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ABSTRACT:

Citrus producers need to monitor orchards frequently, and would benefit greatly from having automated tools to analyze aerial
images acquired by drones over the plantations. However, analysing large aerial data sets to enable producers to take management
decisions that would optimize productivity and sustainability over time and space remains challenging. Motivated by the success
of deep learning in computer vision, this work proposes a novel approach based on Fully Convolutional Regression Networks and
Multi-Task Learning to detect individual full-grown trees, tree seedlings, and tree gaps in citrus orchards for inventory tracking.
We show that the proposal can identify eight-year-old orange trees with accuracy between 95–99% in high-density commercial
plantations where adjacent crowns overlap. This quality of detection was achieved on RGB orthomosaics with a pixel size of about
9.5 cm and requires the nominal spacing between adjacent trees as a priori information. Our results also highlight that detecting
tree seedlings and tree gaps remains a challenge. For these two categories, classification sensitivity (recall) was between 59–100%
and 63–94%, respectively.

1. INTRODUCTION

Citrus growers need to monitor orchards to keep up-to-date
records of the number of bearing trees, to inspect how
seedlings develop, and to detect potential anomalies in the
plantation that may influence productivity. Traditional orchard
monitoring relying on plot sampling and manual inspection of
trees in situ is a laborious task and becomes challenging for
large commercial plantations. Orchard monitoring using
remote sensing is a promising alternative to complement
traditional field inspections. In this context, advances in
unmanned aerial vehicles (UAV or ”drones”) technology have
opened the possibility of on-demand image acquisition,
allowing farmers to monitor crops frequently. Drone operators
can plan flights that carry sensing equipment, such as standard
digital RGB cameras, multispectral, and hyperspectral sensors
delivering images with a centimeter-level resolution on the
ground, sufficient to see subtle details in the field that would be
difficult to resolve using, for instance, satellite remote sensing.
In agriculture, drones are present in various applications such
as field mapping, weed management, plant stress detection,
inventory counting, biomass estimation, and chemical
spraying (Hassler, Baysal-Gurel, 2019).

The automatic tree-based inventory is an active research topic
in the last decades and has been investigated, for example, to
extract tree stand characteristics (e.g., mean tree diameter and
height) needed in commercial forest management
planning (Kaartinen et al., 2012). Many methods have been
used to detect individual trees, using imagery from a variety of
optical and Light Detection and Ranging (LiDAR) sensors. Ke
and Quackenbush (Ke, Quackenbush, 2011) review various
techniques developed for automatic detection of individual
trees in images, including local maxima filtering, image
binarization, scale analysis, and template matching, among
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others. Traditional image processing and pattern recognition
methods inspired most of these algorithms. In some
applications, individual tree detection using such approaches
can be further processed using machine learning classifiers to
produce the final identification and assign confidence to each
tree detection (Zortea et al., 2017). Using texture descriptors
also helps classification (Kobayashi et al., 2019). However, a
challenge remains when adjacent tree crowns overlap.

