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ABSTRACT:

The use of convolutional neural networks improved greatly data synthesis in the last years and have been widely used for data
augmentation in scenarios where very imbalanced data is observed, such as land cover segmentation. Balancing the proportion
of classes for training segmentation models can be very challenging considering that samples where all classes are reasonably
represented might constitute a small portion of a training set, and techniques for augmenting this small amount of data such as
rotation, scaling and translation might be not sufficient for efficient training. In this context, this paper proposes a methodology to
perform data augmentation from few samples to improve the performance of CNN-based land cover semantic segmentation. First,
we estimate the latent data representation of selected training samples by means of a mixture of Gaussians, using an encoder-decoder
CNN. Then, we change the latent embedding used to generate the mixture parameters, at random and in training time, to generate
new mixture models slightly different from the original. Finally, we compute the displacement maps between the original and the
modified mixture models, and use them to elastically deform the original images, creating new realistic samples out of the original
ones. Our disentangled approach allows the spatial modification of displacement maps to preserve objects where deformation is
undesired, like buildings and cars, where geometry is highly discriminant. With this simple pipeline, we managed to augment
samples in training time, and improve the overall performance of two basal semantic segmentation CNN architectures for land
cover semantic segmentation.

1. INTRODUCTION

Land cover segmentation is a very common application of re-
mote sensing and is of great interest in many fields, such as
agriculture and urban planning (Bokusheva et al., 2016). Many
different land cover segmentation methods have been proposed
in the literature, mostly based on object-based image analysis
(Blaschke et al., 2014), and more recently on convolutional
neural networks (Zhu et al., 2017). In (Papadomanolaki et al.,
2016), the authors compared different well-established deep ar-
chitectures (AlexNet, AlexNet- small, VGG) for the classifica-
tion of NAIP SAT-4/SAT-6 dataset using CNNs. In (Audebert
et al., 2017), the fully convolutional neural network SegNet ar-
chitecture was modified to achieve semantic segmentation of
multimodal airborne imagery.

While semantic segmentation is a widely discussed topic in the
community (Yu et al., 2018, Buda et al., 2017), methods that
show impressive results on this task still struggle with very
imbalanced databases (Garcia-Garcia et al., 2017). In remote
sensing, this tough scenario has been also reported (Zhu et al.,
2017), and recent works deal with it using tools such as loss
function weighting (Zhu et al., 2017), and augmenting classes
with fewer samples using translations, rotations and scaling (Zhu
et al., 2017). Even if this procedures are able to improve the
CNNs segmentation performance, their impact depends very
much on the number of original samples available to balance
the database, since these transformations derive a limited num-
ber of new samples.

Different models, such as Generative Adversarial Networks,
have been applied for balancing imbalanced training sets (Creswell
et al., 2018, Karras et al., 2018, Park et al., 2019, Guo et al.,
2019), but since they model the training samples distribution,
the data created using them do not often add discriminating

power to classification models. Other methods, such as Vari-
ational Auto-Enconders (Kingma, Welling, 2013), were also
used to create latent data representations of a given set of samples,
but the modification of such encoded data to derive new dis-
criminant data is not straightforward.

This paper presents a method for data augmentation in the con-
text of semantic segmentation of imbalanced data. First, we
use an encoder-decoder CNN that takes as input an original im-
age, encode it into a latent embedding and decode the embed-
ding into a Gaussian Mixture Model (GMM) that best repres-
ents the input image. Second, we modify the latent embedding
of a given sample, at random and in training time, to generate
a new, slightly different GMM for the given input. Finally, we
compute the displacement map of original and modified GMMs
using an elastic registration method, and use it to warp the ori-
ginal image, generating new samples. We also modify the dis-
placement map to strategically preserve the geometry of some
highly geometry dependent classes, such as buildings and cars.
With this pipeline, we propose a method to generate new real-
istic samples out of a small set of training samples, in training
time. Our results report an increase in the overall accuracy of
land cover segmentation for two widely used semantic segment-
ation CNN architectures.

This paper is organized as follows. In next section we detail
our methodology, data used, pre-processing, methods for aug-
menting data and segmentation networks used for evaluation.
Then, we present our experimental design and discuss the res-
ults achieved. Finally, we draw conclusions from this work and
report future research possibilities.
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Figure 1. Semantic segmentation schema: with a given samples
database, we propose a method to augment the training set,

train the semantic segmentation CNN and evaluate its
performance using the testing set.

