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ABSTRACT: 
 
Agricultural drought is one of the most critical hazards with regard to intensity, severity, frequency, spatial extension and impact on 
livelihoods. This is especially true for Argentina, where agricultural exports can represent up to 10% of gross domestic product (GDP), 
and where drought events for 2018 led to a decrease of nearly 0.5% of GDP. In this work, we investigate the applicability of the Soil 
Moisture Agricultural Drought Index (SMADI) for detection of droughts in Argentina, and compare its performance with the use of 
two well-known precipitation-based indices: the Standardized Precipitation Index (SPI) and the Standardized Precipitation-
Evaporation Index (SPEI). SMADI includes satellite-based information of soil moisture, surface temperature and vegetation greenness, 
and was designed to capture the hydric stress on the soil-vegetation ensemble. Results indicate that SMADI has greater capabilities for 
agricultural drought detection than SPI and SPEI: it was able to recognize more than 83% of the registered emergencies, correctly 
classifying 75% of them as extreme droughts, and outperforming SPI and SPEI in all the analyzed metrics.  
 
 

1. INTRODUCTION 

Agricultural drought is one of the most critical hazards with 
regard to intensity, severity, frequency, spatial extension and 
impact on livelihoods. In the last decades, the occurrence of 
drought episodes is increasing, with direct and indirect impacts 
on economy, environment and food security (Foley et al., 2011). 
This is especially true for Argentina, where agricultural exports 
can represent up to 10% of gross domestic product (GDP) 
(Pisani-Claro and Miazzo, 2017), and where drought events for 
2018 led to a decrease of nearly 0.5% of GDP (Lema, Amaro and 
Pace, 2018).  
 
According to the IPCC (IPCC, 2014), there are three main types 
of drought, depending on which part of the hydrological system 
suffers from water deficit: 1) meteorological drought, which is 
associated with a deficit in precipitation, 2) hydrological drought, 
that occurs when there is a low water supply in streams, 
reservoirs, and groundwater levels, usually after many months of 
meteorological drought, and 3) agricultural drought (also known 
as soil moisture drought), which is associated with a deficit of 
water in the soil’s unsaturated zone that could compromise the 
crop yields. Since a precipitation deficit propagates through the 
system into (potentially) soil moisture and streamflow anomalies, 
drought types are inherently related between them. Probably for 
this reason, precipitation-based indices are often used for 
detection of agricultural drought, together with the wide 
availability of meteorological databases. However, the processes 
involved in the evolution of droughts are complex (Barella-Ortiz 
et al., 2018), specially over agroecosystems, where the deficit in 
plant-available water that could compromise crop production 
depends on the type of crop, its location, and season. Hence, 
precipitation-based indices, yet simple and widely used, may not 
be the most suitable indicators for detection of agricultural 
drought. Alternatively, the use of readily available satellite-based 
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soil moisture estimates to improve early detection of agricultural 
drought is a promising venue of current research (e.g. Martínez-
Fernández et al., 2016, Mishra et al., 2017, Pablos et al., 2017, 
Sánchez et al., 2018).  
 
In this work, we investigate the applicability of the Soil Moisture 
Agricultural Drought Index (SMADI) for detection of droughts 
in Argentina, and compare its performance with the use of two 
well-known precipitation-based indices: the Standardized 
Precipitation Index (SPI) and the Standardized Precipitation-
Evaporation Index (SPEI).  SMADI is a simple and intuitive 
index that allows determining agricultural drought events based 
on the physical conditions of the soil-vegetation ensemble. As a 
distinct feature with respect to other soil-moisture based drought 
indices, SMADI also includes information on the vegetation 
status and encodes a delayed impact of drought on the vegetation 
ensemble.  
 
SMADI is solely based on remote sensing datasets of Surface 
Soil Moisture (SSM), Land Surface Temperature (LST), and 
Normalized Difference Vegetation Index (NDVI). Previous 
experiments with SMADI in the Iberian Peninsula (Sánchez et 
al., 2016) and at continental and global scales (Sánchez et al., 
2018), showed a reasonable match with other climatic-
agricultural indices and with registered events of drought. 
 