Deep learning (LeCun et al., 2015) is improving computers’
ability to analyze and learn patterns from large data sets. It
excels at computer vision tasks such as object detection and
semantic segmentation. Deep learning are models composed
of a sequence of filters organized in the form of multiple layers
of processing. When applied to images, deep learning
approaches such as convolutional neural networks (CNNs)
extract attributes and discriminate the classes of interest
defined by the user. In a supervised setting, the weights of such
filters are tuned iteratively using a set of training samples and
the backpropagation algorithm. Deep learning methods are
being used in agriculture (Kamilaris, Prenafeta-Boldú, 2018)
and studies have show that, in principle, detecting and
counting individual (oil-palm) trees in commercial plantations
is more accurate with CNNs than neural networks, template
matching, and local maximum filter (Li et al., 2017). For
instance, Li and colleagues (Li et al., 2017) used a CNN
running in sliding windows to detect and count oil-palm trees
in high spatial resolution multispectral satellite images. It
improved results compared to more traditional algorithms.
Another sliding window approach was proposed in (Zortea et
al., 2018b) that combined the detection probabilities, estimated
by a pair of binary CNNs classifiers, trained in image patches
of different spatial resolutions, to detect oil-palm trees in RGB
orthomosaics from aerial photographs acquired by drones. The
idea was to improve robustness for a possible poor estimation
of the values of the CNN filters.
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As recent examples of orchard analysis, Csillik and colleagues
(Csillik et al., 2018) detected citrus and other crop trees from
UAV images using a CNN, followed by a classification
refinement using superpixels derived from a Simple Linear
Iterative Clustering (Achanta et al., 2010) algorithm and
filtering of local probability maxima. The authors used
multispectral orthomosaics containing the red, green and two
infra-red bands with a resolution 12 cm/pixel and achieved a
precision of 94.6% and recall of 97.9%. The image examples
shown in their work suggest that the crown of adjacent trees
did not overlap. (Zortea et al., 2018a) detected individual
orange trees in UAV images using two CNNs. The first was
trained to detect the plantation rows. The rows were refined
using mathematical morphology. Then, a second CNN,
focusing in closer vicinity to the plantation rows made the final
classification of individual full-grown trees, tree seedling, and
tree gaps. Experiments on eight-year-old orange orchards
revealed an average precision of 98.7% and recall of 89.2% in
the detection of full-grown trees using RGB orthomosaics with
10 cm/pixel.

In this work, we present a novel end-to-end architecture that
tackles individual citrus inventory considering a single
multi-task learning architecture based on fully convolutional
regression networks to estimate a density map. Our proposal
enables handling location and classification altogether,
improving precision and recall in comparison to other tree
inventory approaches. We demonstrate effective detection of
the location of mature orange trees (living, bearing or
non-bearing trees), tree seedlings, and plantation gaps in
orchards using RGB orthomosacis obtained by drones as input.

2. FUNDAMENTALS

In this section, we present the theoretical fundamentals that
support our method: fully convolutional regression networks,
counting by density maps and multi-task learning.

Fully Convolutional Regression Networks: Recently, Long
et al. (2015) introduced fully convolutional networks (FCN)
for semantic labeling problems (Long et al., 2015). These
networks are trained to predict jointly all labels in an input
image little loss in spatial resolution and in the past few years
have been used with great success in the remote sensing
community (Volpi, Tuia, 2016). In (Long et al., 2015), the
authors reinterpret the fully connected layers of a traditional
CNN as a convolutional layer. After many downsampling
stages (typically convolution followed by pooling layers) the
method employs an upsampling strategy (bilinear,
deconvolution) in order to recover the original input image
size, and predict the labels at pixel-level. The network is
trained end-to-end and is able to learn spatial, intra- and
inter-class relationship across the input image. In this context,
FCNs are well-know to perform structured prediction by
combining context with spatial information. Hence, a Fully
Convolutional Regression Network (FCRN) (Xie et al., 2018)
consists of a FCN applied in a regression problem instead of a
semantic labeling task. The network learns a mapping between
an input image I and a density map d. Regression-based
methods have been wildly used in counting and detection
applications such as counting bacteria or cells in microscopic
images (Xie et al., 2018), dense crowd (Zhang et al., 2016),
among others.

Counting by density maps: Introduced by (Lempitsky,
Zisserman, 2010), object counting using density maps avoids
the difficulties of explicit detection and segmentation of all
objects instances, and at the same time takes into account
spatial relationships, representing the state-of-art when objects
are heavily overlapped (Sindagi, Patel, 2018, Jiang et al.,
2019). In (Lempitsky, Zisserman, 2010), density estimation is
tackled trough a supervised learning algorithm, where the
parameters of the classifier are learned by minimizing the error
between the true and the pixel-wise density prediction. The
final density map is obtained by running the predictor as a
sliding window over the whole image, then, a post-processing
step is commonly applied to count the objects. The integral of
the density map, non-maximum suppression, k-means
clustering, and gaussian mixture models have been
successfully used to predict the number of objects from density
maps (Ma et al., 2015). Recent works use FCN to perform
patch-wise density prediction to speed up the training and
inference time (Kang et al., 2018).