2. METHODOLOGY

The data augmentation methodology herein proposed is tested
in the context of land cover semantic segmentation, as depicted
in Figure 1. Our experimental pipeline consists of organizing
a training, validation and testing database; augmenting train-
ing data towards a more balanced corpus using our proposed
method; and training and evaluating two different semantic seg-
mentation networks using the original imbalanced test set. Each
of these steps are presented in the following.

2.1 Data and Pre-Processing

The data used in our experiments was made publicly available
by the International Society for Photogrammetry and Remote
Sensing in the context of 2D semantic labelling contest pro-
posed by the Commission II / Working Group II/4. It con-
sists of very high resolution true ortho-photo (TOP) tiles and
the corresponding digital surface models (DSM) derived from
dense image matching techniques in the region of Vaihingen,
Germany.

Each image has been classified manually into six land cover
classes: 1) impervious surfaces, 2) buildings, 3) low vegetation,
4) trees, 5) cars, and 6) clutter/background. Annotated data was
provided for approximately half of the images in the original
database, which we used for training, validation and testing.

The data was pre-processed to highlight characteristics we be-
lieve to be important for discriminating between the suggested
classes. We derived four channels from the given CIR (Near
infra-red, R and G) bands and DSM images provided:

1. The normalized digital surface model (nDSM) was gen-
erated using the digital terrain model (DTM) filter from
the SAGA GIS software. This filter basically smooths the
DSM to find the DTM and subtract it from the DSM, de-
riving the off-terrain height of structures.

2. The NDVI (Gandhi et al., 2015) vegetation index imaging
using the near infrared (NIR) and red band.

3. The Red band.

4. The Green band.

Each channel was normalized by a simple procedure: we com-
puted the histogram of pixel intensities for a given channel con-
sidering all images, determined its 2% and 98% percentiles and
transformed linearly the intensities values targeting the interval
[0,1]. Values below 2% percentile were set to zero and above
98% percentile were set to 1.

Our experimental database, divided in tiles as detailed in the
experimental design section, was composed by 10 four-channel
normalized images for training, 3 for validation, and 3 for test-
ing, with varied sizes.

2.2 Data Augmentation Method

The proposed data augmentation method is represented in Fig-
ure 2. First we train an encoder-decoder CNN that encodes
input images into a latent representation, and then decodes the
latent data into a mixture of Gaussians that reconstructs the in-
put. Then, we change the latent embedding used to generate
the mixture parameters and decode it into new mixture models
slightly different from the original. Finally, we compute the dis-
placement maps between the original and the modified mixture
models, and use them to elastically deform the original images,
creating new realistic samples out of the original ones. Each of
these steps are detailed in the following.

2.2.1 GMM Enconder-Decoder CNN Mixture models are
conveniently used to describe systems composed by subpopu-
lations within an overall population. Gaussian mixture mod-
els (GMM) in particular, are widely applied in different areas,
ranging from speaker recognition to image retrieval, finance,
electron and atomic position, spectroscopy, cellular compon-
ents. GMM has also been shown to be useful for modeling for
colour features in order to classify coloured textures in images
(Permuter et al., 2003). Herein, we propose to model images as
GMM models to extract their latent data representation. To sim-
plify our model and ease convergence, we used the magnitude
image from the four-channel images, such that the GMM was
composed by simple bi-dimensional Gaussians.

A n-dimensional Gaussian distribution is written as

N (~x, ~µ,Σ) =
1√

2πΣ
exp

[
−1

2
(~x− ~µ)T Σ−1 (~x− ~µ)

]
,

(1)
where ~µ is the mean and Σ is the covariance matrix

Σ =

 σ2
1 ρ1,2σ1σ2 . . .
...

