th element) is a measure of the average re-
ceived power in circular polarization. Hence, the role of 3 is
exactly the same as in case of GRVI.

The proportion of the power that is received by the radar in
opposite-sense circular polarization to that transmitted is OC =
(go + g3)/2. When the EM wave undergoes odd number re-
flections, such a change in polarity occurs. Similarly, SC =
(go — g3)/2 is the power received by the radar in the same-
sense circular polarization as it was transmitted, which is a case
for an even number of reflections. Thus the role of 3 is similar
to that of the damping factor used in GRVI.

The two extreme cases, viz., CpRVI = 0 and CpRVI = 1 cor-
respond to a coherent target (observation correspondg to a S)
and K = Kjp, respectively.

3. DATASET AND STUDY AREA

This work is conducted over the Joint Experiment for Crop As-
sessment and Monitoring (JECAM) test site in Carman, Man-
itoba (Canada). This area is considered as one of the super-
site of the Joint Experiment for Crop Assessment and Monit-
oring (JECAM) network. The average extent of the test area
is 26x48km? as shown in Fig. 1. The annual crop invent-
ory map indicates four major crop wheat, soybean, canola, and
oats, which are grown in the area (Fig. 2). The seeding of an-
nual crops in Manitoba started at the end of April to mid-May
and harvesting in August. The in-situ measurements were col-
lected over the area with near coincident satellite passes as a
part of the Soil Moisture Active Passive Validation Experiment
2016 (SMAPVEX16-MB) campaign (Bhuiyan et al., 2018). In-
situ sampling was conducted, which included measurement of
plant area index (PAI), wet and dry biomass, plant height, plant
density, and phenology through destructive and non-destructive
methods (Mcnairn et al., 2016; Bhuiyan et al., 2018). Table 2
provides information about the satellite passes, which has been
utilized in this study.
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Figure 1. Study area and sampling locations over the JECAM-Manitoba (Canada) test site. The layout of the sampling locations
within each field is highlighted for vegetation sampling.

(a) Crop Inventory Map

(b) Crop Legend

Figure 2. Crop inventory map over the test site at Carman,
Canada for 2016 crop season.

4. RESULTS AND DISCUSSION

The vegetation indices (both the GRVI and RVI) for different
sampling sites are generated from the RADARSAT-2 quad-pol
data set. VI values for each sampling location (point meas-
urements) are extracted over a 3x3 window, and the temporal
analysis is performed at different growth stages. The temporal
variation of the three vegetation indices (i.e., RVI, GRVI, and
CpRVI) for the scene are shown in Fig. 2. The three vegeta-
tion indices are compared for different phenological stages of

Table 2. Specifications of RADARSAT-2 data acquisitions

Acquisition Incidence Angle

date Beam Mode Range (deg.) Orbit
30/05/2016 FQ7W 24.98-28.32 Ascending
15/06/2016 FQ7W 24.98-28.32 Descending
23/06/2016 FQ7TW 24.98-28.32 Ascending
09/07/2016 FQ7TW 24.98-28.32 Descending
17/07/2016 FQ7W 24.98-28.32 Ascending
02/08/2016 FQ7W 24.98-28.32 Descending

wheat and soybean, as shown in Fig. 4. From several sampling
sites, 3 representative fields (field numbers: 220, 105, 233 for
wheat; and 113, 82, 232 for soybean) for each crop are used for
the temporal analysis of vegetation indices. It can be observed
that the temporal trend follows PAI and VWC for both wheat
and soybean. The growth trends of the vegetation indices are
similar irrespective of plant density among several fields, i.e.,
an increase of PAI and VWC with crop development. However,
the RVI, GRVI, and CpRVI values for field no.105 are compar-
atively higher for all phenological observations, which have the
highest plant density-PD (approximately 230 plants/m?). In the
other two fields, separation of CpRVI, GRVI, and RVI values
within a field becomes apparent (Fig. 4) when wheat has ad-
vanced from the leaf development to booting and start of the
flowering stage.

CpRVI values reached their maximum when crop advanced from
stem elongation to early dough or fruit development stages on
17 July. CpRVI values reach up to 0.65 for low PD fields, while
these values peak at ~0.8 for high PD wheat fields. This vari-
ation may be due to the high degree of randomness in scattering
from the canopy elements during the flowering to fruit develop-
ment stages. Unlike CpRVI, which follows almost a monotonic
increase along phenological stages, the fluctuation of RVI val-
ues is more apparent. It is possibly due to the inherent noise that
arises in the numerator term of RVI formulation, i.e., the third
eigenvalue, which is more affected by noise rather than changes
in vegetation randomness (Mandal et al., 2020). However, the
GRVI values are more stable than the RVI and CpRVI.

Unlike the RVI, which models the vegetation layer as an ag-
gregation of randomly oriented dipoles, the GRVI offers the
flexibility to choose the parameters of the generalized volume
scattering model (GVSM) from the measured data to describe
the volume scattering model Ratha et al. (2019a). In this way,
the GVSM might capture the phenological changes within a
volume model, whereas both the CpRVI and RVI lacks this
aspect. On the contrary, in the absence of any volume scat-
tering models to suitably describe scattering from vegetation in
CP-SAR data, the ideal depolarizer (ID) is utilized to measure
randomness from distributed targets in CpRVI. Moreover, the
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Figure 3. Evolution of Pauli RGB and the vegetation indices over time.
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Figure 4. Temporal pattern of vegetation indices (CpRVI, RVI, and GRVI) for wheat and soybean fields.
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geodesic distances from the odd (i.e., trihedral) and the even
bounce (i.e., dihedral) scatterers that appear in GRVI Ratha et
al. (2019a) is suitably replaced by the received echo powers
from the same circular (SC) and the opposite circular (OC)
sense to the transmitted polarization.

The variations with CpRVI and RVI values are more appar-
ent in the low biomass soybean crop. Fig. 4 presents the tem-
poral trends of CpRVI and RVI for three representative soybean
fields with different row spacing (RS) and plant count per meter
length (PC). Both the CpRVI and RVI values for each field in-
crease as the vegetation growth increases from the early veget-
ative growth stages to the beginning of pod development. With
the increase in vegetation components, the differential increase
in CpRVI and RVI values among several fields are apparent.

With the increase in vegetation components, the differential in-
crease in vegetation indices values among several fields is ap-
parent. The correlation analysis of vegetation indices with crop
biophysical parameters given in Table 3. The correlation coef-
ficient (r) of CpRVI with PAI is 0.72 and 0.85, which is higher
than that of RVI (» = 0.68 and 0.76) for wheat and soybean.
A similar improvement of r is observed for VWC for both the
crops. The correlation analysis shows marginally better per-
formance of CpRVI compared to RVI, while it is inferior to
GRVI for characterizing vegetation growth.

Table 3. Correlation of Vegetation Indices with PAI and VWC
for wheat and soybean.

C Vegetation  Correlation coefficient (r)
rop
parameter ~ CpRVI  GRVI RVI
Wheat PAI 0.72 0.77 0.68
VWC 0.62 0.71 0.60
Sovbean PAT 0.85 0.92 0.76
Y VWC 0.75 082 074

5. CONCLUSION

Two vegetation indices for full polarimetric and compact po-
larimetric SAR have been respectively presented in this study.
The temporal analysis of the proposed indices derived from the
simulated RCM data suggests that it has a positive correlation
with the crop growth development parameters, i.e., Plant Area
Index (PAI) and vegetation water content (VWC). Notably, the
proposed vegetation indices hold significant interest from an
operational perspective for upcoming SAR missions, e.g., the
RADARSAT Constellation Mission (RCM).
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