The document is structured as follows. In Section 2 we first 
introduce the three indices, their rationale and how they have 
been calculated for this study. Following a characterization of the 
study area and a description of the agrarian emergencies 
database, the validation metrics and main results of our analysis 
are shown and discussed in Section 3. Conclusions and 
perspectives from this work are given in section 4. 
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2. DATA AND METHODS 

2.1 SMADI, SPI, SPEI 

2.1.1 SMADI: SMADI is a soil-moisture based index aimed 
to detection and monitoring of agricultural drought. Together 
with soil moisture information, it further embeds a descriptor of 
vegetation’s photosynthetic activity (Normalized Difference 
Vegetation Index, NDVI) and the land surface temperature 
(LST), in an attempt to jointly describe the status of the soil-plant 
continuum. All the variables are obtained from remote sensing 
sources, and it is scalable both in space and time. 
 
The rationale of SMADI is based on the inverse relationship 
between the LST and vegetation status, which is, in turn, related 
to the soil moisture content (Carlson et al., 1994). First, each 
variable is normalized in the form of a “condition index”, after 
Kogan (1990, 1995), using the maximum and the minimum time 
range values for each (eqs. 1, 2 and 3).  
 

𝑉𝐶𝐼 =
(ேூିேூ)

(ேூೌೣିே )
 (1),   𝑀𝑇𝐶𝐼 =

(ௌ்ିௌ்)

(ௌ ்ೌೣିௌ்)
 (2),  

 

                        𝑆𝑀𝐶𝐼 =
(ௌெೌೣିௌெ)

(ௌெೌೣିௌெ)
     (3) 

 
where i corresponds to a given biweekly period. Then, SMADI 
computes the ratio between the temperature condition index and 
the vegetation condition index multiplied by the soil moisture 
condition index (eq. 4). Since there is a lag between the plant 
response and the atmospheric/soil factors, a certain time lag 
between the NDVI and the LST/SSM should be considered.  
 

                            𝑆𝑀𝐴𝐷𝐼 = 𝑆𝑀𝐶𝐼
ெ்ூ

ூశభ
    (4) 

 
The VCI for a given i corresponds to the ensuing fourteen-day 
period. This time lag is imposed to consider the lag between the 
plant response and the soil moisture conditions, following 
previous experiences with SMADI. Following Sanchez et al. 
(2018), the raw values of SMADI were classified into five 
intensity categories (Table 1): 
 

 Non-
drought 

Pre-
drought 

Moderate Severe Extreme 

SMADI 0-0.999 1-1.999 2-2.999 3-3.999 ≥ 4 

Table 1. Drought categories after SMADI 

 
The global datasets included in SMADI are the daily 
MODIS/Terra LST (MOD11C1 v.6), the daily reflectance 
(MOD09CMG v.6, from which NDVI was computed), and the 
daily SMOS L3 soil moisture (BEC v2.0, Barcelona Expert 
Center, 2019). All of them are integrated in SMADI at a spatial 
resolution of 0.05° and a biweekly temporal rate. SMADI was 
calculated only for grassland and cropland areas, as indicated by 
the MODIS/Terra Land Cover Types map (MOD12C1). A more 
detailed description of the SMADI basis and its calculation can 
be found in Sánchez et al. (2018). 
 
 

2.1.2 SPI and SPEI: The SPI (McKee et al., 1993) is based 
on the conversion of precipitation data to probabilities based on 
long-term precipitation records computed at different time scales 
(Scaini et al., 2015). Drought is related to standardized 
precipitation series, which is the difference of precipitation from 
the mean for a specified time period divided by the standard 
deviation (McKee et al., 1993). But since precipitation is 
typically not normally distributed, different probability models 
should be used to fit the precipitation series. Here, a gamma 
distribution function was applied (Podestá et al., 2016), a 
reference period of 40 years was used (1971-2010), and a one-
month temporal scale of SPI was selected in order to match the 
SMADI temporal rate. 
 
The SPEI (Vicente-Serrano et al., 2010) is mathematically 
similar to the standardized precipitation index, but adds to the 
precipitation series the reference evapotranspiration (therefore, 
the role of temperature) and involves a climatic water balance and 
the accumulation of deficit/surplus. As for SPI, a monthly series 
of SPEI was used. 
 
Both the SPI and SPEI data used in this research was provided 
by the Regional Climate Center Network for Southern South 
America (CRC-SAS, 2019) at a spatial resolution of 0.5º.  
 