. . .
ρn,1σnσ1 σ2

n

 . (2)

The mixture of K Gaussian distributions is expressed as

M(~x) =

K∑
i=1

αi N (~x, ~µi,Σi),

K∑
i=1

αi = 1. (3)

Here, we introduce an architecture, represented in Figure 3,
for end-to-end unsupervised learning of mixture of multivari-
ate Gaussian distributions. The parameters of the mixture are
learned from a latent representation of the input data at the same
time they are used to reconstruct the input using Eq. 1. A con-
volutional encoder is used to create a latent representation ~y for
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Figure 2. Our two-step approach: first we extract the images latent data representation using a GMM Autoencoder CNN; then we use
the CNN output to generate new realistic images using a non-rigid registration schema..

Figure 3. The GMM enconder-decoder architecture is presented in details. Our proposed architecture has a encoder composed by
three convolutional layers, followed by a Flatten layer that creates a feature array, and a dense layer that creates the latent data

information; and a decoder that gets the latent data information and maps it into GMM parameters through another dense layer,
ultimately used to reconstruct the density output image. A trained network is capable of mapping from connvolutional features to

latent data, and from latent data to a GMM that resembles the input image.

n−dimensional input data ~x, with n = 2 (considering our one-
channel bi-dimensional input images), according to

~y = Φ
(
W0~x+~b0

)
. (4)

The latent representation ~y, which is of size ` × 1 (in our ex-
periments ` = 100), is then used as input for dense layers that
in parallel estimate the parameters αi, ~µi and Σi, 0 ≤ i ≤ K,
the ”Gaussian Parameters” layer in Figure 3. Because of the
constraint expressed in Eq. 3, we use softmax activation for
estimating α. We used tanh for estimating the mean vector
of each component, which lie in the range [−1, 1] representing
the domain of the input data. Standard deviation and correla-
tion parameters are estimated through sigmoid activation and
they are composed to build the covariance matrices given by
Eq. 2. Therefore, the parameters of our mixture model can be
expressed as

~α = softmax
(
W1~y +~b1

)
, (5)

~µ1, . . . , ~µK = tanh
(
W2~y +~b2

)
, (6)

~σ1, . . . , ~σK = sigmoid
(
W3~y +~b3

)
, (7)

ρ
(1)
1,2, . . . , ρ

(K)
n−1,n = sigmoid

(
W4~y +~b4

)
. (8)

In total, our architecture estimates 1/2(n2 + 3n+ 2)×K para-
meters (for bi-dimensional images, 6×K parameters, as shown
in Figure 3) from the latent representation of the input data. The
last layer in our architecture, the ”Reconstruction Layer” in Fig-
ure 3, uses the estimated parameters to create the n-dimensional
density map in Eq. 3. The resulting density map is compared
to the input data according to a root mean square logarithmic
error loss function, and visual results of the training process are
shown in Figure 4-I.

We defined experimentally a total of K = 50 Gaussians as
enough to represent the latent data from training samples. The
tuning of the number of Gaussians can be easily performed by
defining a target average squared root error between reconstruc-
ted images and the original ones when the network converges.
As intuitively expected, this error decreases when the number
of GMM Gaussians increases, creating a richer representation
of the input images.

2.2.2 Latent Data Deformable Decoding Having trained
the GMM enconder-decoder CNN, we compute the samples lat-
ent data representation, modify them and generate new samples
using a deformation schema based on decoded GMMs, as shown
in Figure 2.

First we submit a given sample to our GMM CNN, compute
the original latent data representation, and decode it into the
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corresponding GMM model, say GMMa.

Then changeGMMa to create a new sample. Modifying GMMs
might be executed in many different ways, and in this work we
propose to do that indirectly by modifying the latent data to be
decoded into GMMs. This way we avoid dealing with any nu-
merical constraints of modifying GMMs, and let the decoder do
it by simple considering a slightly different latent data as input.
We change the latent data array in a stochastic fashion by mul-
tiplying each value by a random number taken from a normal
distribution controlled by the standard deviation σ, and create
new latent data in training time. Then we submit this new data
to our decoder and create a new GMM model, say GMMb.

With the original GMMa and the created GMMb, we propose
to create new samples by deforming the orignal sample, mod-
elled by GMMa, towards the created GMMb. The Level Sets
motion registration filter (provided by SimpleITK (Yaniv et al.,
2018)) was used to deform the input image. We takeGMMa as
the moving image and GMMb as the fixed image, and run the
registration procedure. Then we use the computed displacement
field and apply it to warp the original input image, deforming
the sample and creating a new sample that resambles GMMb.
We used 50 iterations for the registration method, as default in
SimpleITK.