Multi-Task learning: The core idea behind multitask
learning (MTL) is to train a model capable of solving a
number of related tasks simultaneously in the same processing
structure. In the context of fully convolutional networks, one
of the most typical approach for multi-task learning consist on
a shared subnet or encoder, followed by task-specific subnets
or decoders. Such models tends to better generalization, since
each different task targets specific outcomes, through specific
losses. Alongside, MTL reduces the number of labelled
samples required per task to attain a good performance (Shui
et al., 2019) and helps to focus its attention on the set of
features maps that actually are relevant since the task
all-together provide information about the importance of those
features (Ruder, 2017). Typically, in MTL there are more than
one loss function to be optimized during training.

3. METHODOLOGY

Our method is composed of two main steps: (1) training a
FCRN in a multi-task learning setting to infer density maps
centered at point locations of full-grown orange trees, tree
seedlings, and tree gaps; and (2) post-processing and final
classification. In the post processing step we first estimate the
center of the plantation rows by applying morphological
operations to the density maps; then we generate candidate
point locations evenly spaced along the predicted plantation
rows, using the nominal spacing between adjacent trees known
a priori; and finally we classify the final candidate points. The
flow chart of our proposal is shown schematically in Fig. 1 and
detailed below.

3.1 Fully Convolutional Regression Network Multi-Task
learning (FCRN-MTL)

The design of our method is based on hypotheses raised from
data observations:

1. Adjacent crowns of full-grown citrus trees may overlap
substantially in commercial plantations. Density maps,
with pixel values proportional to the distance to closest
plantation point, present higher values along the plantation
rows.

2. The symmetric shape of tree crowns and the fact that
orchard trees are planted in (straight) rows on a regular
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Figure 1. Flowchart of the proposed method. dt, ds, dg are the density maps for mature orange trees, tree seedlings, and plantation
gaps, respectively.

planting pattern can help to separate trees from other
background areas in the image due to its spatial context.

3. Due to the sparsity of tree seedling location and gaps,
their resemblance to grass and exposed soil located
outside the plantation rows, training an independent
model for each class can lead to erroneous detection as
reported by (Zortea et al., 2018a). Hence, the use of
multi-task learning can brings extra spatial context from
the presence of full-grown trees to help detect tree
seedlings and tree gaps within the plantation rows.

As in (Xie et al., 2018), we use a FCRN to learn a mapping
between an image and a density map. However, different from
the authors, our network is implemented to perform multi-task
learning. Given an input image I ∈ Rm×n the network learns a
function to map from the input space to three different density
maps dt, ds, dg ∈ Rm×n, one for full-grown orange trees, one
for tree seedlings, and tree gaps, respectively (see Fig. 1).
From a set of H training images I1, I2, ..., Ih, we assumed that
each images Ii is annotated with a set of 2D points Pi, were
each p ∈ Pi correspond to one of the classes of interest (i.e.,
tree, seedlings and gaps). We obtain the ground truth density
map for point p by convolving a circular filter with center at
the point location and calculating the Euclidean Distance
Transform (EDT) (see examples in Fig. 1). This distance map
has the same dimensions of the input image and each pixel
contains the euclidean distance to the closest background or
zero value pixel. All distances were normalized between 0 and
255, and the resultant map was saved as an image. Note that
point annotation requires less human effort than traditional
bounding-box annotations, which make our method attractive
for counting on large-scale remote sensing data.

The FCN comprises an encoder (the orange block of Fig. 1)
and different decoders depending on the target (the green block
of Fig. 1). We implement the encoder using three
convolutional blocks (CBs), where each CB is composed of
successive convolution → batch normalization → activation,
followed by a max-pooling layer of 2×2. These operations
reduce the resolution of the feature space by 23. After the last
max-pooling layer, the network includes short-cut connection
(three arrows connected to the purple box in Fig. 1). The