Following Keyantash et al., (2018), the raw values of SPI and 
SPEI were classified into four intensity categories (Table 2): 
 

Normal or wet Moderately Dry Severely Dry Extremely Dry 

SPI > -1 -1 ≥ SPI > -1.5 -1.5 ≥ SPI > -2 SPI ≤ -2 

Table 2: Drought categories after SPI and SPEI. 

 
2.2 Study area and emergency declarations 

Argentina is located at the southernmost part of the American 
Continent. It has a continental surface of 2,791,810 km² and 
expands from 21º 46' 52" S to 55º 03' 21" S, and from 53º 38' 15" 
W to 73º 34’ W (IGN, 2019). It has a wet-to-dry gradient from 
NE to SW ranging from 1800 mm to 50 mm mean annual 
precipitation, and an annual mean temperature which spans from 
22°C to 6°C (SMN, 2019). 
 
It includes the southern part of La Plata Basin (the second largest 
basin of the continent), and the Pampas plains. These two 
subregions house large population densities, and have high 
productivity of agriculture and cattle raising. Since Argentina's 
economy has historically been highly dependent of its 
agricultural exports, drought detection and forecasting is 
paramount and a central issue for the country. 
 
In this line, when a drought affects productive activities, the 
Argentina Ministry for Agriculture (in its different forms and 
names) declares an agrarian emergency, and that allows 
producers to get a refund for their taxes. These declarations are 
made at the spatial scale of departments within a province, and at 
a temporal scale that usually includes the whole productive cycle 
affected (even if the drought only covered part of the cycle).  
They are often declared within the same productive cycle, but 
months after the drought has started. This last characteristic 
makes them of no value for forecasting purposes. 
 
Resolutions of the Ministry of Agriculture are public and can be 
found online (MAGyP, 2019). Fig. 1 shows the number of 
drought emergencies declared at the department scale for the 
2010-2015 period.  
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In order to evaluate SMADI, SPI and SPEI performances in 
Argentina for the period covering June 2010 to December 2015, 
we downloaded and digitized every declaration of drought 
emergency reported during this period. For each emergency 
declared, we then aggregated all departments involved on that 
particular emergency for each province. This gave us a total of 
49 emergencies, which were divided in 6 years, according to their 
start date (6 starting from June to December of 2010, 19 starting 
in 2011, 8 starting in 2012, 12 starting in 2013, 4 starting in 2014 
and none starting in 2015). 
 

 
Figure 1. Number of drought emergencies declared (at the 

department scale). Blue lines represent Province limits. Black 
lines represent Department limits. 

 
2.3 Validation metrics 

For validation purposes, we used an inclusive time schedule. This 
means that we considered a SMADI (SPI or SPEI) period to be 
part of the emergency declaration timeframe if at least one day of 
the emergency was included in that period. 
Following Sanchez et al. (2018), for each emergency declaration, 
the following validation metrics have been used: 
 

 Extension: percentage of emergency area that shows any 
drought category (pre-drought to extreme categories for 
SMADI, moderately dry to extremely dry for SPI and SPEI). 
For SMADI a match is considered if there is at least ⅓ of the 
emergency area for two consecutive dates (28 days) with a 
SMADI ≥ 1. For SPI and SPEI a match is considered if there 
is at least ⅓ of the emergency area with SPI or SPEI ≤ -1 for 
any single period (1 month). 

 % duration: percentage of emergency period that is 
considered a match for SMADI, SPI, or SPEI. For the yearly 
calculations, an average of duration is computed. 

 Extreme_0: number of emergencies that have at least one 
pixel with an extreme category (SMADI≥ 4.0, SPI< -2.0, 
SPEI< -2.0).  

 Extreme_33: number of emergencies that have at least ⅓ of 
their area covered by the extreme category of the studied 
index (SMADI≥4.0, SPI≤-2.0, SPEI≤-2.0).  

 
Validation metrics were computed both at yearly basis and for 
the whole studied period. In the latter case, all emergencies were 
pooled together regardless of the occurrence year to grant them 
the same weight in calculations; note that yearly results were not 

used for the total calculation to avoid providing less weight to 
emergencies from the years with the highest number of reported 
emergencies and vice-versa.   
 

3. RESULTS 

As detailed in section 2.2, we have analysed a total of 49 drought 
emergency events declared between June 2010 and December 
2014 (see Fig. 1). 
 