It is noteworthy that deformation is likely to modify the geo-
metry of objects found in the scene, and this is highly undesir-
able for some land cover classes, such as buildings and cars.
Our disentangled methodology allows us to cope with this prob-
lem by simply erasing the deformation field of objects from
these classes. This way we deform classes that can be de-
formed, and preserve the geometry of objects highly dependent
on geometry.

This simple schema allow us to create realistic new samples,
and control to some extent, the deformation magnitude observed
in the data augmentation process, as shown in Figure 4. Our
method preserves the geometry of buildings, and allows for
stronger deformations of the original and annotated images, by
increasing the standard deviation of latent data modifier, as ob-
served in the dashed yellow, blue and red lines in Figure 4. The
lines illustrate the deformation observed in the vegetation, im-
pervious surface and trees classes for different deviations.

2.3 CNN semantic segmentation architectures

To evaluate the impact of our data augmentation method we
tested two basal fully convolutional network architectures for
semantic segmentation: SegNet (Badrinarayanan et al., 2017)
and U-Net (Ronneberger et al., 2015). Both architectures are
composed by a sequence of convolutional layers organized in
blocks with down-sampling and up-sampling layers, and with
skip connections in the case of U-Net. This encoder-decoder
architectures segment images by mapping them into the respect-
ive labelled data. Details are fully documented in the respective
papers (Badrinarayanan et al., 2017, Ronneberger et al., 2015).
While many more powerful architectures are available for seg-
menting images, we consider that the evaluation of state-of-art
semantic segmentation networks is beyond the scope of this pa-
per, since our contribution is solely on improving training sets.
We further expect that semantic segmentation networks in gen-
eral would benefit from using richer and more balanced training
sets.

Figure 4. Generation of new samples given an input image and a
GMM modifier standard deviation. One can observe buildings in
dark blue, impervious surfaces in black and vegetation in green.
While buildings geometry is preserved, one can notice stronger
deformations with higher GMM modifier standard deviations

(sigma), highlighted by the yellow, blue and red dashed lines. .

3. EXPERIMENTAL DESIGN

Our image database consisted of 10 full images for training, 3
for validation and 3 for testing. We used a stochastic sampling
method that delivers a batch of 128 × 128 tiles upon request,
each of them taken at random from the available training im-
ages and at randomly selected x and y positions. The sampling
method also filtered tiles where less than 3 classes were present,
to cope with the imbalanced nature of land cover data. Each tile
was also rotated at random considering 0, 90, 180 and 270 de-
grees. Additionally, each sorted tile was deformed twice using
our proposed method, so that each sample selection generated
3 training samples: 1 original and 2 deformed.

It is important to notice that this procedure is stochastic and
does not necessarily derive the same training tiles every time
(we used seeds to the random number generators to allow repro-
ducibility of experiments). Also, since the deformation module
has a random component in the latent data modification, we can
generate different samples during training.

Validation and testing procedures consisted of tiling the valida-
tion and test images with a stride of 30 pixels, submitting them
to the trained networks and aggregating the results into prob-
ability images per class. The final segmentation was obtained
by finding the class with the highest probability per pixel in the
resulting probability images.

The networks were trained using the 128x128 samples and the
respective annotated data. All training scheme used the same
configuration: 150 epochs (enough for convergence) composed
each by 150 steps. Each step comprised a batch of 36 samples
taken at random (12 original, 24 deformed), so each epoch con-
sisted of 5400 samples. We used Adam (Kingma, Ba, 2014) to
optimize the gradients with initial learning rate of 0.0002 and
momentum of 0.5. The loss function used was the categorical
cross-entropy, commonly used for multi classes using CNNs.
Validation ans test was performed considering the fixed set of
validation images, not augmented whatsoever.