short-cut connections concatenate the output feature maps
(before each max-pool) from previous CBs to the feature maps
produced by the last max-pooling layer. We applied extra
max-pool operations to the feature maps from previous CBs to
match the resolution of the final CB. We can interpret the
concatenation of features from different levels of convolution
as multi-scale feature fusion. From then on, we feed the coarse
feature representation F into three different decoders to
reconstruct the density maps. Our method perform MTL in
such a way that the encoder layers are shared layers and the
decoder ones are task-specific layers (orange and green blocks
in Fig. 1). For the decoder correspondent to full-grown trees,
we resize F to be equal to the input size using bilinear
interpolation. Using bilinear interpolation introduces no extra
checkerboard artifacts, which are present in other upsampling
methods such as deconvolution (Odena et al., 2016). Then, we
pass the resized F to four CBs of two convolutions each one to
reconstruct the density map. For the decoders of tree seedlings
and tree gaps (middle and bottom of green block in Fig. 1), we
first process F by one CB and then we resize the activation
map to the input size using bilinear interpolation. Finally, we
use one more CB to generate per-pixel density values.

Since the density map of our model can also be interpreted as a
depth map with higher values at the center of the point
annotations, we use the scale-invariant error as a training loss
which encourages neighboring pixels to have a similar
depth/density values (Eigen et al., 2014). For a predicted
density map d and the ground truth d̂, each with q pixels, the
scale-invariant mean squared error is defined as:

L(d, d̂) =
1

q

y∑
i=1

(yi)
2 − λ

q2
(

y∑
i=1

yi)
2 (1)

where yi = log di − log d̂i and λ ∈ [0, 1]. As in (Eigen et
al., 2014), we use λ = 0.5, that can be seen as an average of
element-wise l2 (λ = 0) and the exactly scale-invariant error
(λ = 1). The final loss function is the sum of the loss for each
of the density maps:

L = w1Lt(dt, d̂t) + w2Ls(ds, d̂s) + w3Lg(dg, d̂g) (2)
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where w1, w2, w3 are constants used to weight the contribution
of each density map.

After training, given a novel image, we predict the density
values using a sliding window over the image with an overlap
of 0.3, keeping the prediction of the central region of each
patch. This way, we minimize eventual border effects near
adjacent images patches.

3.2 Post-processing and final classification

Unlike previous works, our solution does not require the use of
the integral of the density map neither non-maximum
suppression for detection and counting. Our customized
post-processing algorithm comprises two processing blocks.
First, we binarize each density map given certain thresholds,
obtaining bt, bs and bg . Next, we create a new binary map
M = bt + bs + bg . Then, each pixel p ∈ M is set to one if
p ≥ 1 and zero otherwise. Hence, we have a global binary map
of tree lines, including seedling and tree gaps. Finally, we
apply a Gaussian filter to smooth the map M and get the
central line of objects (segments) using
skeletonization (Zhang, Suen, 1984).

In the second block, we iterate over each skeleton line at points
spaced by the known nominal distance between adjacent trees
in the orchard. For each candidate point i, j, we first check if
bs(i, j) = 1, if not, we check if bg(i, j) = 1, and finally, if the
point is not in the tree seedling neither to tree gap masks, we
check whether bt(i, j) = 1. We follow this order of priority
since a point can have a value equal to one in more than one
binary map. Hence, we prioritize labeling tree seedling and tree
gaps before full-grown trees.

4. EXPERIMENTS

4.1 Dataset

The data used for the experiments is from a commercial orange
tree plantation in Santa Cruz do Rio Pardo, São Paulo,
southwestern Brazil. There, a Batmap R© (Nuvem UAV R©,
Presidente Prudente-SP, Brazil) UAV, equipped with a 24MP
Sony A6000 RGB camera (Sony R©, Tokyo, Japan), took aerial
photographs of orchards that were later processed to generate
an orthomosaic with a ground sample distance of about
9.5cm/pixel, using the Pix4D R© software (Pix4D S.A., Prilly,
Switzerland). To facilitate data handling, we croped individual
orchards in the georeferenced images using shapefiles
delineating the borders of the farms. Images from seven
orchards were randomly selected and reserved for testing
(Table 2). An independent set of orchards, imaged nearby, was
split for training and validation purposes. The nominal
planting space between adjacent trees and rows was 2.5×6.8 m
in the orchards reserved for testing. These orchards are
spatially disjoint to the training ones. Crowns of adjacent
mature trees, aged about eight years old, overlapped, adding to
the challenge of individual tree detection.