Figure 2 shows, as an example, the drought emergency declared 
between July, 1st, 2013 and December 31st, 2013 for a part of 
Santa Fe Province, as seen by the three indices for the same 
observation period: August, 2013 for SPI and SPEI, and the 
period between August 13 and August 26, 2013. 
 
This particular emergency not only was detected by the three 
indices, but they also coincide in at least one of the detected 
periods. For this particular emergency, SMADI shows matches 
in 6 consecutive 14-day observation periods (out of 14 included  
periods) covering the whole time lapse between July 31st and 
November 4th. SPI showed a match only for August, 2013, and 
SPEI showed matches for August and December 2013. As a 
result, the three indices coincide in the detection for the month of 
August.  
 

 

 
Figure 2: Illustration of detection capabilities for the emergency 
declared between 01-Jul-2013 and 31-Dec-2013. Top: SMADI 
results for period August 13th - 26th, 2013. Bottom left: SPI 

results for August, 2013. Bottom right: SPEI results for August, 
2013. In all cases, the magenta polygon represents the area of 
the emergency, and black thin lines represent province limits. 
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Table 3 shows the validation metrics for SMADI. Considering 
the whole study period, SMADI allows for  reasonably good 
detection capabilities when taking into account the extension of 
different drought classes (83.7 % of matches) and the presence of 
extreme values in those matches (75.5 % matches of Extreme_0). 
 
The results involving drought duration are however considerably 
lower (31.6% match). This can partially be explained by the 
nature of the emergency declarations, which fixes the way their 
temporal scale is registered: since the Ministry’s goal is to 
generate tax refunds for affected producers, emergencies are 
declared for the entire affected productive cycle (with a different 
length for crops, cattle raising, etc.). Since a drought does not 
necessarily need to persist all along the productive cycle to affect 
crop yield (e.g. a drought during crop early growth-
developmental stages only can have the highest impact), 
temporal coverage for a drought is usually overestimated in 
emergency declarations. 
 

 2010 2011 2012 2013 2014 Total 

Drought 
events 

6 19 8 12 4 49 

SMADI 
matches 

5 15 8 12 1 41 

% correct 
matches 

83.3 78.9 100 100 25 83.7 

% duration 33.4 28.2 29.8 36.4 30.8 31.6 

SMADI 
Extreme_0 

5 12 7 12 1 37 

% SMADI 
Extreme_0 

83.3 63.2 87.5 100 25 75.5 

SMADI 
Extreme_33 

0 0 3 4 0 7 

% SMADI 
Extreme_33 

0 0 37.5 33.3 0 14.3 

Table 3. Validation results for SMADI. 

 
If we look at the annual matches, we observe that very good 
results are obtained for years 2010 to 2013, both regarding 
extension (over 70%) and  extremes (over 60%), whereas poorest 
results are obtained for year 2014 (25% for both metrics). It is 
difficult to explain such a difference in SMADI performance, but, 
as we show in the subsequent analysis, 2014 is the year with the 
poorest performance also for SPI and SPEI indices.  
 
The metric Extreme_33 allows gaining insight into the impact of 
the intensity of drought events in the detection, since they require 
that at least 33% of the analysed area is detected as extreme by 
SMADI to be considered as a match (SMADI≥4). In this line, 
years 2012 and 2013 (3 and 4 extreme_33 events, over ⅓ of the 
total number of events) could be considered as being drier than 
the rest of the years that do not show any event so extreme.   
 

Table 4 summarizes the validation results for SPI. Overall, we 
can see that SPI has also reasonably good detection capabilities 
for the agricultural drought events, but it leads to lower values 
than SMADI in all the analysed metrics (matches, both extreme 
metrics, and duration). 
 

 2010 2011 2012 2013 2014 Total 

Drought 
events 

6 19 8 12 4 49 

SPI 
matches 

6 15 7 8 1 37 

% correct 
matches 

100 78.9 87.5 66.7 25 75.5 

% duration 19.1 18.7 15.3 12.8 8.3 16.6 

SPI 
Extreme_0 

1 7 2 6 1 17 

% SPI 
Extreme_0 

16.7 36.8 25 50 25 34.7 

SPI 
Extreme_33 

0 1 0 1 0 2 

% SPI 
Extreme_33 

0 5.3 0 8.3 0 4.1 

Table 4. Validation results for SPI. 