4. RESULTS AND DISCUSSION

For evaluating our method, we performed a total of four exper-
iments using different training configurations:
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1. SegNet architecture and disabling our data augmentation
method – samples were taken at random, rotated, but not
deformed;

2. SegNet architecture and enabling our data augmentation
method – samples were taken at random, rotated, and de-
formed using sigma = 0.02, 0.05, 0.1;

3. U-Net architecture and disabling our data augmentation
method – samples were taken at random, rotated, but not
deformed;

4. U-Net architecture and enabling our data augmentation method
– samples were taken at random, rotated, and deformed us-
ing sigma = 0.02, 0.05, 0.1;

As observed in Figure 5 and in Table 1, U-Net performed con-
siderably better that SegNet. It is also noteworthy that our data
augmentation method was able to improve semantic segment-
ation performance in both architectures. Increasing the GMM
modifier standard deviation (sigma), lead to better results, even
though very high sigma values would probably generate un-
realistic patterns due to the non-rigid deformation applied.

Analyzing the F1-score per class, some important aspects are
observed. We notice, that our gains are much related to de-
formed classes, and even if we increased score also in some
non-deformed classes, in others no relevant improvement was
observed. This finding was expected, since deformation added
heterogeneity to these classes - and therefore robustness to seg-
mentation models. At the same time the spatial modification
of deformation field allowed our model to keep performance in
classes where the geometry is highly discriminant.

It is interesting to observe the visual outcome highlighted by the
red slashed squares in Figure 5: our method allowed a finer seg-
mentation of thin structures in the SegNet architecture (a com-
mon issue in this architecture, which seemed to be improved
by data augmentation), or a better definition of buildings in the
U-Net architecture.

Numerically, considering the SegNet architecture, we observed
a gain of 2.3% in the overall F1-score in our best configura-
tion, but all configurations using our data augmentation method
achieved better performances in comparison with the model
trained only with scaling and rotation. In the U-Net architec-
ture results were less impressive, but still all the best configur-
ations for all classes were consistently linked to our data aug-
mentation method. The small gains in performance observed in
U-Net might be related to the fact that skip connections allow
this architecture to cope with more detailed information for seg-
menting the images, which visually seems to be related to our
gains in the SegNet architecture.

Considering the overall F1-score, our methodology delivered
competitive results when compared with the benchmark provided
by ISPRS Vaihingen 2D Labelling challenge, considering the
semantic segmentation architectures used. While the state-of-
art delivers around 90% of overall F1-score, our best configur-
ation delivered 87.7%. This result, however, must be taken in
perspective: our goal in this paper was to evaluate the increase
in performance that our data augmentation approach brings, and
not really the final segmentation score achieved. State-of-art
methods in this benchmark use multi-scale and negative rein-
forcement techniques that were not explored in this work. We
believe these methods would also benefit from our data aug-
mentation approach, but we consider that such evaluation is
beyond the scope of this paper.

5. CONCLUSIONS

Data augmentation is an usual solution for dealing with very im-
balanced databases, such the ones observed in land cover seg-
mentation. When it comes to CNN-based semantic segmenta-
tion, the overall performance is tightly related to the distribution
of objects in the training scenes. Scenarios with scarce objects
tends to be problematic, since modifying images to balance a
semantic segmentation training database is not a trivial task.
Therefore, innovative methods for data augmentation are usu-
ally required, specially because rotation, translation and scaling
might be not sufficient for delivering satisfactory results.

In this sense, we proposed a new method, that allows for real-
istic data augmentation of selected samples, reducing the im-
balance of semantic segmentation databases. Our method con-
sisted of sequence of steps. First, we created a GMM encoder-
decoder CNN to encode input images into a compact latent
data representation to be decoded into mixture of Gaussians
that best represents the input. Then, we used a non-rigid de-
formation schema for generating new samples by deforming an
original GMM into a new GMM, decoded from a stochastic
modification of the original latent data representation. This
simple pipeline allowed us to perform data augmentation in
training time, and delivered encouraging results in two differ-
ent semantic segmentation architectures.

For further research, we intend to explore the class awareness
of our method and test the use of GANs to reconstruct new
samples from the GMMs decoded by the modified latent data
representations.

REFERENCES

Audebert, N., Le Saux, B., Lefèvre, S., 2017. Semantic seg-
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Figure 5. Visual outcome of our experiments. Buildings are observed in dark blue, impervious surfaces in black, low vegetation in
light blue, cars in yellow and trees in dark blue. It is possible to visually attest the impact of our data augmentation method in both
architectures, while U-Net performs better than SegNet. One can also notice that increasing sigma usually leads to better results.
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