4.2 Experimental set-up

We built training and validation sets containing 22,904 and 383
image patches, respectively. We cropped training patches with
a 75% side overlap to increase the number of samples. The
validation patches did not overlap. We considered patches of
size 128, 256 and 512 pixels and, after preliminary experiments,

Encoder Mature Tree Decoder
Layer Processing Layer Processing

Input RGB 512×512×3 Input F 64×64×60
conv1 24 3×3 Resize 8×8

C
B

1

conv2 20 3×3

C
B

4

conv11 28 3×3
conv3 25 3×3 conv12 24 3×3
conv4 20 3×3
pool1 2×2

C
B

2

conv5 20 3×3

C
B

5

conv13 20 3×3
conv6 25 3×3 conv14 20 3×3
conv7 20 3×3
pool2 2×2

C
B

3

conv8 20 3×3

C
B

6

conv14 20 3×3
conv9 25 3×3 conv15 16 3×3

conv10 20 3×3
pool3 2×2

short-cut connection

C
B

7 conv16 16 3×3
F = concat(pool1,pool2,pool3) conv17 1 3×3

Seedling Decoder Tree Gaps Decoder
Layer Processing Layer Processing

Input F 64×64×60 Input F 64×64×60

C
B

8 conv18 28 3×3

C
B

10 conv23 28 3×3
conv19 16 3×3 conv24 16 3×3

Resize 8×8 Resize 8×8

C
B

9 conv20 16 3×3

C
B

11 conv25 16 3×3
conv21 8 3×3 conv26 8 3×3
conv22 1 3×3 conv27 1 3×3

Table 1. Architecture of the network.

selected 512×512 because patches of this size display more
contextual information of plantation patterns. As mentioned
earlier, for each image patch, we used ground truth with the
coordinates of the center of the crowns of full-grown trees, three
seedlings, and tree gaps (missing trees in the rows) to generate
density maps to train the proposed model. Both, images patches
and reference density maps were normalized between zero and
one.

The FCRN-MTL architecture is shown in Table 1. The input
image patch is a 512×512 RGB image. As described on
Section 3, the encoder consists in three CB (CB1–CB3) where
each convolutional layer is followed by a batch normalization
and by a exponential linear unit (ELU). All the convolutional
filters are 3×3. The short-cut connection was implemented by
concatenating the activation maps from pool1 downsampled by
4, from pool2 downsampled by 2, and pool3. From them on,
the decoder use bilinear interpolation to recover the input
spatial dimension and CBs (CB4–CB11) to process the coarse
representation and output the density maps, i.e., the responses
from conv17, conv22 and conv27. The convolution kernels
were initialized with a Glorot uniform initializer (Glorot,
Bengio, 2010). We used the ADAM (Kingma, Ba, 2014)
optimizer with learning 1e−3, parameter values β1 = 0.9 and
β2 = 0.999.

The batch size is set to 5 and, since the dataset is highly
unbalanced, with seedling being the class with less samples,
followed by tree gaps and full-grown trees, we set a higher
weight to the loss function Ls in Equation 2. We obtained the
best results with w1 = 0.2, w2 = 0.5 and w3 = 0.3. As in
(Zortea et al., 2018a), candidate points, classified as one of the
three class of interest, were considered correct if its center
where within 1.5 m of the center of the corresponding class at
the reference ground truth.

4.3 Results and discussion

Table 2 summarizes the detection scores for the seven orchards
reserved for testing. The location and the number of full-grown
trees were detected with precision and recall above 95% in all
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Table 2. Detection results for seven test orchards using the proposed method.