Considering the year-by-year analyses, the percentage of correct 
matches is higher for SPI in 2010, lower in 2012 and 2013, and 
the same than SMADI in 2011 and 2014. Extreme_0 values are 
lower for SPI than for SMADI for every year except 2014, and 
duration values are lower for SPI than for SMADI for every year. 
Interestingly, even the highest duration value of SPI is lower than 
the lowest duration value for SMADI. These differences could be 
due to at least three factors: first, SPI takes into account only 
precipitation deficit, which does not necessarily propagate to a 
deficit on soil moisture or plant available water leading to crop 
failure. For instance, during an intense drought, one month of 
normal rainfall would give a SPI~0 (and thus would not be 
included in the duration calculation), but could not be enough to 
overcome soil dryness and/or vegetation hydric stress. 
 
Second, spatial resolution is different between the two indices. 
SMADI resolution is 0.05º, a tenth of the 0.5º at which SPI is 
provided. Besides, SPI is calculated using precipitation data from 
meteorological stations that are further apart than 0.5º; in order 
to obtain a spatially complete map, point SPI calculations are 
interpolated with techniques of varying complexity that 
inevitably add errors to the spatialized measurements and, 
ultimately, to the index.  
 
Third, the temporal resolutions at which SMADI and SPI are 
computed are different. Even though time conditions for 
establishing a match are nearly the same (28 days vs. a month 
respectively), the fact that each SMADI calculation is an 
integration of conditions over 14 days may be giving it an 
improved sensibility, especially at the beginning and ending of 
drought events, over the monthly calculation used for SPI. Still, 
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calculation of SPI for shorter periods than a month led to unstable 
results in a previous study carried out in our study region 
(Podestá et al., 2016) and therefore was not considered in this 
work.  
 
Validation results for SPEI shown in Table 5 are in between the 
ones obtained for SMADI and the ones obtained for SPI.  
 

 2010 2011 2012 2013 2014 Total 

Drought 
events 

6 19 8 12 4 49 

SPEI 
matches 

4 15 7 12 2 40 

% correct 
matches 

66.7 78.9 87.5 100 50 81.6 

% duration 22.6 21.2 18.4 22.7 14.6 21 

SPEI 
Extreme_0 

0 7 1 7 0 15 

% SPEI 
Extreme_0 

0 36.8 12.5 58.3 0 30.6 

SPEI 
Extreme_33 

0 2 0 2 0 4 

% SPEI 
Extreme_33 

0 10.5 0 16.7 0 8.2 

Table 5. Validation results for SPEI. 

 
We can see that metrics obtained for SPEI are close to the ones 
for SMADI, except for duration and extreme_33 metrics, where 
SMADI shows greater performance. Compared to SPI, SPEI 
leads to higher values in all metrics except for extreme_0.  
 
Since the spatial and temporal resolution are the same for SPI and 
SPEI, the improvement on SPEI matches and duration metrics 
should be due to the fact that SPEI also includes  potential 
evapotranspiration alongside  precipitation data. However, it 
does not include information on soil moisture and actual 
vegetation status and that is probably why validation results are 
still far below the ones obtained for SMADI, which does take into 
account these two factors (the former in a direct way, the latter 
using NDVI as a proxy).   
 
 
 

4. CONCLUSION AND FUTURE WORK  

In this work we have analysed two approaches for the detection 
of drought events that were severe enough as to be declared 
“Agrarian Emergency” by the Argentinean Ministry of 
Agriculture: the first approach proposes the novel use of remotely 
sensed information on soil moisture and vegetation status 
(SMADI), and the second or “classic” approach consists of 
including data from meteorological stations (precipitation in SPI, 
precipitation and evapotranspiration in SPEI). Results indicate 
that SMADI allows for greater agricultural drought detection 

capabilities: it was able to recognize more than 83% of the 
registered emergencies, correctly classifying 75% of them as 
extreme droughts, and outperforming SPI and SPEI in all the 
analysed metrics.    
 
The distinct performance of SMADI shown in this work confirms 
the results obtained in previous studies at regional (Sánchez et 
al., 2016) and global scales (Sánchez et al., 2018) and supports 
its use as a near real time information layer for the analysis of 
hydric conditions of any given area within Argentina, in order to 
determine if a declaration of Agrarian Emergency is needed.  
  
Future work will be directed towards the analysis of false positive 
alarms that may be triggered using the same three indices. This 
is needed for a full characterization of the indices’ ability to 
detect agricultural drought in the study region.  
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