Evaluation score Site 22 Site 32 Site 45 Site 54 Site 61 Site 76 Site 82 All

correctly detected full-grown trees (a) 7641 4171 4169 7071 4273 5523 6972 39820
all detected full-grown trees (b) 7668 4232 4230 7099 4301 5558 7060 40148

full-grown trees in the ground truth (c) 7692 4345 4386 7140 4334 5607 6978 40482
Precision: a/b (%) 99.6 98.6 98.6 99.6 99.3 99.4 98.8 99.2

Recall: a/c (%) 99.3 96.0 95.1 99.0 98.6 98.5 99.9 98.4
Overall accuracy (%) 99.5 97.3 96.8 99.3 99.3 98.9 99.3 98.8

correctly detected tree seedlings (a) 0 0 131 28 37 66 46 308
all detected tree seedlings (b) 9 0 325 57 69 116 68 644

tree seedlings in the ground truth (c) 0 0 189 47 50 109 76 471
Precision: a/b (%) 0.0 100 40.3 49.1 53.6 56.9 67.6 47.8

Recall: a/c (%) 0.0 100 69.3 59.6 74.0 60.6 60.5 65.4
Overall accuracy (%) 0.0 100 54.8 54.3 63.8 58.7 64.2 56.6

correctly detected tree gaps (a) 301 216 855 354 262 261 676 2925
all detected tree gaps (b) 426 308 1038 413 364 444 769 3762

tree gaps in the ground truth (c) 318 343 1115 402 338 317 779 3612
Precision: a/b (%) 70.7 70.1 82.4 85.7 72.0 58.8 87.9 77.8

Recall: a/c (%) 94.7 63.0 76.7 88.1 77.5 82.3 86.8 81.0
Overall accuracy (%) 82.7 66.6 79.5 86.9 74.7 70.6 87.3 79.4

Figure 2. Example of results for orchards 45 (top row) and 54 (bottom). For visualization purposes, the density maps obtained by the
proposed method are shown in color compositions using the RGB channels, placing the densities of full-grown trees (at green

channel), tree gaps (red channel), and tree seedlings (blue channel). High density values are consistent with the location of plantation
rows, and black color represent low density values associated with background areas. The circles overlaid in the right-most images
have a diameter of 2.5 m (such as the nominal planting distance) and are centered at points retained after the post-processing. The

color of the circle is according to the final classification obtained by the proposed method.

sites, with an average reaching 98.8%. This corresponds to a
4.8% increase in the average score reported in (Zortea et al.,
2018a) using a sliding window-based CNN approach (94.0%)
for the same orchards. Detection of tree seedlings and tree
gaps proved challenging, with overall accuracy of 56.6% and
79.4%, respectively. Often, both classes got confused because
pixels in the small crowns of tree seedling were mixed with the
exposed soil from the background. For these two categories, the
recall was between 59–100% and 63–94%, respectively. It is
worth pointing out that the performance of the method strongly
depends on the weight assigned to each task’s loss. Tuning
these hyperparameters is an expensive process which exceeds
the scope of this study.

Fig. 2 shows a detail of orchard 45, characterized by many
tree gaps and background vegetation in the plantation rows.
In this challenging scenario, most full-grown trees have been
detected. The algorithm confused an area that appears to be

a tractors pathway (to the right of the image) with tree gaps.
The method erroneously interpreted this pathway as a line tree,
however other regions with grass or soil outside the tree lines
were correctly identified as background. Conversely, orchard
54 in Fig. 2 had fewer gaps and detection produced by the
algorithm was correctly placed along the plantation rows. In all
cases, prior information on the adjacent tree spacing facilitated
the analysis.

5. CONCLUSIONS

We presented a method to help in orchard inventory using
color aerial images acquired by drones. The key aspect of our
proposal is a novel detection approach that combines FCRNs
with multi-task learning. This proved very accurate in
detecting full-grown orange trees. Future research efforts
should prioritize detection of tree seedlings and tree gaps,
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which remains a challenge in the commercial orchards
considered in this study, where adjacent trees are spaced 2.5 m
apart and adjacent tree crowns overlap. Studying how the
proposed method compares to an alternative approach that
trains a FCRN for each class, how the method generalize to
other areas, plantation patterns, and fruit types is a future
venue. Our learning strategy enables solving other similar
problems in object identification.
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H., Kukko, A., Holopainen, M., Heipke, C., Hirschmugl,
M., Morsdorf, F. et al., 2012. An international comparison of
individual tree detection and extraction using airborne laser
scanning. Remote Sensing, 4(4), 950–974.

Kamilaris, A., Prenafeta-Boldú, F. X., 2018. Deep learning
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